grub/grub-core/efiemu/runtime/efiemu.c
2010-05-06 11:34:04 +05:30

630 lines
17 KiB
C

/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 2006,2007,2009 Free Software Foundation, Inc.
*
* GRUB is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GRUB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
*/
/* This is an emulation of EFI runtime services.
This allows a more uniform boot on i386 machines.
As it emulates only runtime serviceit isn't able
to chainload EFI bootloader on non-EFI system (TODO) */
#include <grub/symbol.h>
#include <grub/types.h>
#include <grub/efi/api.h>
#include <grub/efiemu/runtime.h>
grub_efi_status_t
efiemu_get_time (grub_efi_time_t *time,
grub_efi_time_capabilities_t *capabilities);
grub_efi_status_t
efiemu_set_time (grub_efi_time_t *time);
grub_efi_status_t
efiemu_get_wakeup_time (grub_efi_boolean_t *enabled,
grub_efi_boolean_t *pending,
grub_efi_time_t *time);
grub_efi_status_t
efiemu_set_wakeup_time (grub_efi_boolean_t enabled,
grub_efi_time_t *time);
#ifdef APPLE_CC
#define PHYSICAL_ATTRIBUTE __attribute__ ((section("_text-physical, _text-physical")));
#else
#define PHYSICAL_ATTRIBUTE __attribute__ ((section(".text-physical")));
#endif
grub_efi_status_t
efiemu_set_virtual_address_map (grub_efi_uintn_t memory_map_size,
grub_efi_uintn_t descriptor_size,
grub_efi_uint32_t descriptor_version,
grub_efi_memory_descriptor_t *virtual_map)
PHYSICAL_ATTRIBUTE;
grub_efi_status_t
efiemu_convert_pointer (grub_efi_uintn_t debug_disposition,
void **address)
PHYSICAL_ATTRIBUTE;
grub_efi_status_t
efiemu_get_variable (grub_efi_char16_t *variable_name,
grub_efi_guid_t *vendor_guid,
grub_efi_uint32_t *attributes,
grub_efi_uintn_t *data_size,
void *data);
grub_efi_status_t
efiemu_get_next_variable_name (grub_efi_uintn_t *variable_name_size,
grub_efi_char16_t *variable_name,
grub_efi_guid_t *vendor_guid);
grub_efi_status_t
efiemu_set_variable (grub_efi_char16_t *variable_name,
grub_efi_guid_t *vendor_guid,
grub_efi_uint32_t attributes,
grub_efi_uintn_t data_size,
void *data);
grub_efi_status_t
efiemu_get_next_high_monotonic_count (grub_efi_uint32_t *high_count);
void
efiemu_reset_system (grub_efi_reset_type_t reset_type,
grub_efi_status_t reset_status,
grub_efi_uintn_t data_size,
grub_efi_char16_t *reset_data);
grub_efi_status_t
EFI_FUNC (efiemu_set_virtual_address_map) (grub_efi_uintn_t,
grub_efi_uintn_t,
grub_efi_uint32_t,
grub_efi_memory_descriptor_t *)
PHYSICAL_ATTRIBUTE;
grub_efi_status_t
EFI_FUNC (efiemu_convert_pointer) (grub_efi_uintn_t debug_disposition,
void **address)
PHYSICAL_ATTRIBUTE;
static grub_uint32_t
efiemu_getcrc32 (grub_uint32_t crc, void *buf, int size)
PHYSICAL_ATTRIBUTE;
static void
init_crc32_table (void)
PHYSICAL_ATTRIBUTE;
static grub_uint32_t
reflect (grub_uint32_t ref, int len)
PHYSICAL_ATTRIBUTE;
/*
The log. It's used when examining memory dump
*/
static grub_uint8_t loge[1000] = "EFIEMULOG";
static int logn = 9;
#define LOG(x) { if (logn<900) loge[logn++]=x; }
/* Interface with grub */
extern grub_uint8_t efiemu_ptv_relocated;
struct grub_efi_runtime_services efiemu_runtime_services;
struct grub_efi_system_table efiemu_system_table;
extern struct grub_efiemu_ptv_rel efiemu_ptv_relloc[];
extern grub_uint8_t efiemu_variables[];
extern grub_uint32_t efiemu_varsize;
extern grub_uint32_t efiemu_high_monotonic_count;
extern grub_int16_t efiemu_time_zone;
extern grub_uint8_t efiemu_time_daylight;
extern grub_uint32_t efiemu_time_accuracy;
/* Some standard functions because we need to be standalone */
static void
efiemu_memcpy (void *to, void *from, int count)
{
int i;
for (i = 0; i < count; i++)
((grub_uint8_t *) to)[i] = ((grub_uint8_t *) from)[i];
}
static int
efiemu_str16equal (grub_uint16_t *a, grub_uint16_t *b)
{
grub_uint16_t *ptr1, *ptr2;
for (ptr1=a,ptr2=b; *ptr1 && *ptr2 == *ptr1; ptr1++, ptr2++);
return *ptr2 == *ptr1;
}
static grub_size_t
efiemu_str16len (grub_uint16_t *a)
{
grub_uint16_t *ptr1;
for (ptr1 = a; *ptr1; ptr1++);
return ptr1 - a;
}
static int
efiemu_memequal (void *a, void *b, grub_size_t n)
{
grub_uint8_t *ptr1, *ptr2;
for (ptr1 = (grub_uint8_t *) a, ptr2 = (grub_uint8_t *)b;
ptr1 < (grub_uint8_t *)a + n && *ptr2 == *ptr1; ptr1++, ptr2++);
return ptr1 == a + n;
}
static void
efiemu_memset (grub_uint8_t *a, grub_uint8_t b, grub_size_t n)
{
grub_uint8_t *ptr1;
for (ptr1=a; ptr1 < a + n; ptr1++)
*ptr1 = b;
}
static inline void
write_cmos (grub_uint8_t addr, grub_uint8_t val)
{
__asm__ __volatile__ ("outb %%al,$0x70\n"
"mov %%cl, %%al\n"
"outb %%al,$0x71": :"a" (addr), "c" (val));
}
static inline grub_uint8_t
read_cmos (grub_uint8_t addr)
{
grub_uint8_t ret;
__asm__ __volatile__ ("outb %%al, $0x70\n"
"inb $0x71, %%al": "=a"(ret) :"a" (addr));
return ret;
}
/* Needed by some gcc versions */
int __stack_chk_fail ()
{
return 0;
}
/* The function that implement runtime services as specified in
EFI specification */
static inline grub_uint8_t
bcd_to_hex (grub_uint8_t in)
{
return 10 * ((in & 0xf0) >> 4) + (in & 0x0f);
}
grub_efi_status_t
EFI_FUNC (efiemu_get_time) (grub_efi_time_t *time,
grub_efi_time_capabilities_t *capabilities)
{
LOG ('a');
grub_uint8_t state;
state = read_cmos (0xb);
if (!(state & (1 << 2)))
{
time->year = 2000 + bcd_to_hex (read_cmos (0x9));
time->month = bcd_to_hex (read_cmos (0x8));
time->day = bcd_to_hex (read_cmos (0x7));
time->hour = bcd_to_hex (read_cmos (0x4));
if (time->hour >= 81)
time->hour -= 80 - 12;
if (time->hour == 24)
time->hour = 0;
time->minute = bcd_to_hex (read_cmos (0x2));
time->second = bcd_to_hex (read_cmos (0x0));
}
else
{
time->year = 2000 + read_cmos (0x9);
time->month = read_cmos (0x8);
time->day = read_cmos (0x7);
time->hour = read_cmos (0x4);
if (time->hour >= 0x81)
time->hour -= 0x80 - 12;
if (time->hour == 24)
time->hour = 0;
time->minute = read_cmos (0x2);
time->second = read_cmos (0x0);
}
time->nanosecond = 0;
time->pad1 = 0;
time->pad2 = 0;
time->time_zone = efiemu_time_zone;
time->daylight = efiemu_time_daylight;
capabilities->resolution = 1;
capabilities->accuracy = efiemu_time_accuracy;
capabilities->sets_to_zero = 0;
return GRUB_EFI_SUCCESS;
}
grub_efi_status_t
EFI_FUNC (efiemu_set_time) (grub_efi_time_t *time)
{
LOG ('b');
grub_uint8_t state;
state = read_cmos (0xb);
write_cmos (0xb, state | 0x6);
write_cmos (0x9, time->year - 2000);
write_cmos (0x8, time->month);
write_cmos (0x7, time->day);
write_cmos (0x4, time->hour);
write_cmos (0x2, time->minute);
write_cmos (0x0, time->second);
efiemu_time_zone = time->time_zone;
efiemu_time_daylight = time->daylight;
return GRUB_EFI_SUCCESS;
}
/* Following 2 functions are vendor specific. So announce it as unsupported */
grub_efi_status_t
EFI_FUNC (efiemu_get_wakeup_time) (grub_efi_boolean_t *enabled,
grub_efi_boolean_t *pending,
grub_efi_time_t *time)
{
LOG ('c');
return GRUB_EFI_UNSUPPORTED;
}
grub_efi_status_t
EFI_FUNC (efiemu_set_wakeup_time) (grub_efi_boolean_t enabled,
grub_efi_time_t *time)
{
LOG ('d');
return GRUB_EFI_UNSUPPORTED;
}
static grub_uint32_t crc32_table [256];
static grub_uint32_t
reflect (grub_uint32_t ref, int len)
{
grub_uint32_t result = 0;
int i;
for (i = 1; i <= len; i++)
{
if (ref & 1)
result |= 1 << (len - i);
ref >>= 1;
}
return result;
}
static void
init_crc32_table (void)
{
grub_uint32_t polynomial = 0x04c11db7;
int i, j;
for(i = 0; i < 256; i++)
{
crc32_table[i] = reflect(i, 8) << 24;
for (j = 0; j < 8; j++)
crc32_table[i] = (crc32_table[i] << 1) ^
(crc32_table[i] & (1 << 31) ? polynomial : 0);
crc32_table[i] = reflect(crc32_table[i], 32);
}
}
static grub_uint32_t
efiemu_getcrc32 (grub_uint32_t crc, void *buf, int size)
{
int i;
grub_uint8_t *data = buf;
if (! crc32_table[1])
init_crc32_table ();
crc^= 0xffffffff;
for (i = 0; i < size; i++)
{
crc = (crc >> 8) ^ crc32_table[(crc & 0xFF) ^ *data];
data++;
}
return crc ^ 0xffffffff;
}
grub_efi_status_t EFI_FUNC
(efiemu_set_virtual_address_map) (grub_efi_uintn_t memory_map_size,
grub_efi_uintn_t descriptor_size,
grub_efi_uint32_t descriptor_version,
grub_efi_memory_descriptor_t *virtual_map)
{
struct grub_efiemu_ptv_rel *cur_relloc;
LOG ('e');
/* Ensure that we are called only once */
if (efiemu_ptv_relocated)
return GRUB_EFI_UNSUPPORTED;
efiemu_ptv_relocated = 1;
/* Correct addresses using information supplied by grub */
for (cur_relloc = efiemu_ptv_relloc; cur_relloc->size;cur_relloc++)
{
grub_int64_t corr = 0;
grub_efi_memory_descriptor_t *descptr;
/* Compute correction */
for (descptr = virtual_map;
((grub_uint8_t *) descptr - (grub_uint8_t *) virtual_map)
< memory_map_size;
descptr = (grub_efi_memory_descriptor_t *)
((grub_uint8_t *) descptr + descriptor_size))
{
if (descptr->type == cur_relloc->plustype)
corr += descptr->virtual_start - descptr->physical_start;
if (descptr->type == cur_relloc->minustype)
corr -= descptr->virtual_start - descptr->physical_start;
}
/* Apply correction */
switch (cur_relloc->size)
{
case 8:
*((grub_uint64_t *) UINT_TO_PTR (cur_relloc->addr)) += corr;
break;
case 4:
*((grub_uint32_t *) UINT_TO_PTR (cur_relloc->addr)) += corr;
break;
case 2:
*((grub_uint16_t *) UINT_TO_PTR (cur_relloc->addr)) += corr;
break;
case 1:
*((grub_uint8_t *) UINT_TO_PTR (cur_relloc->addr)) += corr;
break;
}
}
/* Recompute crc32 of system table and runtime services */
efiemu_system_table.hdr.crc32 = 0;
efiemu_system_table.hdr.crc32 = efiemu_getcrc32
(0, &efiemu_system_table, sizeof (efiemu_system_table));
efiemu_runtime_services.hdr.crc32 = 0;
efiemu_runtime_services.hdr.crc32 = efiemu_getcrc32
(0, &efiemu_runtime_services, sizeof (efiemu_runtime_services));
return GRUB_EFI_SUCCESS;
}
/* since efiemu_set_virtual_address_map corrects all the pointers
we don't need efiemu_convert_pointer */
grub_efi_status_t
EFI_FUNC (efiemu_convert_pointer) (grub_efi_uintn_t debug_disposition,
void **address)
{
LOG ('f');
return GRUB_EFI_UNSUPPORTED;
}
/* Next comes variable services. Because we have no vendor-independent
way to store these variables we have no non-volatility */
/* Find variable by name and GUID. */
static struct efi_variable *
find_variable (grub_efi_guid_t *vendor_guid,
grub_efi_char16_t *variable_name)
{
grub_uint8_t *ptr;
struct efi_variable *efivar;
for (ptr = efiemu_variables; ptr < efiemu_variables + efiemu_varsize; )
{
efivar = (struct efi_variable *) ptr;
if (!efivar->namelen)
return 0;
if (efiemu_str16equal((grub_efi_char16_t *)(efivar + 1), variable_name)
&& efiemu_memequal (&(efivar->guid), vendor_guid,
sizeof (efivar->guid)))
return efivar;
ptr += efivar->namelen + efivar->size + sizeof (*efivar);
}
return 0;
}
grub_efi_status_t
EFI_FUNC (efiemu_get_variable) (grub_efi_char16_t *variable_name,
grub_efi_guid_t *vendor_guid,
grub_efi_uint32_t *attributes,
grub_efi_uintn_t *data_size,
void *data)
{
struct efi_variable *efivar;
LOG ('g');
efivar = find_variable (vendor_guid, variable_name);
if (!efivar)
return GRUB_EFI_NOT_FOUND;
if (*data_size < efivar->size)
{
*data_size = efivar->size;
return GRUB_EFI_BUFFER_TOO_SMALL;
}
*data_size = efivar->size;
efiemu_memcpy (data, (grub_uint8_t *)(efivar + 1) + efivar->namelen,
efivar->size);
*attributes = efivar->attributes;
return GRUB_EFI_SUCCESS;
}
grub_efi_status_t EFI_FUNC
(efiemu_get_next_variable_name) (grub_efi_uintn_t *variable_name_size,
grub_efi_char16_t *variable_name,
grub_efi_guid_t *vendor_guid)
{
struct efi_variable *efivar;
LOG ('l');
if (!variable_name_size || !variable_name || !vendor_guid)
return GRUB_EFI_INVALID_PARAMETER;
if (variable_name[0])
{
efivar = find_variable (vendor_guid, variable_name);
if (!efivar)
return GRUB_EFI_NOT_FOUND;
efivar = (struct efi_variable *)((grub_uint8_t *)efivar
+ efivar->namelen
+ efivar->size + sizeof (*efivar));
}
else
efivar = (struct efi_variable *) (efiemu_variables);
LOG ('m');
if ((grub_uint8_t *)efivar >= efiemu_variables + efiemu_varsize
|| !efivar->namelen)
return GRUB_EFI_NOT_FOUND;
if (*variable_name_size < efivar->namelen)
{
*variable_name_size = efivar->namelen;
return GRUB_EFI_BUFFER_TOO_SMALL;
}
efiemu_memcpy (variable_name, efivar + 1, efivar->namelen);
efiemu_memcpy (vendor_guid, &(efivar->guid),
sizeof (efivar->guid));
LOG('h');
return GRUB_EFI_SUCCESS;
}
grub_efi_status_t
EFI_FUNC (efiemu_set_variable) (grub_efi_char16_t *variable_name,
grub_efi_guid_t *vendor_guid,
grub_efi_uint32_t attributes,
grub_efi_uintn_t data_size,
void *data)
{
struct efi_variable *efivar;
grub_uint8_t *ptr;
LOG('i');
if (!variable_name[0])
return GRUB_EFI_INVALID_PARAMETER;
efivar = find_variable (vendor_guid, variable_name);
/* Delete variable if any */
if (efivar)
{
efiemu_memcpy (efivar, (grub_uint8_t *)(efivar + 1)
+ efivar->namelen + efivar->size,
(efiemu_variables + efiemu_varsize)
- ((grub_uint8_t *)(efivar + 1)
+ efivar->namelen + efivar->size));
efiemu_memset (efiemu_variables + efiemu_varsize
- (sizeof (*efivar) + efivar->namelen + efivar->size),
0, (sizeof (*efivar) + efivar->namelen + efivar->size));
}
if (!data_size)
return GRUB_EFI_SUCCESS;
for (ptr = efiemu_variables; ptr < efiemu_variables + efiemu_varsize; )
{
efivar = (struct efi_variable *) ptr;
ptr += efivar->namelen + efivar->size + sizeof (*efivar);
if (!efivar->namelen)
break;
}
if ((grub_uint8_t *)(efivar + 1) + data_size
+ 2 * (efiemu_str16len (variable_name) + 1)
>= efiemu_variables + efiemu_varsize)
return GRUB_EFI_OUT_OF_RESOURCES;
efiemu_memcpy (&(efivar->guid), vendor_guid, sizeof (efivar->guid));
efivar->namelen = 2 * (efiemu_str16len (variable_name) + 1);
efivar->size = data_size;
efivar->attributes = attributes;
efiemu_memcpy (efivar + 1, variable_name,
2 * (efiemu_str16len (variable_name) + 1));
efiemu_memcpy ((grub_uint8_t *)(efivar + 1)
+ 2 * (efiemu_str16len (variable_name) + 1),
data, data_size);
return GRUB_EFI_SUCCESS;
}
grub_efi_status_t EFI_FUNC
(efiemu_get_next_high_monotonic_count) (grub_efi_uint32_t *high_count)
{
LOG ('j');
if (!high_count)
return GRUB_EFI_INVALID_PARAMETER;
*high_count = ++efiemu_high_monotonic_count;
return GRUB_EFI_SUCCESS;
}
/* To implement it with APM we need to go to real mode. It's too much hassle
Besides EFI specification says that this function shouldn't be used
on systems supporting ACPI
*/
void
EFI_FUNC (efiemu_reset_system) (grub_efi_reset_type_t reset_type,
grub_efi_status_t reset_status,
grub_efi_uintn_t data_size,
grub_efi_char16_t *reset_data)
{
LOG ('k');
}
struct grub_efi_runtime_services efiemu_runtime_services =
{
.hdr =
{
.signature = GRUB_EFIEMU_RUNTIME_SERVICES_SIGNATURE,
.revision = 0x0001000a,
.header_size = sizeof (struct grub_efi_runtime_services),
.crc32 = 0, /* filled later*/
.reserved = 0
},
.get_time = efiemu_get_time,
.set_time = efiemu_set_time,
.get_wakeup_time = efiemu_get_wakeup_time,
.set_wakeup_time = efiemu_set_wakeup_time,
.set_virtual_address_map = efiemu_set_virtual_address_map,
.convert_pointer = efiemu_convert_pointer,
.get_variable = efiemu_get_variable,
.get_next_variable_name = efiemu_get_next_variable_name,
.set_variable = efiemu_set_variable,
.get_next_high_monotonic_count = efiemu_get_next_high_monotonic_count,
.reset_system = efiemu_reset_system
};
static grub_uint16_t efiemu_vendor[] =
{'G', 'R', 'U', 'B', ' ', 'E', 'F', 'I', ' ',
'R', 'U', 'N', 'T', 'I', 'M', 'E', 0};
struct grub_efi_system_table efiemu_system_table =
{
.hdr =
{
.signature = GRUB_EFIEMU_SYSTEM_TABLE_SIGNATURE,
.revision = 0x0001000a,
.header_size = sizeof (struct grub_efi_system_table),
.crc32 = 0, /* filled later*/
.reserved = 0
},
.firmware_vendor = efiemu_vendor,
.firmware_revision = 0x0001000a,
.console_in_handler = 0,
.con_in = 0,
.console_out_handler = 0,
.con_out = 0,
.standard_error_handle = 0,
.std_err = 0,
.runtime_services = &efiemu_runtime_services,
.boot_services = 0,
.num_table_entries = 0,
.configuration_table = 0
};