1379 lines
36 KiB
C
1379 lines
36 KiB
C
/* rsa.c - RSA implementation
|
||
* Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
|
||
* Copyright (C) 2000, 2001, 2002, 2003, 2008 Free Software Foundation, Inc.
|
||
*
|
||
* This file is part of Libgcrypt.
|
||
*
|
||
* Libgcrypt is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU Lesser General Public License as
|
||
* published by the Free Software Foundation; either version 2.1 of
|
||
* the License, or (at your option) any later version.
|
||
*
|
||
* Libgcrypt is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
/* This code uses an algorithm protected by U.S. Patent #4,405,829
|
||
which expired on September 20, 2000. The patent holder placed that
|
||
patent into the public domain on Sep 6th, 2000.
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <errno.h>
|
||
|
||
#include "g10lib.h"
|
||
#include "mpi.h"
|
||
#include "cipher.h"
|
||
|
||
|
||
typedef struct
|
||
{
|
||
gcry_mpi_t n; /* modulus */
|
||
gcry_mpi_t e; /* exponent */
|
||
} RSA_public_key;
|
||
|
||
|
||
typedef struct
|
||
{
|
||
gcry_mpi_t n; /* public modulus */
|
||
gcry_mpi_t e; /* public exponent */
|
||
gcry_mpi_t d; /* exponent */
|
||
gcry_mpi_t p; /* prime p. */
|
||
gcry_mpi_t q; /* prime q. */
|
||
gcry_mpi_t u; /* inverse of p mod q. */
|
||
} RSA_secret_key;
|
||
|
||
|
||
/* A sample 1024 bit RSA key used for the selftests. */
|
||
static const char sample_secret_key[] =
|
||
"(private-key"
|
||
" (rsa"
|
||
" (n #00e0ce96f90b6c9e02f3922beada93fe50a875eac6bcc18bb9a9cf2e84965caa"
|
||
" 2d1ff95a7f542465c6c0c19d276e4526ce048868a7a914fd343cc3a87dd74291"
|
||
" ffc565506d5bbb25cbac6a0e2dd1f8bcaab0d4a29c2f37c950f363484bf269f7"
|
||
" 891440464baf79827e03a36e70b814938eebdc63e964247be75dc58b014b7ea251#)"
|
||
" (e #010001#)"
|
||
" (d #046129f2489d71579be0a75fe029bd6cdb574ebf57ea8a5b0fda942cab943b11"
|
||
" 7d7bb95e5d28875e0f9fc5fcc06a72f6d502464dabded78ef6b716177b83d5bd"
|
||
" c543dc5d3fed932e59f5897e92e6f58a0f33424106a3b6fa2cbf877510e4ac21"
|
||
" c3ee47851e97d12996222ac3566d4ccb0b83d164074abf7de655fc2446da1781#)"
|
||
" (p #00e861b700e17e8afe6837e7512e35b6ca11d0ae47d8b85161c67baf64377213"
|
||
" fe52d772f2035b3ca830af41d8a4120e1c1c70d12cc22f00d28d31dd48a8d424f1#)"
|
||
" (q #00f7a7ca5367c661f8e62df34f0d05c10c88e5492348dd7bddc942c9a8f369f9"
|
||
" 35a07785d2db805215ed786e4285df1658eed3ce84f469b81b50d358407b4ad361#)"
|
||
" (u #304559a9ead56d2309d203811a641bb1a09626bc8eb36fffa23c968ec5bd891e"
|
||
" ebbafc73ae666e01ba7c8990bae06cc2bbe10b75e69fcacb353a6473079d8e9b#)))";
|
||
/* A sample 1024 bit RSA key used for the selftests (public only). */
|
||
static const char sample_public_key[] =
|
||
"(public-key"
|
||
" (rsa"
|
||
" (n #00e0ce96f90b6c9e02f3922beada93fe50a875eac6bcc18bb9a9cf2e84965caa"
|
||
" 2d1ff95a7f542465c6c0c19d276e4526ce048868a7a914fd343cc3a87dd74291"
|
||
" ffc565506d5bbb25cbac6a0e2dd1f8bcaab0d4a29c2f37c950f363484bf269f7"
|
||
" 891440464baf79827e03a36e70b814938eebdc63e964247be75dc58b014b7ea251#)"
|
||
" (e #010001#)))";
|
||
|
||
|
||
|
||
|
||
static int test_keys (RSA_secret_key *sk, unsigned nbits);
|
||
static int check_secret_key (RSA_secret_key *sk);
|
||
static void public (gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *skey);
|
||
static void secret (gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey);
|
||
|
||
|
||
/* Check that a freshly generated key actually works. Returns 0 on success. */
|
||
static int
|
||
test_keys (RSA_secret_key *sk, unsigned int nbits)
|
||
{
|
||
int result = -1; /* Default to failure. */
|
||
RSA_public_key pk;
|
||
gcry_mpi_t plaintext = gcry_mpi_new (nbits);
|
||
gcry_mpi_t ciphertext = gcry_mpi_new (nbits);
|
||
gcry_mpi_t decr_plaintext = gcry_mpi_new (nbits);
|
||
gcry_mpi_t signature = gcry_mpi_new (nbits);
|
||
|
||
/* Put the relevant parameters into a public key structure. */
|
||
pk.n = sk->n;
|
||
pk.e = sk->e;
|
||
|
||
/* Create a random plaintext. */
|
||
gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
|
||
|
||
/* Encrypt using the public key. */
|
||
public (ciphertext, plaintext, &pk);
|
||
|
||
/* Check that the cipher text does not match the plaintext. */
|
||
if (!gcry_mpi_cmp (ciphertext, plaintext))
|
||
goto leave; /* Ciphertext is identical to the plaintext. */
|
||
|
||
/* Decrypt using the secret key. */
|
||
secret (decr_plaintext, ciphertext, sk);
|
||
|
||
/* Check that the decrypted plaintext matches the original plaintext. */
|
||
if (gcry_mpi_cmp (decr_plaintext, plaintext))
|
||
goto leave; /* Plaintext does not match. */
|
||
|
||
/* Create another random plaintext as data for signature checking. */
|
||
gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
|
||
|
||
/* Use the RSA secret function to create a signature of the plaintext. */
|
||
secret (signature, plaintext, sk);
|
||
|
||
/* Use the RSA public function to verify this signature. */
|
||
public (decr_plaintext, signature, &pk);
|
||
if (gcry_mpi_cmp (decr_plaintext, plaintext))
|
||
goto leave; /* Signature does not match. */
|
||
|
||
/* Modify the signature and check that the signing fails. */
|
||
gcry_mpi_add_ui (signature, signature, 1);
|
||
public (decr_plaintext, signature, &pk);
|
||
if (!gcry_mpi_cmp (decr_plaintext, plaintext))
|
||
goto leave; /* Signature matches but should not. */
|
||
|
||
result = 0; /* All tests succeeded. */
|
||
|
||
leave:
|
||
gcry_mpi_release (signature);
|
||
gcry_mpi_release (decr_plaintext);
|
||
gcry_mpi_release (ciphertext);
|
||
gcry_mpi_release (plaintext);
|
||
return result;
|
||
}
|
||
|
||
|
||
/* Callback used by the prime generation to test whether the exponent
|
||
is suitable. Returns 0 if the test has been passed. */
|
||
static int
|
||
check_exponent (void *arg, gcry_mpi_t a)
|
||
{
|
||
gcry_mpi_t e = arg;
|
||
gcry_mpi_t tmp;
|
||
int result;
|
||
|
||
mpi_sub_ui (a, a, 1);
|
||
tmp = _gcry_mpi_alloc_like (a);
|
||
result = !gcry_mpi_gcd(tmp, e, a); /* GCD is not 1. */
|
||
gcry_mpi_release (tmp);
|
||
mpi_add_ui (a, a, 1);
|
||
return result;
|
||
}
|
||
|
||
/****************
|
||
* Generate a key pair with a key of size NBITS.
|
||
* USE_E = 0 let Libcgrypt decide what exponent to use.
|
||
* = 1 request the use of a "secure" exponent; this is required by some
|
||
* specification to be 65537.
|
||
* > 2 Use this public exponent. If the given exponent
|
||
* is not odd one is internally added to it.
|
||
* TRANSIENT_KEY: If true, generate the primes using the standard RNG.
|
||
* Returns: 2 structures filled with all needed values
|
||
*/
|
||
static gpg_err_code_t
|
||
generate_std (RSA_secret_key *sk, unsigned int nbits, unsigned long use_e,
|
||
int transient_key)
|
||
{
|
||
gcry_mpi_t p, q; /* the two primes */
|
||
gcry_mpi_t d; /* the private key */
|
||
gcry_mpi_t u;
|
||
gcry_mpi_t t1, t2;
|
||
gcry_mpi_t n; /* the public key */
|
||
gcry_mpi_t e; /* the exponent */
|
||
gcry_mpi_t phi; /* helper: (p-1)(q-1) */
|
||
gcry_mpi_t g;
|
||
gcry_mpi_t f;
|
||
gcry_random_level_t random_level;
|
||
|
||
if (fips_mode ())
|
||
{
|
||
if (nbits < 1024)
|
||
return GPG_ERR_INV_VALUE;
|
||
if (transient_key)
|
||
return GPG_ERR_INV_VALUE;
|
||
}
|
||
|
||
/* The random quality depends on the transient_key flag. */
|
||
random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM;
|
||
|
||
/* Make sure that nbits is even so that we generate p, q of equal size. */
|
||
if ( (nbits&1) )
|
||
nbits++;
|
||
|
||
if (use_e == 1) /* Alias for a secure value */
|
||
use_e = 65537; /* as demanded by Sphinx. */
|
||
|
||
/* Public exponent:
|
||
In general we use 41 as this is quite fast and more secure than the
|
||
commonly used 17. Benchmarking the RSA verify function
|
||
with a 1024 bit key yields (2001-11-08):
|
||
e=17 0.54 ms
|
||
e=41 0.75 ms
|
||
e=257 0.95 ms
|
||
e=65537 1.80 ms
|
||
*/
|
||
e = mpi_alloc( (32+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||
if (!use_e)
|
||
mpi_set_ui (e, 41); /* This is a reasonable secure and fast value */
|
||
else
|
||
{
|
||
use_e |= 1; /* make sure this is odd */
|
||
mpi_set_ui (e, use_e);
|
||
}
|
||
|
||
n = gcry_mpi_new (nbits);
|
||
|
||
p = q = NULL;
|
||
do
|
||
{
|
||
/* select two (very secret) primes */
|
||
if (p)
|
||
gcry_mpi_release (p);
|
||
if (q)
|
||
gcry_mpi_release (q);
|
||
if (use_e)
|
||
{ /* Do an extra test to ensure that the given exponent is
|
||
suitable. */
|
||
p = _gcry_generate_secret_prime (nbits/2, random_level,
|
||
check_exponent, e);
|
||
q = _gcry_generate_secret_prime (nbits/2, random_level,
|
||
check_exponent, e);
|
||
}
|
||
else
|
||
{ /* We check the exponent later. */
|
||
p = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL);
|
||
q = _gcry_generate_secret_prime (nbits/2, random_level, NULL, NULL);
|
||
}
|
||
if (mpi_cmp (p, q) > 0 ) /* p shall be smaller than q (for calc of u)*/
|
||
mpi_swap(p,q);
|
||
/* calculate the modulus */
|
||
mpi_mul( n, p, q );
|
||
}
|
||
while ( mpi_get_nbits(n) != nbits );
|
||
|
||
/* calculate Euler totient: phi = (p-1)(q-1) */
|
||
t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
|
||
t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
|
||
phi = gcry_mpi_snew ( nbits );
|
||
g = gcry_mpi_snew ( nbits );
|
||
f = gcry_mpi_snew ( nbits );
|
||
mpi_sub_ui( t1, p, 1 );
|
||
mpi_sub_ui( t2, q, 1 );
|
||
mpi_mul( phi, t1, t2 );
|
||
gcry_mpi_gcd(g, t1, t2);
|
||
mpi_fdiv_q(f, phi, g);
|
||
|
||
while (!gcry_mpi_gcd(t1, e, phi)) /* (while gcd is not 1) */
|
||
{
|
||
if (use_e)
|
||
BUG (); /* The prime generator already made sure that we
|
||
never can get to here. */
|
||
mpi_add_ui (e, e, 2);
|
||
}
|
||
|
||
/* calculate the secret key d = e^1 mod phi */
|
||
d = gcry_mpi_snew ( nbits );
|
||
mpi_invm(d, e, f );
|
||
/* calculate the inverse of p and q (used for chinese remainder theorem)*/
|
||
u = gcry_mpi_snew ( nbits );
|
||
mpi_invm(u, p, q );
|
||
|
||
if( DBG_CIPHER )
|
||
{
|
||
log_mpidump(" p= ", p );
|
||
log_mpidump(" q= ", q );
|
||
log_mpidump("phi= ", phi );
|
||
log_mpidump(" g= ", g );
|
||
log_mpidump(" f= ", f );
|
||
log_mpidump(" n= ", n );
|
||
log_mpidump(" e= ", e );
|
||
log_mpidump(" d= ", d );
|
||
log_mpidump(" u= ", u );
|
||
}
|
||
|
||
gcry_mpi_release (t1);
|
||
gcry_mpi_release (t2);
|
||
gcry_mpi_release (phi);
|
||
gcry_mpi_release (f);
|
||
gcry_mpi_release (g);
|
||
|
||
sk->n = n;
|
||
sk->e = e;
|
||
sk->p = p;
|
||
sk->q = q;
|
||
sk->d = d;
|
||
sk->u = u;
|
||
|
||
/* Now we can test our keys. */
|
||
if (test_keys (sk, nbits - 64))
|
||
{
|
||
gcry_mpi_release (sk->n); sk->n = NULL;
|
||
gcry_mpi_release (sk->e); sk->e = NULL;
|
||
gcry_mpi_release (sk->p); sk->p = NULL;
|
||
gcry_mpi_release (sk->q); sk->q = NULL;
|
||
gcry_mpi_release (sk->d); sk->d = NULL;
|
||
gcry_mpi_release (sk->u); sk->u = NULL;
|
||
fips_signal_error ("self-test after key generation failed");
|
||
return GPG_ERR_SELFTEST_FAILED;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Helper for generate_x931. */
|
||
static gcry_mpi_t
|
||
gen_x931_parm_xp (unsigned int nbits)
|
||
{
|
||
gcry_mpi_t xp;
|
||
|
||
xp = gcry_mpi_snew (nbits);
|
||
gcry_mpi_randomize (xp, nbits, GCRY_VERY_STRONG_RANDOM);
|
||
|
||
/* The requirement for Xp is:
|
||
|
||
sqrt{2}*2^{nbits-1} <= xp <= 2^{nbits} - 1
|
||
|
||
We set the two high order bits to 1 to satisfy the lower bound.
|
||
By using mpi_set_highbit we make sure that the upper bound is
|
||
satisfied as well. */
|
||
mpi_set_highbit (xp, nbits-1);
|
||
mpi_set_bit (xp, nbits-2);
|
||
gcry_assert ( mpi_get_nbits (xp) == nbits );
|
||
|
||
return xp;
|
||
}
|
||
|
||
|
||
/* Helper for generate_x931. */
|
||
static gcry_mpi_t
|
||
gen_x931_parm_xi (void)
|
||
{
|
||
gcry_mpi_t xi;
|
||
|
||
xi = gcry_mpi_snew (101);
|
||
gcry_mpi_randomize (xi, 101, GCRY_VERY_STRONG_RANDOM);
|
||
mpi_set_highbit (xi, 100);
|
||
gcry_assert ( mpi_get_nbits (xi) == 101 );
|
||
|
||
return xi;
|
||
}
|
||
|
||
|
||
|
||
/* Variant of the standard key generation code using the algorithm
|
||
from X9.31. Using this algorithm has the advantage that the
|
||
generation can be made deterministic which is required for CAVS
|
||
testing. */
|
||
static gpg_err_code_t
|
||
generate_x931 (RSA_secret_key *sk, unsigned int nbits, unsigned long e_value,
|
||
gcry_sexp_t deriveparms, int *swapped)
|
||
{
|
||
gcry_mpi_t p, q; /* The two primes. */
|
||
gcry_mpi_t e; /* The public exponent. */
|
||
gcry_mpi_t n; /* The public key. */
|
||
gcry_mpi_t d; /* The private key */
|
||
gcry_mpi_t u; /* The inverse of p and q. */
|
||
gcry_mpi_t pm1; /* p - 1 */
|
||
gcry_mpi_t qm1; /* q - 1 */
|
||
gcry_mpi_t phi; /* Euler totient. */
|
||
gcry_mpi_t f, g; /* Helper. */
|
||
|
||
*swapped = 0;
|
||
|
||
if (e_value == 1) /* Alias for a secure value. */
|
||
e_value = 65537;
|
||
|
||
/* Point 1 of section 4.1: k = 1024 + 256s with S >= 0 */
|
||
if (nbits < 1024 || (nbits % 256))
|
||
return GPG_ERR_INV_VALUE;
|
||
|
||
/* Point 2: 2 <= bitlength(e) < 2^{k-2}
|
||
Note that we do not need to check the upper bound because we use
|
||
an unsigned long for E and thus there is no way for E to reach
|
||
that limit. */
|
||
if (e_value < 3)
|
||
return GPG_ERR_INV_VALUE;
|
||
|
||
/* Our implementaion requires E to be odd. */
|
||
if (!(e_value & 1))
|
||
return GPG_ERR_INV_VALUE;
|
||
|
||
/* Point 3: e > 0 or e 0 if it is to be randomly generated.
|
||
We support only a fixed E and thus there is no need for an extra test. */
|
||
|
||
|
||
/* Compute or extract the derive parameters. */
|
||
{
|
||
gcry_mpi_t xp1 = NULL;
|
||
gcry_mpi_t xp2 = NULL;
|
||
gcry_mpi_t xp = NULL;
|
||
gcry_mpi_t xq1 = NULL;
|
||
gcry_mpi_t xq2 = NULL;
|
||
gcry_mpi_t xq = NULL;
|
||
gcry_mpi_t tmpval;
|
||
|
||
if (!deriveparms)
|
||
{
|
||
/* Not given: Generate them. */
|
||
xp = gen_x931_parm_xp (nbits/2);
|
||
/* Make sure that |xp - xq| > 2^{nbits - 100} holds. */
|
||
tmpval = gcry_mpi_snew (nbits/2);
|
||
do
|
||
{
|
||
gcry_mpi_release (xq);
|
||
xq = gen_x931_parm_xp (nbits/2);
|
||
mpi_sub (tmpval, xp, xq);
|
||
}
|
||
while (mpi_get_nbits (tmpval) <= (nbits/2 - 100));
|
||
gcry_mpi_release (tmpval);
|
||
|
||
xp1 = gen_x931_parm_xi ();
|
||
xp2 = gen_x931_parm_xi ();
|
||
xq1 = gen_x931_parm_xi ();
|
||
xq2 = gen_x931_parm_xi ();
|
||
|
||
}
|
||
else
|
||
{
|
||
/* Parameters to derive the key are given. */
|
||
struct { const char *name; gcry_mpi_t *value; } tbl[] = {
|
||
{ "Xp1", &xp1 },
|
||
{ "Xp2", &xp2 },
|
||
{ "Xp", &xp },
|
||
{ "Xq1", &xq1 },
|
||
{ "Xq2", &xq2 },
|
||
{ "Xq", &xq },
|
||
{ NULL, NULL }
|
||
};
|
||
int idx;
|
||
gcry_sexp_t oneparm;
|
||
|
||
for (idx=0; tbl[idx].name; idx++)
|
||
{
|
||
oneparm = gcry_sexp_find_token (deriveparms, tbl[idx].name, 0);
|
||
if (oneparm)
|
||
{
|
||
*tbl[idx].value = gcry_sexp_nth_mpi (oneparm, 1,
|
||
GCRYMPI_FMT_USG);
|
||
gcry_sexp_release (oneparm);
|
||
}
|
||
}
|
||
for (idx=0; tbl[idx].name; idx++)
|
||
if (!*tbl[idx].value)
|
||
break;
|
||
if (tbl[idx].name)
|
||
{
|
||
/* At least one parameter is missing. */
|
||
for (idx=0; tbl[idx].name; idx++)
|
||
gcry_mpi_release (*tbl[idx].value);
|
||
return GPG_ERR_MISSING_VALUE;
|
||
}
|
||
}
|
||
|
||
e = mpi_alloc_set_ui (e_value);
|
||
|
||
/* Find two prime numbers. */
|
||
p = _gcry_derive_x931_prime (xp, xp1, xp2, e, NULL, NULL);
|
||
q = _gcry_derive_x931_prime (xq, xq1, xq2, e, NULL, NULL);
|
||
gcry_mpi_release (xp); xp = NULL;
|
||
gcry_mpi_release (xp1); xp1 = NULL;
|
||
gcry_mpi_release (xp2); xp2 = NULL;
|
||
gcry_mpi_release (xq); xq = NULL;
|
||
gcry_mpi_release (xq1); xq1 = NULL;
|
||
gcry_mpi_release (xq2); xq2 = NULL;
|
||
if (!p || !q)
|
||
{
|
||
gcry_mpi_release (p);
|
||
gcry_mpi_release (q);
|
||
gcry_mpi_release (e);
|
||
return GPG_ERR_NO_PRIME;
|
||
}
|
||
}
|
||
|
||
|
||
/* Compute the public modulus. We make sure that p is smaller than
|
||
q to allow the use of the CRT. */
|
||
if (mpi_cmp (p, q) > 0 )
|
||
{
|
||
mpi_swap (p, q);
|
||
*swapped = 1;
|
||
}
|
||
n = gcry_mpi_new (nbits);
|
||
mpi_mul (n, p, q);
|
||
|
||
/* Compute the Euler totient: phi = (p-1)(q-1) */
|
||
pm1 = gcry_mpi_snew (nbits/2);
|
||
qm1 = gcry_mpi_snew (nbits/2);
|
||
phi = gcry_mpi_snew (nbits);
|
||
mpi_sub_ui (pm1, p, 1);
|
||
mpi_sub_ui (qm1, q, 1);
|
||
mpi_mul (phi, pm1, qm1);
|
||
|
||
g = gcry_mpi_snew (nbits);
|
||
gcry_assert (gcry_mpi_gcd (g, e, phi));
|
||
|
||
/* Compute: f = lcm(p-1,q-1) = phi / gcd(p-1,q-1) */
|
||
gcry_mpi_gcd (g, pm1, qm1);
|
||
f = pm1; pm1 = NULL;
|
||
gcry_mpi_release (qm1); qm1 = NULL;
|
||
mpi_fdiv_q (f, phi, g);
|
||
gcry_mpi_release (phi); phi = NULL;
|
||
d = g; g = NULL;
|
||
/* Compute the secret key: d = e^{-1} mod lcm(p-1,q-1) */
|
||
mpi_invm (d, e, f);
|
||
|
||
/* Compute the inverse of p and q. */
|
||
u = f; f = NULL;
|
||
mpi_invm (u, p, q );
|
||
|
||
if( DBG_CIPHER )
|
||
{
|
||
if (*swapped)
|
||
log_debug ("p and q are swapped\n");
|
||
log_mpidump(" p", p );
|
||
log_mpidump(" q", q );
|
||
log_mpidump(" n", n );
|
||
log_mpidump(" e", e );
|
||
log_mpidump(" d", d );
|
||
log_mpidump(" u", u );
|
||
}
|
||
|
||
|
||
sk->n = n;
|
||
sk->e = e;
|
||
sk->p = p;
|
||
sk->q = q;
|
||
sk->d = d;
|
||
sk->u = u;
|
||
|
||
/* Now we can test our keys. */
|
||
if (test_keys (sk, nbits - 64))
|
||
{
|
||
gcry_mpi_release (sk->n); sk->n = NULL;
|
||
gcry_mpi_release (sk->e); sk->e = NULL;
|
||
gcry_mpi_release (sk->p); sk->p = NULL;
|
||
gcry_mpi_release (sk->q); sk->q = NULL;
|
||
gcry_mpi_release (sk->d); sk->d = NULL;
|
||
gcry_mpi_release (sk->u); sk->u = NULL;
|
||
fips_signal_error ("self-test after key generation failed");
|
||
return GPG_ERR_SELFTEST_FAILED;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/****************
|
||
* Test wether the secret key is valid.
|
||
* Returns: true if this is a valid key.
|
||
*/
|
||
static int
|
||
check_secret_key( RSA_secret_key *sk )
|
||
{
|
||
int rc;
|
||
gcry_mpi_t temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
|
||
|
||
mpi_mul(temp, sk->p, sk->q );
|
||
rc = mpi_cmp( temp, sk->n );
|
||
mpi_free(temp);
|
||
return !rc;
|
||
}
|
||
|
||
|
||
|
||
/****************
|
||
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
|
||
*
|
||
* c = m^e mod n
|
||
*
|
||
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
|
||
*/
|
||
static void
|
||
public(gcry_mpi_t output, gcry_mpi_t input, RSA_public_key *pkey )
|
||
{
|
||
if( output == input ) /* powm doesn't like output and input the same */
|
||
{
|
||
gcry_mpi_t x = mpi_alloc( mpi_get_nlimbs(input)*2 );
|
||
mpi_powm( x, input, pkey->e, pkey->n );
|
||
mpi_set(output, x);
|
||
mpi_free(x);
|
||
}
|
||
else
|
||
mpi_powm( output, input, pkey->e, pkey->n );
|
||
}
|
||
|
||
#if 0
|
||
static void
|
||
stronger_key_check ( RSA_secret_key *skey )
|
||
{
|
||
gcry_mpi_t t = mpi_alloc_secure ( 0 );
|
||
gcry_mpi_t t1 = mpi_alloc_secure ( 0 );
|
||
gcry_mpi_t t2 = mpi_alloc_secure ( 0 );
|
||
gcry_mpi_t phi = mpi_alloc_secure ( 0 );
|
||
|
||
/* check that n == p * q */
|
||
mpi_mul( t, skey->p, skey->q);
|
||
if (mpi_cmp( t, skey->n) )
|
||
log_info ( "RSA Oops: n != p * q\n" );
|
||
|
||
/* check that p is less than q */
|
||
if( mpi_cmp( skey->p, skey->q ) > 0 )
|
||
{
|
||
log_info ("RSA Oops: p >= q - fixed\n");
|
||
_gcry_mpi_swap ( skey->p, skey->q);
|
||
}
|
||
|
||
/* check that e divides neither p-1 nor q-1 */
|
||
mpi_sub_ui(t, skey->p, 1 );
|
||
mpi_fdiv_r(t, t, skey->e );
|
||
if ( !mpi_cmp_ui( t, 0) )
|
||
log_info ( "RSA Oops: e divides p-1\n" );
|
||
mpi_sub_ui(t, skey->q, 1 );
|
||
mpi_fdiv_r(t, t, skey->e );
|
||
if ( !mpi_cmp_ui( t, 0) )
|
||
log_info ( "RSA Oops: e divides q-1\n" );
|
||
|
||
/* check that d is correct */
|
||
mpi_sub_ui( t1, skey->p, 1 );
|
||
mpi_sub_ui( t2, skey->q, 1 );
|
||
mpi_mul( phi, t1, t2 );
|
||
gcry_mpi_gcd(t, t1, t2);
|
||
mpi_fdiv_q(t, phi, t);
|
||
mpi_invm(t, skey->e, t );
|
||
if ( mpi_cmp(t, skey->d ) )
|
||
{
|
||
log_info ( "RSA Oops: d is wrong - fixed\n");
|
||
mpi_set (skey->d, t);
|
||
_gcry_log_mpidump (" fixed d", skey->d);
|
||
}
|
||
|
||
/* check for correctness of u */
|
||
mpi_invm(t, skey->p, skey->q );
|
||
if ( mpi_cmp(t, skey->u ) )
|
||
{
|
||
log_info ( "RSA Oops: u is wrong - fixed\n");
|
||
mpi_set (skey->u, t);
|
||
_gcry_log_mpidump (" fixed u", skey->u);
|
||
}
|
||
|
||
log_info ( "RSA secret key check finished\n");
|
||
|
||
mpi_free (t);
|
||
mpi_free (t1);
|
||
mpi_free (t2);
|
||
mpi_free (phi);
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
/****************
|
||
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
|
||
*
|
||
* m = c^d mod n
|
||
*
|
||
* Or faster:
|
||
*
|
||
* m1 = c ^ (d mod (p-1)) mod p
|
||
* m2 = c ^ (d mod (q-1)) mod q
|
||
* h = u * (m2 - m1) mod q
|
||
* m = m1 + h * p
|
||
*
|
||
* Where m is OUTPUT, c is INPUT and d,n,p,q,u are elements of SKEY.
|
||
*/
|
||
static void
|
||
secret(gcry_mpi_t output, gcry_mpi_t input, RSA_secret_key *skey )
|
||
{
|
||
if (!skey->p || !skey->q || !skey->u)
|
||
{
|
||
mpi_powm (output, input, skey->d, skey->n);
|
||
}
|
||
else
|
||
{
|
||
gcry_mpi_t m1 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
|
||
gcry_mpi_t m2 = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
|
||
gcry_mpi_t h = mpi_alloc_secure( mpi_get_nlimbs(skey->n)+1 );
|
||
|
||
/* m1 = c ^ (d mod (p-1)) mod p */
|
||
mpi_sub_ui( h, skey->p, 1 );
|
||
mpi_fdiv_r( h, skey->d, h );
|
||
mpi_powm( m1, input, h, skey->p );
|
||
/* m2 = c ^ (d mod (q-1)) mod q */
|
||
mpi_sub_ui( h, skey->q, 1 );
|
||
mpi_fdiv_r( h, skey->d, h );
|
||
mpi_powm( m2, input, h, skey->q );
|
||
/* h = u * ( m2 - m1 ) mod q */
|
||
mpi_sub( h, m2, m1 );
|
||
if ( mpi_is_neg( h ) )
|
||
mpi_add ( h, h, skey->q );
|
||
mpi_mulm( h, skey->u, h, skey->q );
|
||
/* m = m2 + h * p */
|
||
mpi_mul ( h, h, skey->p );
|
||
mpi_add ( output, m1, h );
|
||
|
||
mpi_free ( h );
|
||
mpi_free ( m1 );
|
||
mpi_free ( m2 );
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Perform RSA blinding. */
|
||
static gcry_mpi_t
|
||
rsa_blind (gcry_mpi_t x, gcry_mpi_t r, gcry_mpi_t e, gcry_mpi_t n)
|
||
{
|
||
/* A helper. */
|
||
gcry_mpi_t a;
|
||
|
||
/* Result. */
|
||
gcry_mpi_t y;
|
||
|
||
a = gcry_mpi_snew (gcry_mpi_get_nbits (n));
|
||
y = gcry_mpi_snew (gcry_mpi_get_nbits (n));
|
||
|
||
/* Now we calculate: y = (x * r^e) mod n, where r is the random
|
||
number, e is the public exponent, x is the non-blinded data and n
|
||
is the RSA modulus. */
|
||
gcry_mpi_powm (a, r, e, n);
|
||
gcry_mpi_mulm (y, a, x, n);
|
||
|
||
gcry_mpi_release (a);
|
||
|
||
return y;
|
||
}
|
||
|
||
/* Undo RSA blinding. */
|
||
static gcry_mpi_t
|
||
rsa_unblind (gcry_mpi_t x, gcry_mpi_t ri, gcry_mpi_t n)
|
||
{
|
||
gcry_mpi_t y;
|
||
|
||
y = gcry_mpi_snew (gcry_mpi_get_nbits (n));
|
||
|
||
/* Here we calculate: y = (x * r^-1) mod n, where x is the blinded
|
||
decrypted data, ri is the modular multiplicative inverse of r and
|
||
n is the RSA modulus. */
|
||
|
||
gcry_mpi_mulm (y, ri, x, n);
|
||
|
||
return y;
|
||
}
|
||
|
||
/*********************************************
|
||
************** interface ******************
|
||
*********************************************/
|
||
|
||
static gcry_err_code_t
|
||
rsa_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
|
||
const gcry_sexp_t genparms,
|
||
gcry_mpi_t *skey, gcry_mpi_t **retfactors,
|
||
gcry_sexp_t *r_extrainfo)
|
||
{
|
||
RSA_secret_key sk;
|
||
gpg_err_code_t ec;
|
||
gcry_sexp_t deriveparms;
|
||
int transient_key = 0;
|
||
int use_x931 = 0;
|
||
gcry_sexp_t l1;
|
||
|
||
(void)algo;
|
||
|
||
*retfactors = NULL; /* We don't return them. */
|
||
|
||
deriveparms = (genparms?
|
||
gcry_sexp_find_token (genparms, "derive-parms", 0) : NULL);
|
||
if (!deriveparms)
|
||
{
|
||
/* Parse the optional "use-x931" flag. */
|
||
l1 = gcry_sexp_find_token (genparms, "use-x931", 0);
|
||
if (l1)
|
||
{
|
||
use_x931 = 1;
|
||
gcry_sexp_release (l1);
|
||
}
|
||
}
|
||
|
||
if (deriveparms || use_x931 || fips_mode ())
|
||
{
|
||
int swapped;
|
||
ec = generate_x931 (&sk, nbits, evalue, deriveparms, &swapped);
|
||
gcry_sexp_release (deriveparms);
|
||
if (!ec && r_extrainfo && swapped)
|
||
{
|
||
ec = gcry_sexp_new (r_extrainfo,
|
||
"(misc-key-info(p-q-swapped))", 0, 1);
|
||
if (ec)
|
||
{
|
||
gcry_mpi_release (sk.n); sk.n = NULL;
|
||
gcry_mpi_release (sk.e); sk.e = NULL;
|
||
gcry_mpi_release (sk.p); sk.p = NULL;
|
||
gcry_mpi_release (sk.q); sk.q = NULL;
|
||
gcry_mpi_release (sk.d); sk.d = NULL;
|
||
gcry_mpi_release (sk.u); sk.u = NULL;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Parse the optional "transient-key" flag. */
|
||
l1 = gcry_sexp_find_token (genparms, "transient-key", 0);
|
||
if (l1)
|
||
{
|
||
transient_key = 1;
|
||
gcry_sexp_release (l1);
|
||
}
|
||
/* Generate. */
|
||
ec = generate_std (&sk, nbits, evalue, transient_key);
|
||
}
|
||
|
||
if (!ec)
|
||
{
|
||
skey[0] = sk.n;
|
||
skey[1] = sk.e;
|
||
skey[2] = sk.d;
|
||
skey[3] = sk.p;
|
||
skey[4] = sk.q;
|
||
skey[5] = sk.u;
|
||
}
|
||
|
||
return ec;
|
||
}
|
||
|
||
|
||
static gcry_err_code_t
|
||
rsa_generate (int algo, unsigned int nbits, unsigned long evalue,
|
||
gcry_mpi_t *skey, gcry_mpi_t **retfactors)
|
||
{
|
||
return rsa_generate_ext (algo, nbits, evalue, NULL, skey, retfactors, NULL);
|
||
}
|
||
|
||
|
||
static gcry_err_code_t
|
||
rsa_check_secret_key (int algo, gcry_mpi_t *skey)
|
||
{
|
||
gcry_err_code_t err = GPG_ERR_NO_ERROR;
|
||
RSA_secret_key sk;
|
||
|
||
(void)algo;
|
||
|
||
sk.n = skey[0];
|
||
sk.e = skey[1];
|
||
sk.d = skey[2];
|
||
sk.p = skey[3];
|
||
sk.q = skey[4];
|
||
sk.u = skey[5];
|
||
|
||
if (!sk.p || !sk.q || !sk.u)
|
||
err = GPG_ERR_NO_OBJ; /* To check the key we need the optional
|
||
parameters. */
|
||
else if (!check_secret_key (&sk))
|
||
err = GPG_ERR_PUBKEY_ALGO;
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
static gcry_err_code_t
|
||
rsa_encrypt (int algo, gcry_mpi_t *resarr, gcry_mpi_t data,
|
||
gcry_mpi_t *pkey, int flags)
|
||
{
|
||
RSA_public_key pk;
|
||
|
||
(void)algo;
|
||
(void)flags;
|
||
|
||
pk.n = pkey[0];
|
||
pk.e = pkey[1];
|
||
resarr[0] = mpi_alloc (mpi_get_nlimbs (pk.n));
|
||
public (resarr[0], data, &pk);
|
||
|
||
return GPG_ERR_NO_ERROR;
|
||
}
|
||
|
||
|
||
static gcry_err_code_t
|
||
rsa_decrypt (int algo, gcry_mpi_t *result, gcry_mpi_t *data,
|
||
gcry_mpi_t *skey, int flags)
|
||
{
|
||
RSA_secret_key sk;
|
||
gcry_mpi_t r = MPI_NULL; /* Random number needed for blinding. */
|
||
gcry_mpi_t ri = MPI_NULL; /* Modular multiplicative inverse of
|
||
r. */
|
||
gcry_mpi_t x = MPI_NULL; /* Data to decrypt. */
|
||
gcry_mpi_t y; /* Result. */
|
||
|
||
(void)algo;
|
||
|
||
/* Extract private key. */
|
||
sk.n = skey[0];
|
||
sk.e = skey[1];
|
||
sk.d = skey[2];
|
||
sk.p = skey[3]; /* Optional. */
|
||
sk.q = skey[4]; /* Optional. */
|
||
sk.u = skey[5]; /* Optional. */
|
||
|
||
y = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
|
||
|
||
/* We use blinding by default to mitigate timing attacks which can
|
||
be practically mounted over the network as shown by Brumley and
|
||
Boney in 2003. */
|
||
if (! (flags & PUBKEY_FLAG_NO_BLINDING))
|
||
{
|
||
/* Initialize blinding. */
|
||
|
||
/* First, we need a random number r between 0 and n - 1, which
|
||
is relatively prime to n (i.e. it is neither p nor q). The
|
||
random number needs to be only unpredictable, thus we employ
|
||
the gcry_create_nonce function by using GCRY_WEAK_RANDOM with
|
||
gcry_mpi_randomize. */
|
||
r = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
|
||
ri = gcry_mpi_snew (gcry_mpi_get_nbits (sk.n));
|
||
|
||
gcry_mpi_randomize (r, gcry_mpi_get_nbits (sk.n), GCRY_WEAK_RANDOM);
|
||
gcry_mpi_mod (r, r, sk.n);
|
||
|
||
/* Calculate inverse of r. It practically impossible that the
|
||
follwing test fails, thus we do not add code to release
|
||
allocated resources. */
|
||
if (!gcry_mpi_invm (ri, r, sk.n))
|
||
return GPG_ERR_INTERNAL;
|
||
}
|
||
|
||
if (! (flags & PUBKEY_FLAG_NO_BLINDING))
|
||
x = rsa_blind (data[0], r, sk.e, sk.n);
|
||
else
|
||
x = data[0];
|
||
|
||
/* Do the encryption. */
|
||
secret (y, x, &sk);
|
||
|
||
if (! (flags & PUBKEY_FLAG_NO_BLINDING))
|
||
{
|
||
/* Undo blinding. */
|
||
gcry_mpi_t a = gcry_mpi_copy (y);
|
||
|
||
gcry_mpi_release (y);
|
||
y = rsa_unblind (a, ri, sk.n);
|
||
|
||
gcry_mpi_release (a);
|
||
}
|
||
|
||
if (! (flags & PUBKEY_FLAG_NO_BLINDING))
|
||
{
|
||
/* Deallocate resources needed for blinding. */
|
||
gcry_mpi_release (x);
|
||
gcry_mpi_release (r);
|
||
gcry_mpi_release (ri);
|
||
}
|
||
|
||
/* Copy out result. */
|
||
*result = y;
|
||
|
||
return GPG_ERR_NO_ERROR;
|
||
}
|
||
|
||
|
||
static gcry_err_code_t
|
||
rsa_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
|
||
{
|
||
RSA_secret_key sk;
|
||
|
||
(void)algo;
|
||
|
||
sk.n = skey[0];
|
||
sk.e = skey[1];
|
||
sk.d = skey[2];
|
||
sk.p = skey[3];
|
||
sk.q = skey[4];
|
||
sk.u = skey[5];
|
||
resarr[0] = mpi_alloc( mpi_get_nlimbs (sk.n));
|
||
secret (resarr[0], data, &sk);
|
||
|
||
return GPG_ERR_NO_ERROR;
|
||
}
|
||
|
||
|
||
static gcry_err_code_t
|
||
rsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
|
||
int (*cmp) (void *opaque, gcry_mpi_t tmp),
|
||
void *opaquev)
|
||
{
|
||
RSA_public_key pk;
|
||
gcry_mpi_t result;
|
||
gcry_err_code_t rc;
|
||
|
||
(void)algo;
|
||
(void)cmp;
|
||
(void)opaquev;
|
||
|
||
pk.n = pkey[0];
|
||
pk.e = pkey[1];
|
||
result = gcry_mpi_new ( 160 );
|
||
public( result, data[0], &pk );
|
||
#ifdef IS_DEVELOPMENT_VERSION
|
||
if (DBG_CIPHER)
|
||
{
|
||
log_mpidump ("rsa verify result:", result );
|
||
log_mpidump (" hash:", hash );
|
||
}
|
||
#endif /*IS_DEVELOPMENT_VERSION*/
|
||
/*rc = (*cmp)( opaquev, result );*/
|
||
rc = mpi_cmp (result, hash) ? GPG_ERR_BAD_SIGNATURE : GPG_ERR_NO_ERROR;
|
||
gcry_mpi_release (result);
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
static unsigned int
|
||
rsa_get_nbits (int algo, gcry_mpi_t *pkey)
|
||
{
|
||
(void)algo;
|
||
|
||
return mpi_get_nbits (pkey[0]);
|
||
}
|
||
|
||
|
||
/* Compute a keygrip. MD is the hash context which we are going to
|
||
update. KEYPARAM is an S-expression with the key parameters, this
|
||
is usually a public key but may also be a secret key. An example
|
||
of such an S-expression is:
|
||
|
||
(rsa
|
||
(n #00B...#)
|
||
(e #010001#))
|
||
|
||
PKCS-15 says that for RSA only the modulus should be hashed -
|
||
however, it is not clear wether this is meant to use the raw bytes
|
||
(assuming this is an unsigned integer) or whether the DER required
|
||
0 should be prefixed. We hash the raw bytes. */
|
||
static gpg_err_code_t
|
||
compute_keygrip (gcry_md_hd_t md, gcry_sexp_t keyparam)
|
||
{
|
||
gcry_sexp_t l1;
|
||
const char *data;
|
||
size_t datalen;
|
||
|
||
l1 = gcry_sexp_find_token (keyparam, "n", 1);
|
||
if (!l1)
|
||
return GPG_ERR_NO_OBJ;
|
||
|
||
data = gcry_sexp_nth_data (l1, 1, &datalen);
|
||
if (!data)
|
||
{
|
||
gcry_sexp_release (l1);
|
||
return GPG_ERR_NO_OBJ;
|
||
}
|
||
|
||
gcry_md_write (md, data, datalen);
|
||
gcry_sexp_release (l1);
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
Self-test section.
|
||
*/
|
||
|
||
static const char *
|
||
selftest_sign_1024 (gcry_sexp_t pkey, gcry_sexp_t skey)
|
||
{
|
||
static const char sample_data[] =
|
||
"(data (flags pkcs1)"
|
||
" (hash sha1 #11223344556677889900aabbccddeeff10203040#))";
|
||
static const char sample_data_bad[] =
|
||
"(data (flags pkcs1)"
|
||
" (hash sha1 #11223344556677889900aabbccddeeff80203040#))";
|
||
|
||
const char *errtxt = NULL;
|
||
gcry_error_t err;
|
||
gcry_sexp_t data = NULL;
|
||
gcry_sexp_t data_bad = NULL;
|
||
gcry_sexp_t sig = NULL;
|
||
|
||
err = gcry_sexp_sscan (&data, NULL,
|
||
sample_data, strlen (sample_data));
|
||
if (!err)
|
||
err = gcry_sexp_sscan (&data_bad, NULL,
|
||
sample_data_bad, strlen (sample_data_bad));
|
||
if (err)
|
||
{
|
||
errtxt = "converting data failed";
|
||
goto leave;
|
||
}
|
||
|
||
err = gcry_pk_sign (&sig, data, skey);
|
||
if (err)
|
||
{
|
||
errtxt = "signing failed";
|
||
goto leave;
|
||
}
|
||
err = gcry_pk_verify (sig, data, pkey);
|
||
if (err)
|
||
{
|
||
errtxt = "verify failed";
|
||
goto leave;
|
||
}
|
||
err = gcry_pk_verify (sig, data_bad, pkey);
|
||
if (gcry_err_code (err) != GPG_ERR_BAD_SIGNATURE)
|
||
{
|
||
errtxt = "bad signature not detected";
|
||
goto leave;
|
||
}
|
||
|
||
|
||
leave:
|
||
gcry_sexp_release (sig);
|
||
gcry_sexp_release (data_bad);
|
||
gcry_sexp_release (data);
|
||
return errtxt;
|
||
}
|
||
|
||
|
||
|
||
/* Given an S-expression ENCR_DATA of the form:
|
||
|
||
(enc-val
|
||
(rsa
|
||
(a a-value)))
|
||
|
||
as returned by gcry_pk_decrypt, return the the A-VALUE. On error,
|
||
return NULL. */
|
||
static gcry_mpi_t
|
||
extract_a_from_sexp (gcry_sexp_t encr_data)
|
||
{
|
||
gcry_sexp_t l1, l2, l3;
|
||
gcry_mpi_t a_value;
|
||
|
||
l1 = gcry_sexp_find_token (encr_data, "enc-val", 0);
|
||
if (!l1)
|
||
return NULL;
|
||
l2 = gcry_sexp_find_token (l1, "rsa", 0);
|
||
gcry_sexp_release (l1);
|
||
if (!l2)
|
||
return NULL;
|
||
l3 = gcry_sexp_find_token (l2, "a", 0);
|
||
gcry_sexp_release (l2);
|
||
if (!l3)
|
||
return NULL;
|
||
a_value = gcry_sexp_nth_mpi (l3, 1, 0);
|
||
gcry_sexp_release (l3);
|
||
|
||
return a_value;
|
||
}
|
||
|
||
|
||
static const char *
|
||
selftest_encr_1024 (gcry_sexp_t pkey, gcry_sexp_t skey)
|
||
{
|
||
const char *errtxt = NULL;
|
||
gcry_error_t err;
|
||
const unsigned int nbits = 1000; /* Encrypt 1000 random bits. */
|
||
gcry_mpi_t plaintext = NULL;
|
||
gcry_sexp_t plain = NULL;
|
||
gcry_sexp_t encr = NULL;
|
||
gcry_mpi_t ciphertext = NULL;
|
||
gcry_sexp_t decr = NULL;
|
||
gcry_mpi_t decr_plaintext = NULL;
|
||
gcry_sexp_t tmplist = NULL;
|
||
|
||
/* Create plaintext. The plaintext is actually a big integer number. */
|
||
plaintext = gcry_mpi_new (nbits);
|
||
gcry_mpi_randomize (plaintext, nbits, GCRY_WEAK_RANDOM);
|
||
|
||
/* Put the plaintext into an S-expression. */
|
||
err = gcry_sexp_build (&plain, NULL,
|
||
"(data (flags raw) (value %m))", plaintext);
|
||
if (err)
|
||
{
|
||
errtxt = "converting data failed";
|
||
goto leave;
|
||
}
|
||
|
||
/* Encrypt. */
|
||
err = gcry_pk_encrypt (&encr, plain, pkey);
|
||
if (err)
|
||
{
|
||
errtxt = "encrypt failed";
|
||
goto leave;
|
||
}
|
||
|
||
/* Extraxt the ciphertext from the returned S-expression. */
|
||
/*gcry_sexp_dump (encr);*/
|
||
ciphertext = extract_a_from_sexp (encr);
|
||
if (!ciphertext)
|
||
{
|
||
errtxt = "gcry_pk_decrypt returned garbage";
|
||
goto leave;
|
||
}
|
||
|
||
/* Check that the ciphertext does no match the plaintext. */
|
||
/* _gcry_log_mpidump ("plaintext", plaintext); */
|
||
/* _gcry_log_mpidump ("ciphertxt", ciphertext); */
|
||
if (!gcry_mpi_cmp (plaintext, ciphertext))
|
||
{
|
||
errtxt = "ciphertext matches plaintext";
|
||
goto leave;
|
||
}
|
||
|
||
/* Decrypt. */
|
||
err = gcry_pk_decrypt (&decr, encr, skey);
|
||
if (err)
|
||
{
|
||
errtxt = "decrypt failed";
|
||
goto leave;
|
||
}
|
||
|
||
/* Extract the decrypted data from the S-expression. Note that the
|
||
output of gcry_pk_decrypt depends on whether a flags lists occurs
|
||
in its input data. Because we passed the output of
|
||
gcry_pk_encrypt directly to gcry_pk_decrypt, such a flag value
|
||
won't be there as of today. To be prepared for future changes we
|
||
take care of it anyway. */
|
||
tmplist = gcry_sexp_find_token (decr, "value", 0);
|
||
if (tmplist)
|
||
decr_plaintext = gcry_sexp_nth_mpi (tmplist, 1, GCRYMPI_FMT_USG);
|
||
else
|
||
decr_plaintext = gcry_sexp_nth_mpi (decr, 0, GCRYMPI_FMT_USG);
|
||
if (!decr_plaintext)
|
||
{
|
||
errtxt = "decrypt returned no plaintext";
|
||
goto leave;
|
||
}
|
||
|
||
/* Check that the decrypted plaintext matches the original plaintext. */
|
||
if (gcry_mpi_cmp (plaintext, decr_plaintext))
|
||
{
|
||
errtxt = "mismatch";
|
||
goto leave;
|
||
}
|
||
|
||
leave:
|
||
gcry_sexp_release (tmplist);
|
||
gcry_mpi_release (decr_plaintext);
|
||
gcry_sexp_release (decr);
|
||
gcry_mpi_release (ciphertext);
|
||
gcry_sexp_release (encr);
|
||
gcry_sexp_release (plain);
|
||
gcry_mpi_release (plaintext);
|
||
return errtxt;
|
||
}
|
||
|
||
|
||
static gpg_err_code_t
|
||
selftests_rsa (selftest_report_func_t report)
|
||
{
|
||
const char *what;
|
||
const char *errtxt;
|
||
gcry_error_t err;
|
||
gcry_sexp_t skey = NULL;
|
||
gcry_sexp_t pkey = NULL;
|
||
|
||
/* Convert the S-expressions into the internal representation. */
|
||
what = "convert";
|
||
err = gcry_sexp_sscan (&skey, NULL,
|
||
sample_secret_key, strlen (sample_secret_key));
|
||
if (!err)
|
||
err = gcry_sexp_sscan (&pkey, NULL,
|
||
sample_public_key, strlen (sample_public_key));
|
||
if (err)
|
||
{
|
||
errtxt = gcry_strerror (err);
|
||
goto failed;
|
||
}
|
||
|
||
what = "key consistency";
|
||
err = gcry_pk_testkey (skey);
|
||
if (err)
|
||
{
|
||
errtxt = gcry_strerror (err);
|
||
goto failed;
|
||
}
|
||
|
||
what = "sign";
|
||
errtxt = selftest_sign_1024 (pkey, skey);
|
||
if (errtxt)
|
||
goto failed;
|
||
|
||
what = "encrypt";
|
||
errtxt = selftest_encr_1024 (pkey, skey);
|
||
if (errtxt)
|
||
goto failed;
|
||
|
||
gcry_sexp_release (pkey);
|
||
gcry_sexp_release (skey);
|
||
return 0; /* Succeeded. */
|
||
|
||
failed:
|
||
gcry_sexp_release (pkey);
|
||
gcry_sexp_release (skey);
|
||
if (report)
|
||
report ("pubkey", GCRY_PK_RSA, what, errtxt);
|
||
return GPG_ERR_SELFTEST_FAILED;
|
||
}
|
||
|
||
|
||
/* Run a full self-test for ALGO and return 0 on success. */
|
||
static gpg_err_code_t
|
||
run_selftests (int algo, int extended, selftest_report_func_t report)
|
||
{
|
||
gpg_err_code_t ec;
|
||
|
||
(void)extended;
|
||
|
||
switch (algo)
|
||
{
|
||
case GCRY_PK_RSA:
|
||
ec = selftests_rsa (report);
|
||
break;
|
||
default:
|
||
ec = GPG_ERR_PUBKEY_ALGO;
|
||
break;
|
||
|
||
}
|
||
return ec;
|
||
}
|
||
|
||
|
||
|
||
|
||
static const char *rsa_names[] =
|
||
{
|
||
"rsa",
|
||
"openpgp-rsa",
|
||
"oid.1.2.840.113549.1.1.1",
|
||
NULL,
|
||
};
|
||
|
||
gcry_pk_spec_t _gcry_pubkey_spec_rsa =
|
||
{
|
||
"RSA", rsa_names,
|
||
"ne", "nedpqu", "a", "s", "n",
|
||
GCRY_PK_USAGE_SIGN | GCRY_PK_USAGE_ENCR,
|
||
rsa_generate,
|
||
rsa_check_secret_key,
|
||
rsa_encrypt,
|
||
rsa_decrypt,
|
||
rsa_sign,
|
||
rsa_verify,
|
||
rsa_get_nbits,
|
||
};
|
||
pk_extra_spec_t _gcry_pubkey_extraspec_rsa =
|
||
{
|
||
run_selftests,
|
||
rsa_generate_ext,
|
||
compute_keygrip
|
||
};
|
||
|