grub/grub-core/lib/zstd/zstd_decompress.c
Nick Terrell d0b38cbc3b zstd: Import upstream zstd-1.3.6
- Import zstd-1.3.6 from upstream
- Add zstd's module.c file
- Add the zstd module to Makefile.core.def

Import zstd-1.3.6 from upstream [1]. Only the files need for decompression
are imported. I used the latest zstd release, which includes patches [2] to
build cleanly in GRUB.

I included the script used to import zstd-1.3.6 below at the bottom of the
commit message.

Upstream zstd commit hash: 4fa456d7f12f8b27bd3b2f5dfd4f46898cb31c24
Upstream zstd commit name: Merge pull request #1354 from facebook/dev

Zstd requires some posix headers, which it gets from posix_wrap.
This can be checked by inspecting the .Po files generated by automake,
which contain the header dependencies. After building run the command
`cat grub-core/lib/zstd/.deps-core/*.Po` to see the dependencies [3].
The only OS dependencies are:

- stddef.h, which is already a dependency in posix_wrap, and used for size_t
  by lzo and xz.
- stdarg.h, which comes from the grub/misc.h header, and we don't use in zstd.

All the types like uint64_t are typedefed to grub_uint64_t under the hood.
The only exception is size_t, which comes from stddef.h. This is already the
case for lzo and xz. I don't think there are any cross-compilation concerns,
because cross-compilers provide their own system headers (and it would already
be broken).

[1] https://github.com/facebook/zstd/releases/tag/v1.3.6
[2] https://github.com/facebook/zstd/pull/1344
[3] https://gist.github.com/terrelln/7a16b92f5a1b3aecf980f944b4a966c4

```

curl -L -O https://github.com/facebook/zstd/releases/download/v1.3.6/zstd-1.3.6.tar.gz
curl -L -O https://github.com/facebook/zstd/releases/download/v1.3.6/zstd-1.3.6.tar.gz.sha256
sha256sum --check zstd-1.3.6.tar.gz.sha256
tar xzf zstd-1.3.6.tar.gz

SRC_LIB="zstd-1.3.6/lib"
DST_LIB="grub-core/lib/zstd"
rm -rf $DST_LIB
mkdir -p $DST_LIB
cp $SRC_LIB/zstd.h $DST_LIB/
cp $SRC_LIB/common/*.[hc] $DST_LIB/
cp $SRC_LIB/decompress/*.[hc] $DST_LIB/
rm $DST_LIB/{pool.[hc],threading.[hc]}
rm -rf zstd-1.3.6*
echo SUCCESS!
```

Signed-off-by: Nick Terrell <terrelln@fb.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
2020-09-21 13:46:34 -04:00

3108 lines
128 KiB
C

/*
* Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ***************************************************************
* Tuning parameters
*****************************************************************/
/*!
* HEAPMODE :
* Select how default decompression function ZSTD_decompress() allocates its context,
* on stack (0), or into heap (1, default; requires malloc()).
* Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected.
*/
#ifndef ZSTD_HEAPMODE
# define ZSTD_HEAPMODE 1
#endif
/*!
* LEGACY_SUPPORT :
* if set to 1+, ZSTD_decompress() can decode older formats (v0.1+)
*/
#ifndef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 0
#endif
/*!
* MAXWINDOWSIZE_DEFAULT :
* maximum window size accepted by DStream __by default__.
* Frames requiring more memory will be rejected.
* It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize().
*/
#ifndef ZSTD_MAXWINDOWSIZE_DEFAULT
# define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_DEFAULTMAX) + 1)
#endif
/*!
* NO_FORWARD_PROGRESS_MAX :
* maximum allowed nb of calls to ZSTD_decompressStream() and ZSTD_decompress_generic()
* without any forward progress
* (defined as: no byte read from input, and no byte flushed to output)
* before triggering an error.
*/
#ifndef ZSTD_NO_FORWARD_PROGRESS_MAX
# define ZSTD_NO_FORWARD_PROGRESS_MAX 16
#endif
/*-*******************************************************
* Dependencies
*********************************************************/
#include <string.h> /* memcpy, memmove, memset */
#include "compiler.h" /* prefetch */
#include "cpu.h" /* bmi2 */
#include "mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#define HUF_STATIC_LINKING_ONLY
#include "huf.h"
#include "zstd_internal.h"
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
# include "zstd_legacy.h"
#endif
static const void* ZSTD_DDictDictContent(const ZSTD_DDict* ddict);
static size_t ZSTD_DDictDictSize(const ZSTD_DDict* ddict);
/*-*************************************
* Errors
***************************************/
#define ZSTD_isError ERR_isError /* for inlining */
#define FSE_isError ERR_isError
#define HUF_isError ERR_isError
/*_*******************************************************
* Memory operations
**********************************************************/
static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
/*-*************************************************************
* Context management
***************************************************************/
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
typedef enum { zdss_init=0, zdss_loadHeader,
zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
typedef struct {
U32 fastMode;
U32 tableLog;
} ZSTD_seqSymbol_header;
typedef struct {
U16 nextState;
BYTE nbAdditionalBits;
BYTE nbBits;
U32 baseValue;
} ZSTD_seqSymbol;
#define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log)))
typedef struct {
ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
HUF_DTable hufTable[HUF_DTABLE_SIZE(HufLog)]; /* can accommodate HUF_decompress4X */
U32 rep[ZSTD_REP_NUM];
} ZSTD_entropyDTables_t;
struct ZSTD_DCtx_s
{
const ZSTD_seqSymbol* LLTptr;
const ZSTD_seqSymbol* MLTptr;
const ZSTD_seqSymbol* OFTptr;
const HUF_DTable* HUFptr;
ZSTD_entropyDTables_t entropy;
U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */
const void* previousDstEnd; /* detect continuity */
const void* prefixStart; /* start of current segment */
const void* virtualStart; /* virtual start of previous segment if it was just before current one */
const void* dictEnd; /* end of previous segment */
size_t expected;
ZSTD_frameHeader fParams;
U64 decodedSize;
blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */
ZSTD_dStage stage;
U32 litEntropy;
U32 fseEntropy;
XXH64_state_t xxhState;
size_t headerSize;
ZSTD_format_e format;
const BYTE* litPtr;
ZSTD_customMem customMem;
size_t litSize;
size_t rleSize;
size_t staticSize;
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
/* dictionary */
ZSTD_DDict* ddictLocal;
const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
U32 dictID;
int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
/* streaming */
ZSTD_dStreamStage streamStage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
size_t maxWindowSize;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t lhSize;
void* legacyContext;
U32 previousLegacyVersion;
U32 legacyVersion;
U32 hostageByte;
int noForwardProgress;
/* workspace */
BYTE litBuffer[ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH];
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx)
{
if (dctx==NULL) return 0; /* support sizeof NULL */
return sizeof(*dctx)
+ ZSTD_sizeof_DDict(dctx->ddictLocal)
+ dctx->inBuffSize + dctx->outBuffSize;
}
size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); }
static size_t ZSTD_startingInputLength(ZSTD_format_e format)
{
size_t const startingInputLength = (format==ZSTD_f_zstd1_magicless) ?
ZSTD_frameHeaderSize_prefix - ZSTD_FRAMEIDSIZE :
ZSTD_frameHeaderSize_prefix;
ZSTD_STATIC_ASSERT(ZSTD_FRAMEHEADERSIZE_PREFIX >= ZSTD_FRAMEIDSIZE);
/* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */
assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) );
return startingInputLength;
}
static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx)
{
dctx->format = ZSTD_f_zstd1; /* ZSTD_decompressBegin() invokes ZSTD_startingInputLength() with argument dctx->format */
dctx->staticSize = 0;
dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
dctx->ddict = NULL;
dctx->ddictLocal = NULL;
dctx->dictEnd = NULL;
dctx->ddictIsCold = 0;
dctx->inBuff = NULL;
dctx->inBuffSize = 0;
dctx->outBuffSize = 0;
dctx->streamStage = zdss_init;
dctx->legacyContext = NULL;
dctx->previousLegacyVersion = 0;
dctx->noForwardProgress = 0;
dctx->bmi2 = ZSTD_cpuid_bmi2(ZSTD_cpuid());
}
ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize)
{
ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace;
if ((size_t)workspace & 7) return NULL; /* 8-aligned */
if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */
ZSTD_initDCtx_internal(dctx);
dctx->staticSize = workspaceSize;
dctx->inBuff = (char*)(dctx+1);
return dctx;
}
ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem)
{
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
{ ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_malloc(sizeof(*dctx), customMem);
if (!dctx) return NULL;
dctx->customMem = customMem;
ZSTD_initDCtx_internal(dctx);
return dctx;
}
}
ZSTD_DCtx* ZSTD_createDCtx(void)
{
DEBUGLOG(3, "ZSTD_createDCtx");
return ZSTD_createDCtx_advanced(ZSTD_defaultCMem);
}
size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
{
if (dctx==NULL) return 0; /* support free on NULL */
if (dctx->staticSize) return ERROR(memory_allocation); /* not compatible with static DCtx */
{ ZSTD_customMem const cMem = dctx->customMem;
ZSTD_freeDDict(dctx->ddictLocal);
dctx->ddictLocal = NULL;
ZSTD_free(dctx->inBuff, cMem);
dctx->inBuff = NULL;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (dctx->legacyContext)
ZSTD_freeLegacyStreamContext(dctx->legacyContext, dctx->previousLegacyVersion);
#endif
ZSTD_free(dctx, cMem);
return 0;
}
}
/* no longer useful */
void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx)
{
size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx);
memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */
}
/*-*************************************************************
* Frame header decoding
***************************************************************/
/*! ZSTD_isFrame() :
* Tells if the content of `buffer` starts with a valid Frame Identifier.
* Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0.
* Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled.
* Note 3 : Skippable Frame Identifiers are considered valid. */
unsigned ZSTD_isFrame(const void* buffer, size_t size)
{
if (size < ZSTD_FRAMEIDSIZE) return 0;
{ U32 const magic = MEM_readLE32(buffer);
if (magic == ZSTD_MAGICNUMBER) return 1;
if ((magic & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) return 1;
}
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(buffer, size)) return 1;
#endif
return 0;
}
/** ZSTD_frameHeaderSize_internal() :
* srcSize must be large enough to reach header size fields.
* note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless.
* @return : size of the Frame Header
* or an error code, which can be tested with ZSTD_isError() */
static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format)
{
size_t const minInputSize = ZSTD_startingInputLength(format);
if (srcSize < minInputSize) return ERROR(srcSize_wrong);
{ BYTE const fhd = ((const BYTE*)src)[minInputSize-1];
U32 const dictID= fhd & 3;
U32 const singleSegment = (fhd >> 5) & 1;
U32 const fcsId = fhd >> 6;
return minInputSize + !singleSegment
+ ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId]
+ (singleSegment && !fcsId);
}
}
/** ZSTD_frameHeaderSize() :
* srcSize must be >= ZSTD_frameHeaderSize_prefix.
* @return : size of the Frame Header,
* or an error code (if srcSize is too small) */
size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize)
{
return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1);
}
/** ZSTD_getFrameHeader_advanced() :
* decode Frame Header, or require larger `srcSize`.
* note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless
* @return : 0, `zfhPtr` is correctly filled,
* >0, `srcSize` is too small, value is wanted `srcSize` amount,
* or an error code, which can be tested using ZSTD_isError() */
size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format)
{
const BYTE* ip = (const BYTE*)src;
size_t const minInputSize = ZSTD_startingInputLength(format);
memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */
if (srcSize < minInputSize) return minInputSize;
if (src==NULL) return ERROR(GENERIC); /* invalid parameter */
if ( (format != ZSTD_f_zstd1_magicless)
&& (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) {
if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
/* skippable frame */
if (srcSize < ZSTD_skippableHeaderSize)
return ZSTD_skippableHeaderSize; /* magic number + frame length */
memset(zfhPtr, 0, sizeof(*zfhPtr));
zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE);
zfhPtr->frameType = ZSTD_skippableFrame;
return 0;
}
return ERROR(prefix_unknown);
}
/* ensure there is enough `srcSize` to fully read/decode frame header */
{ size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format);
if (srcSize < fhsize) return fhsize;
zfhPtr->headerSize = (U32)fhsize;
}
{ BYTE const fhdByte = ip[minInputSize-1];
size_t pos = minInputSize;
U32 const dictIDSizeCode = fhdByte&3;
U32 const checksumFlag = (fhdByte>>2)&1;
U32 const singleSegment = (fhdByte>>5)&1;
U32 const fcsID = fhdByte>>6;
U64 windowSize = 0;
U32 dictID = 0;
U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN;
if ((fhdByte & 0x08) != 0)
return ERROR(frameParameter_unsupported); /* reserved bits, must be zero */
if (!singleSegment) {
BYTE const wlByte = ip[pos++];
U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
if (windowLog > ZSTD_WINDOWLOG_MAX)
return ERROR(frameParameter_windowTooLarge);
windowSize = (1ULL << windowLog);
windowSize += (windowSize >> 3) * (wlByte&7);
}
switch(dictIDSizeCode)
{
default: assert(0); /* impossible */
case 0 : break;
case 1 : dictID = ip[pos]; pos++; break;
case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break;
case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break;
}
switch(fcsID)
{
default: assert(0); /* impossible */
case 0 : if (singleSegment) frameContentSize = ip[pos]; break;
case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break;
case 2 : frameContentSize = MEM_readLE32(ip+pos); break;
case 3 : frameContentSize = MEM_readLE64(ip+pos); break;
}
if (singleSegment) windowSize = frameContentSize;
zfhPtr->frameType = ZSTD_frame;
zfhPtr->frameContentSize = frameContentSize;
zfhPtr->windowSize = windowSize;
zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
zfhPtr->dictID = dictID;
zfhPtr->checksumFlag = checksumFlag;
}
return 0;
}
/** ZSTD_getFrameHeader() :
* decode Frame Header, or require larger `srcSize`.
* note : this function does not consume input, it only reads it.
* @return : 0, `zfhPtr` is correctly filled,
* >0, `srcSize` is too small, value is wanted `srcSize` amount,
* or an error code, which can be tested using ZSTD_isError() */
size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize)
{
return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1);
}
/** ZSTD_getFrameContentSize() :
* compatible with legacy mode
* @return : decompressed size of the single frame pointed to be `src` if known, otherwise
* - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined
* - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */
unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize)
{
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize)) {
unsigned long long const ret = ZSTD_getDecompressedSize_legacy(src, srcSize);
return ret == 0 ? ZSTD_CONTENTSIZE_UNKNOWN : ret;
}
#endif
{ ZSTD_frameHeader zfh;
if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0)
return ZSTD_CONTENTSIZE_ERROR;
if (zfh.frameType == ZSTD_skippableFrame) {
return 0;
} else {
return zfh.frameContentSize;
} }
}
/** ZSTD_findDecompressedSize() :
* compatible with legacy mode
* `srcSize` must be the exact length of some number of ZSTD compressed and/or
* skippable frames
* @return : decompressed size of the frames contained */
unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize)
{
unsigned long long totalDstSize = 0;
while (srcSize >= ZSTD_frameHeaderSize_prefix) {
U32 const magicNumber = MEM_readLE32(src);
if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
size_t skippableSize;
if (srcSize < ZSTD_skippableHeaderSize)
return ERROR(srcSize_wrong);
skippableSize = MEM_readLE32((const BYTE *)src + ZSTD_FRAMEIDSIZE)
+ ZSTD_skippableHeaderSize;
if (srcSize < skippableSize) {
return ZSTD_CONTENTSIZE_ERROR;
}
src = (const BYTE *)src + skippableSize;
srcSize -= skippableSize;
continue;
}
{ unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret;
/* check for overflow */
if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR;
totalDstSize += ret;
}
{ size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize);
if (ZSTD_isError(frameSrcSize)) {
return ZSTD_CONTENTSIZE_ERROR;
}
src = (const BYTE *)src + frameSrcSize;
srcSize -= frameSrcSize;
}
} /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
if (srcSize) return ZSTD_CONTENTSIZE_ERROR;
return totalDstSize;
}
/** ZSTD_getDecompressedSize() :
* compatible with legacy mode
* @return : decompressed size if known, 0 otherwise
note : 0 can mean any of the following :
- frame content is empty
- decompressed size field is not present in frame header
- frame header unknown / not supported
- frame header not complete (`srcSize` too small) */
unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize)
{
unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize);
ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN);
return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret;
}
/** ZSTD_decodeFrameHeader() :
* `headerSize` must be the size provided by ZSTD_frameHeaderSize().
* @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */
static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize)
{
size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format);
if (ZSTD_isError(result)) return result; /* invalid header */
if (result>0) return ERROR(srcSize_wrong); /* headerSize too small */
if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID))
return ERROR(dictionary_wrong);
if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0);
return 0;
}
/*-*************************************************************
* Block decoding
***************************************************************/
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr)
{
if (srcSize < ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
{ U32 const cBlockHeader = MEM_readLE24(src);
U32 const cSize = cBlockHeader >> 3;
bpPtr->lastBlock = cBlockHeader & 1;
bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
bpPtr->origSize = cSize; /* only useful for RLE */
if (bpPtr->blockType == bt_rle) return 1;
if (bpPtr->blockType == bt_reserved) return ERROR(corruption_detected);
return cSize;
}
}
static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
if (dst==NULL) return ERROR(dstSize_tooSmall);
if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall);
memcpy(dst, src, srcSize);
return srcSize;
}
static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
size_t regenSize)
{
if (srcSize != 1) return ERROR(srcSize_wrong);
if (regenSize > dstCapacity) return ERROR(dstSize_tooSmall);
memset(dst, *(const BYTE*)src, regenSize);
return regenSize;
}
/* Hidden declaration for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize);
/*! ZSTD_decodeLiteralsBlock() :
* @return : nb of bytes read from src (< srcSize )
* note : symbol not declared but exposed for fullbench */
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */
{
if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
{ const BYTE* const istart = (const BYTE*) src;
symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
switch(litEncType)
{
case set_repeat:
if (dctx->litEntropy==0) return ERROR(dictionary_corrupted);
/* fall-through */
case set_compressed:
if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3 */
{ size_t lhSize, litSize, litCSize;
U32 singleStream=0;
U32 const lhlCode = (istart[0] >> 2) & 3;
U32 const lhc = MEM_readLE32(istart);
switch(lhlCode)
{
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
/* 2 - 2 - 10 - 10 */
singleStream = !lhlCode;
lhSize = 3;
litSize = (lhc >> 4) & 0x3FF;
litCSize = (lhc >> 14) & 0x3FF;
break;
case 2:
/* 2 - 2 - 14 - 14 */
lhSize = 4;
litSize = (lhc >> 4) & 0x3FFF;
litCSize = lhc >> 18;
break;
case 3:
/* 2 - 2 - 18 - 18 */
lhSize = 5;
litSize = (lhc >> 4) & 0x3FFFF;
litCSize = (lhc >> 22) + (istart[4] << 10);
break;
}
if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected);
if (litCSize + lhSize > srcSize) return ERROR(corruption_detected);
/* prefetch huffman table if cold */
if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
}
if (HUF_isError((litEncType==set_repeat) ?
( singleStream ?
HUF_decompress1X_usingDTable_bmi2(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr, dctx->bmi2) :
HUF_decompress4X_usingDTable_bmi2(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->HUFptr, dctx->bmi2) ) :
( singleStream ?
HUF_decompress1X1_DCtx_wksp_bmi2(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize,
dctx->workspace, sizeof(dctx->workspace), dctx->bmi2) :
HUF_decompress4X_hufOnly_wksp_bmi2(dctx->entropy.hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize,
dctx->workspace, sizeof(dctx->workspace), dctx->bmi2))))
return ERROR(corruption_detected);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
dctx->litEntropy = 1;
if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return litCSize + lhSize;
}
case set_basic:
{ size_t litSize, lhSize;
U32 const lhlCode = ((istart[0]) >> 2) & 3;
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
litSize = istart[0] >> 3;
break;
case 1:
lhSize = 2;
litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
break;
}
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
if (litSize+lhSize > srcSize) return ERROR(corruption_detected);
memcpy(dctx->litBuffer, istart+lhSize, litSize);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH);
return lhSize+litSize;
}
/* direct reference into compressed stream */
dctx->litPtr = istart+lhSize;
dctx->litSize = litSize;
return lhSize+litSize;
}
case set_rle:
{ U32 const lhlCode = ((istart[0]) >> 2) & 3;
size_t litSize, lhSize;
switch(lhlCode)
{
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
lhSize = 1;
litSize = istart[0] >> 3;
break;
case 1:
lhSize = 2;
litSize = MEM_readLE16(istart) >> 4;
break;
case 3:
lhSize = 3;
litSize = MEM_readLE24(istart) >> 4;
if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */
break;
}
if (litSize > ZSTD_BLOCKSIZE_MAX) return ERROR(corruption_detected);
memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH);
dctx->litPtr = dctx->litBuffer;
dctx->litSize = litSize;
return lhSize+1;
}
default:
return ERROR(corruption_detected); /* impossible */
}
}
}
/* Default FSE distribution tables.
* These are pre-calculated FSE decoding tables using default distributions as defined in specification :
* https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md#default-distributions
* They were generated programmatically with following method :
* - start from default distributions, present in /lib/common/zstd_internal.h
* - generate tables normally, using ZSTD_buildFSETable()
* - printout the content of tables
* - pretify output, report below, test with fuzzer to ensure it's correct */
/* Default FSE distribution table for Literal Lengths */
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 4, 0}, { 16, 0, 4, 0},
{ 32, 0, 5, 1}, { 0, 0, 5, 3},
{ 0, 0, 5, 4}, { 0, 0, 5, 6},
{ 0, 0, 5, 7}, { 0, 0, 5, 9},
{ 0, 0, 5, 10}, { 0, 0, 5, 12},
{ 0, 0, 6, 14}, { 0, 1, 5, 16},
{ 0, 1, 5, 20}, { 0, 1, 5, 22},
{ 0, 2, 5, 28}, { 0, 3, 5, 32},
{ 0, 4, 5, 48}, { 32, 6, 5, 64},
{ 0, 7, 5, 128}, { 0, 8, 6, 256},
{ 0, 10, 6, 1024}, { 0, 12, 6, 4096},
{ 32, 0, 4, 0}, { 0, 0, 4, 1},
{ 0, 0, 5, 2}, { 32, 0, 5, 4},
{ 0, 0, 5, 5}, { 32, 0, 5, 7},
{ 0, 0, 5, 8}, { 32, 0, 5, 10},
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
{ 32, 1, 5, 16}, { 0, 1, 5, 18},
{ 32, 1, 5, 22}, { 0, 2, 5, 24},
{ 32, 3, 5, 32}, { 0, 3, 5, 40},
{ 0, 6, 4, 64}, { 16, 6, 4, 64},
{ 32, 7, 5, 128}, { 0, 9, 6, 512},
{ 0, 11, 6, 2048}, { 48, 0, 4, 0},
{ 16, 0, 4, 1}, { 32, 0, 5, 2},
{ 32, 0, 5, 3}, { 32, 0, 5, 5},
{ 32, 0, 5, 6}, { 32, 0, 5, 8},
{ 32, 0, 5, 9}, { 32, 0, 5, 11},
{ 32, 0, 5, 12}, { 0, 0, 6, 15},
{ 32, 1, 5, 18}, { 32, 1, 5, 20},
{ 32, 2, 5, 24}, { 32, 2, 5, 28},
{ 32, 3, 5, 40}, { 32, 4, 5, 48},
{ 0, 16, 6,65536}, { 0, 15, 6,32768},
{ 0, 14, 6,16384}, { 0, 13, 6, 8192},
}; /* LL_defaultDTable */
/* Default FSE distribution table for Offset Codes */
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 5, 0}, { 0, 6, 4, 61},
{ 0, 9, 5, 509}, { 0, 15, 5,32765},
{ 0, 21, 5,2097149}, { 0, 3, 5, 5},
{ 0, 7, 4, 125}, { 0, 12, 5, 4093},
{ 0, 18, 5,262141}, { 0, 23, 5,8388605},
{ 0, 5, 5, 29}, { 0, 8, 4, 253},
{ 0, 14, 5,16381}, { 0, 20, 5,1048573},
{ 0, 2, 5, 1}, { 16, 7, 4, 125},
{ 0, 11, 5, 2045}, { 0, 17, 5,131069},
{ 0, 22, 5,4194301}, { 0, 4, 5, 13},
{ 16, 8, 4, 253}, { 0, 13, 5, 8189},
{ 0, 19, 5,524285}, { 0, 1, 5, 1},
{ 16, 6, 4, 61}, { 0, 10, 5, 1021},
{ 0, 16, 5,65533}, { 0, 28, 5,268435453},
{ 0, 27, 5,134217725}, { 0, 26, 5,67108861},
{ 0, 25, 5,33554429}, { 0, 24, 5,16777213},
}; /* OF_defaultDTable */
/* Default FSE distribution table for Match Lengths */
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
{ 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
/* nextState, nbAddBits, nbBits, baseVal */
{ 0, 0, 6, 3}, { 0, 0, 4, 4},
{ 32, 0, 5, 5}, { 0, 0, 5, 6},
{ 0, 0, 5, 8}, { 0, 0, 5, 9},
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
{ 0, 0, 6, 16}, { 0, 0, 6, 19},
{ 0, 0, 6, 22}, { 0, 0, 6, 25},
{ 0, 0, 6, 28}, { 0, 0, 6, 31},
{ 0, 0, 6, 34}, { 0, 1, 6, 37},
{ 0, 1, 6, 41}, { 0, 2, 6, 47},
{ 0, 3, 6, 59}, { 0, 4, 6, 83},
{ 0, 7, 6, 131}, { 0, 9, 6, 515},
{ 16, 0, 4, 4}, { 0, 0, 4, 5},
{ 32, 0, 5, 6}, { 0, 0, 5, 7},
{ 32, 0, 5, 9}, { 0, 0, 5, 10},
{ 0, 0, 6, 12}, { 0, 0, 6, 15},
{ 0, 0, 6, 18}, { 0, 0, 6, 21},
{ 0, 0, 6, 24}, { 0, 0, 6, 27},
{ 0, 0, 6, 30}, { 0, 0, 6, 33},
{ 0, 1, 6, 35}, { 0, 1, 6, 39},
{ 0, 2, 6, 43}, { 0, 3, 6, 51},
{ 0, 4, 6, 67}, { 0, 5, 6, 99},
{ 0, 8, 6, 259}, { 32, 0, 4, 4},
{ 48, 0, 4, 4}, { 16, 0, 4, 5},
{ 32, 0, 5, 7}, { 32, 0, 5, 8},
{ 32, 0, 5, 10}, { 32, 0, 5, 11},
{ 0, 0, 6, 14}, { 0, 0, 6, 17},
{ 0, 0, 6, 20}, { 0, 0, 6, 23},
{ 0, 0, 6, 26}, { 0, 0, 6, 29},
{ 0, 0, 6, 32}, { 0, 16, 6,65539},
{ 0, 15, 6,32771}, { 0, 14, 6,16387},
{ 0, 13, 6, 8195}, { 0, 12, 6, 4099},
{ 0, 11, 6, 2051}, { 0, 10, 6, 1027},
}; /* ML_defaultDTable */
static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U32 nbAddBits)
{
void* ptr = dt;
ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
ZSTD_seqSymbol* const cell = dt + 1;
DTableH->tableLog = 0;
DTableH->fastMode = 0;
cell->nbBits = 0;
cell->nextState = 0;
assert(nbAddBits < 255);
cell->nbAdditionalBits = (BYTE)nbAddBits;
cell->baseValue = baseValue;
}
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off) */
static void
ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
const U32* baseValue, const U32* nbAdditionalBits,
unsigned tableLog)
{
ZSTD_seqSymbol* const tableDecode = dt+1;
U16 symbolNext[MaxSeq+1];
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
assert(maxSymbolValue <= MaxSeq);
assert(tableLog <= MaxFSELog);
/* Init, lay down lowprob symbols */
{ ZSTD_seqSymbol_header DTableH;
DTableH.tableLog = tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].baseValue = s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = normalizedCounter[s];
} } }
memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
{ U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].baseValue = s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
U32 const symbol = tableDecode[u].baseValue;
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
assert(nbAdditionalBits[symbol] < 255);
tableDecode[u].nbAdditionalBits = (BYTE)nbAdditionalBits[symbol];
tableDecode[u].baseValue = baseValue[symbol];
} }
}
/*! ZSTD_buildSeqTable() :
* @return : nb bytes read from src,
* or an error code if it fails */
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
symbolEncodingType_e type, U32 max, U32 maxLog,
const void* src, size_t srcSize,
const U32* baseValue, const U32* nbAdditionalBits,
const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
int ddictIsCold, int nbSeq)
{
switch(type)
{
case set_rle :
if (!srcSize) return ERROR(srcSize_wrong);
if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected);
{ U32 const symbol = *(const BYTE*)src;
U32 const baseline = baseValue[symbol];
U32 const nbBits = nbAdditionalBits[symbol];
ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
}
*DTablePtr = DTableSpace;
return 1;
case set_basic :
*DTablePtr = defaultTable;
return 0;
case set_repeat:
if (!flagRepeatTable) return ERROR(corruption_detected);
/* prefetch FSE table if used */
if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
const void* const pStart = *DTablePtr;
size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
PREFETCH_AREA(pStart, pSize);
}
return 0;
case set_compressed :
{ U32 tableLog;
S16 norm[MaxSeq+1];
size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
if (FSE_isError(headerSize)) return ERROR(corruption_detected);
if (tableLog > maxLog) return ERROR(corruption_detected);
ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog);
*DTablePtr = DTableSpace;
return headerSize;
}
default : /* impossible */
assert(0);
return ERROR(GENERIC);
}
}
static const U32 LL_base[MaxLL+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 20, 22, 24, 28, 32, 40,
48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
0x2000, 0x4000, 0x8000, 0x10000 };
static const U32 OF_base[MaxOff+1] = {
0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
static const U32 OF_bits[MaxOff+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31 };
static const U32 ML_base[MaxML+1] = {
3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34,
35, 37, 39, 41, 43, 47, 51, 59,
67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
/* Hidden delcaration for fullbench */
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize);
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize)
{
const BYTE* const istart = (const BYTE* const)src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip = istart;
int nbSeq;
DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
/* check */
if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong);
/* SeqHead */
nbSeq = *ip++;
if (!nbSeq) { *nbSeqPtr=0; return 1; }
if (nbSeq > 0x7F) {
if (nbSeq == 0xFF) {
if (ip+2 > iend) return ERROR(srcSize_wrong);
nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2;
} else {
if (ip >= iend) return ERROR(srcSize_wrong);
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
}
}
*nbSeqPtr = nbSeq;
/* FSE table descriptors */
if (ip+4 > iend) return ERROR(srcSize_wrong); /* minimum possible size */
{ symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
ip++;
/* Build DTables */
{ size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
LLtype, MaxLL, LLFSELog,
ip, iend-ip,
LL_base, LL_bits,
LL_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
if (ZSTD_isError(llhSize)) return ERROR(corruption_detected);
ip += llhSize;
}
{ size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
OFtype, MaxOff, OffFSELog,
ip, iend-ip,
OF_base, OF_bits,
OF_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
if (ZSTD_isError(ofhSize)) return ERROR(corruption_detected);
ip += ofhSize;
}
{ size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
MLtype, MaxML, MLFSELog,
ip, iend-ip,
ML_base, ML_bits,
ML_defaultDTable, dctx->fseEntropy,
dctx->ddictIsCold, nbSeq);
if (ZSTD_isError(mlhSize)) return ERROR(corruption_detected);
ip += mlhSize;
}
}
/* prefetch dictionary content */
if (dctx->ddictIsCold) {
size_t const dictSize = (const char*)dctx->prefixStart - (const char*)dctx->virtualStart;
size_t const psmin = MIN(dictSize, (size_t)(64*nbSeq) /* heuristic */ );
size_t const pSize = MIN(psmin, 128 KB /* protection */ );
const void* const pStart = (const char*)dctx->dictEnd - pSize;
PREFETCH_AREA(pStart, pSize);
dctx->ddictIsCold = 0;
}
return ip-istart;
}
typedef struct {
size_t litLength;
size_t matchLength;
size_t offset;
const BYTE* match;
} seq_t;
typedef struct {
size_t state;
const ZSTD_seqSymbol* table;
} ZSTD_fseState;
typedef struct {
BIT_DStream_t DStream;
ZSTD_fseState stateLL;
ZSTD_fseState stateOffb;
ZSTD_fseState stateML;
size_t prevOffset[ZSTD_REP_NUM];
const BYTE* prefixStart;
const BYTE* dictEnd;
size_t pos;
} seqState_t;
FORCE_NOINLINE
size_t ZSTD_execSequenceLast7(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
if (oLitEnd <= oend_w) return ERROR(GENERIC); /* Precondition */
/* copy literals */
if (op < oend_w) {
ZSTD_wildcopy(op, *litPtr, oend_w - op);
*litPtr += oend_w - op;
op = oend_w;
}
while (op < oLitEnd) *op++ = *(*litPtr)++;
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - base)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected);
match = dictEnd - (base-match);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = base;
} }
while (op < oMatchEnd) *op++ = *match++;
return sequenceLength;
}
HINT_INLINE
size_t ZSTD_execSequence(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = oLitEnd - sequence.offset;
/* check */
if (oMatchEnd>oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
if (oLitEnd>oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
/* copy Literals */
ZSTD_copy8(op, *litPtr);
if (sequence.litLength > 8)
ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix -> go into extDict */
if (sequence.offset > (size_t)(oLitEnd - virtualStart))
return ERROR(corruption_detected);
match = dictEnd + (match - prefixStart);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
if (op > oend_w || sequence.matchLength < MINMATCH) {
U32 i;
for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
return sequenceLength;
}
} }
/* Requirement: op <= oend_w && sequence.matchLength >= MINMATCH */
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= sub2;
} else {
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_w) {
ZSTD_wildcopy(op, match, oend_w - op);
match += oend_w - op;
op = oend_w;
}
while (op < oMatchEnd) *op++ = *match++;
} else {
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
return sequenceLength;
}
HINT_INLINE
size_t ZSTD_execSequenceLong(BYTE* op,
BYTE* const oend, seq_t sequence,
const BYTE** litPtr, const BYTE* const litLimit,
const BYTE* const prefixStart, const BYTE* const dictStart, const BYTE* const dictEnd)
{
BYTE* const oLitEnd = op + sequence.litLength;
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
const BYTE* match = sequence.match;
/* check */
if (oMatchEnd > oend) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */
if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */
if (oLitEnd > oend_w) return ZSTD_execSequenceLast7(op, oend, sequence, litPtr, litLimit, prefixStart, dictStart, dictEnd);
/* copy Literals */
ZSTD_copy8(op, *litPtr); /* note : op <= oLitEnd <= oend_w == oend - 8 */
if (sequence.litLength > 8)
ZSTD_wildcopy(op+8, (*litPtr)+8, sequence.litLength - 8); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */
op = oLitEnd;
*litPtr = iLitEnd; /* update for next sequence */
/* copy Match */
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
/* offset beyond prefix */
if (sequence.offset > (size_t)(oLitEnd - dictStart)) return ERROR(corruption_detected);
if (match + sequence.matchLength <= dictEnd) {
memmove(oLitEnd, match, sequence.matchLength);
return sequenceLength;
}
/* span extDict & currentPrefixSegment */
{ size_t const length1 = dictEnd - match;
memmove(oLitEnd, match, length1);
op = oLitEnd + length1;
sequence.matchLength -= length1;
match = prefixStart;
if (op > oend_w || sequence.matchLength < MINMATCH) {
U32 i;
for (i = 0; i < sequence.matchLength; ++i) op[i] = match[i];
return sequenceLength;
}
} }
assert(op <= oend_w);
assert(sequence.matchLength >= MINMATCH);
/* match within prefix */
if (sequence.offset < 8) {
/* close range match, overlap */
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
int const sub2 = dec64table[sequence.offset];
op[0] = match[0];
op[1] = match[1];
op[2] = match[2];
op[3] = match[3];
match += dec32table[sequence.offset];
ZSTD_copy4(op+4, match);
match -= sub2;
} else {
ZSTD_copy8(op, match);
}
op += 8; match += 8;
if (oMatchEnd > oend-(16-MINMATCH)) {
if (op < oend_w) {
ZSTD_wildcopy(op, match, oend_w - op);
match += oend_w - op;
op = oend_w;
}
while (op < oMatchEnd) *op++ = *match++;
} else {
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */
}
return sequenceLength;
}
static void
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
{
const void* ptr = dt;
const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
(U32)DStatePtr->state, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
FORCE_INLINE_TEMPLATE void
ZSTD_updateFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD)
{
ZSTD_seqSymbol const DInfo = DStatePtr->table[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.nextState + lowBits;
}
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
* offset bits. But we can only read at most (STREAM_ACCUMULATOR_MIN_32 - 1)
* bits before reloading. This value is the maximum number of bytes we read
* after reloading when we are decoding long offets.
*/
#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
(ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
: 0)
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
{
seq_t seq;
U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits;
U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits;
U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits;
U32 const totalBits = llBits+mlBits+ofBits;
U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue;
U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue;
U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue;
/* sequence */
{ size_t offset;
if (!ofBits)
offset = 0;
else {
ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
assert(ofBits <= MaxOff);
if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
U32 const extraBits = ofBits - MIN(ofBits, 32 - seqState->DStream.bitsConsumed);
offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
BIT_reloadDStream(&seqState->DStream);
if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
assert(extraBits <= LONG_OFFSETS_MAX_EXTRA_BITS_32); /* to avoid another reload */
} else {
offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
}
}
if (ofBits <= 1) {
offset += (llBase==0);
if (offset) {
size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset = temp;
} else { /* offset == 0 */
offset = seqState->prevOffset[0];
}
} else {
seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset;
}
seq.offset = offset;
}
seq.matchLength = mlBase
+ ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/) : 0); /* <= 16 bits */
if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
BIT_reloadDStream(&seqState->DStream);
if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
BIT_reloadDStream(&seqState->DStream);
/* Ensure there are enough bits to read the rest of data in 64-bit mode. */
ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
seq.litLength = llBase
+ ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits/*>0*/) : 0); /* <= 16 bits */
if (MEM_32bits())
BIT_reloadDStream(&seqState->DStream);
DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
/* ANS state update */
ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
return seq;
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequences_body( ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
DEBUGLOG(5, "ZSTD_decompressSequences_body");
/* Regen sequences */
if (nbSeq) {
seqState_t seqState;
dctx->fseEntropy = 1;
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; ) {
nbSeq--;
{ seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
} }
/* check if reached exact end */
DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
if (nbSeq) return ERROR(corruption_detected);
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
return op-ostart;
}
static size_t
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
FORCE_INLINE_TEMPLATE seq_t
ZSTD_decodeSequenceLong(seqState_t* seqState, ZSTD_longOffset_e const longOffsets)
{
seq_t seq;
U32 const llBits = seqState->stateLL.table[seqState->stateLL.state].nbAdditionalBits;
U32 const mlBits = seqState->stateML.table[seqState->stateML.state].nbAdditionalBits;
U32 const ofBits = seqState->stateOffb.table[seqState->stateOffb.state].nbAdditionalBits;
U32 const totalBits = llBits+mlBits+ofBits;
U32 const llBase = seqState->stateLL.table[seqState->stateLL.state].baseValue;
U32 const mlBase = seqState->stateML.table[seqState->stateML.state].baseValue;
U32 const ofBase = seqState->stateOffb.table[seqState->stateOffb.state].baseValue;
/* sequence */
{ size_t offset;
if (!ofBits)
offset = 0;
else {
ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
assert(ofBits <= MaxOff);
if (MEM_32bits() && longOffsets) {
U32 const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN_32-1);
offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
if (MEM_32bits() || extraBits) BIT_reloadDStream(&seqState->DStream);
if (extraBits) offset += BIT_readBitsFast(&seqState->DStream, extraBits);
} else {
offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
}
}
if (ofBits <= 1) {
offset += (llBase==0);
if (offset) {
size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset = temp;
} else {
offset = seqState->prevOffset[0];
}
} else {
seqState->prevOffset[2] = seqState->prevOffset[1];
seqState->prevOffset[1] = seqState->prevOffset[0];
seqState->prevOffset[0] = offset;
}
seq.offset = offset;
}
seq.matchLength = mlBase + ((mlBits>0) ? BIT_readBitsFast(&seqState->DStream, mlBits) : 0); /* <= 16 bits */
if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
BIT_reloadDStream(&seqState->DStream);
if (MEM_64bits() && (totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
BIT_reloadDStream(&seqState->DStream);
/* Verify that there is enough bits to read the rest of the data in 64-bit mode. */
ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
seq.litLength = llBase + ((llBits>0) ? BIT_readBitsFast(&seqState->DStream, llBits) : 0); /* <= 16 bits */
if (MEM_32bits())
BIT_reloadDStream(&seqState->DStream);
{ size_t const pos = seqState->pos + seq.litLength;
const BYTE* const matchBase = (seq.offset > pos) ? seqState->dictEnd : seqState->prefixStart;
seq.match = matchBase + pos - seq.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
* No consequence though : no memory access will occur, overly large offset will be detected in ZSTD_execSequenceLong() */
seqState->pos = pos + seq.matchLength;
}
/* ANS state update */
ZSTD_updateFseState(&seqState->stateLL, &seqState->DStream); /* <= 9 bits */
ZSTD_updateFseState(&seqState->stateML, &seqState->DStream); /* <= 9 bits */
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
ZSTD_updateFseState(&seqState->stateOffb, &seqState->DStream); /* <= 8 bits */
return seq;
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_decompressSequencesLong_body(
ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
const BYTE* ip = (const BYTE*)seqStart;
const BYTE* const iend = ip + seqSize;
BYTE* const ostart = (BYTE* const)dst;
BYTE* const oend = ostart + maxDstSize;
BYTE* op = ostart;
const BYTE* litPtr = dctx->litPtr;
const BYTE* const litEnd = litPtr + dctx->litSize;
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
/* Regen sequences */
if (nbSeq) {
#define STORED_SEQS 4
#define STOSEQ_MASK (STORED_SEQS-1)
#define ADVANCED_SEQS 4
seq_t sequences[STORED_SEQS];
int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
seqState_t seqState;
int seqNb;
dctx->fseEntropy = 1;
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
seqState.prefixStart = prefixStart;
seqState.pos = (size_t)(op-prefixStart);
seqState.dictEnd = dictEnd;
CHECK_E(BIT_initDStream(&seqState.DStream, ip, iend-ip), corruption_detected);
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
/* prepare in advance */
for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
sequences[seqNb] = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
}
if (seqNb<seqAdvance) return ERROR(corruption_detected);
/* decode and decompress */
for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb<nbSeq) ; seqNb++) {
seq_t const sequence = ZSTD_decodeSequenceLong(&seqState, isLongOffset);
size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[(seqNb-ADVANCED_SEQS) & STOSEQ_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
PREFETCH(sequence.match); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
sequences[seqNb&STOSEQ_MASK] = sequence;
op += oneSeqSize;
}
if (seqNb<nbSeq) return ERROR(corruption_detected);
/* finish queue */
seqNb -= seqAdvance;
for ( ; seqNb<nbSeq ; seqNb++) {
size_t const oneSeqSize = ZSTD_execSequenceLong(op, oend, sequences[seqNb&STOSEQ_MASK], &litPtr, litEnd, prefixStart, dictStart, dictEnd);
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
op += oneSeqSize;
}
/* save reps for next block */
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
#undef STORED_SEQS
#undef STOSEQ_MASK
#undef ADVANCED_SEQS
}
/* last literal segment */
{ size_t const lastLLSize = litEnd - litPtr;
if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall);
memcpy(op, litPtr, lastLLSize);
op += lastLLSize;
}
return op-ostart;
}
static size_t
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#if DYNAMIC_BMI2
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
static TARGET_ATTRIBUTE("bmi2") size_t
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif
typedef size_t (*ZSTD_decompressSequences_t)(
ZSTD_DCtx *dctx, void *dst, size_t maxDstSize,
const void *seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset);
static size_t ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
DEBUGLOG(5, "ZSTD_decompressSequences");
#if DYNAMIC_BMI2
if (dctx->bmi2) {
return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif
return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
static size_t ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
void* dst, size_t maxDstSize,
const void* seqStart, size_t seqSize, int nbSeq,
const ZSTD_longOffset_e isLongOffset)
{
DEBUGLOG(5, "ZSTD_decompressSequencesLong");
#if DYNAMIC_BMI2
if (dctx->bmi2) {
return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
#endif
return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
}
/* ZSTD_getLongOffsetsShare() :
* condition : offTable must be valid
* @return : "share" of long offsets (arbitrarily defined as > (1<<23))
* compared to maximum possible of (1<<OffFSELog) */
static unsigned
ZSTD_getLongOffsetsShare(const ZSTD_seqSymbol* offTable)
{
const void* ptr = offTable;
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
const ZSTD_seqSymbol* table = offTable + 1;
U32 const max = 1 << tableLog;
U32 u, total = 0;
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
assert(max <= (1 << OffFSELog)); /* max not too large */
for (u=0; u<max; u++) {
if (table[u].nbAdditionalBits > 22) total += 1;
}
assert(tableLog <= OffFSELog);
total <<= (OffFSELog - tableLog); /* scale to OffFSELog */
return total;
}
static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const int frame)
{ /* blockType == blockCompressed */
const BYTE* ip = (const BYTE*)src;
/* isLongOffset must be true if there are long offsets.
* Offsets are long if they are larger than 2^STREAM_ACCUMULATOR_MIN.
* We don't expect that to be the case in 64-bit mode.
* In block mode, window size is not known, so we have to be conservative.
* (note: but it could be evaluated from current-lowLimit)
*/
ZSTD_longOffset_e const isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (!frame || dctx->fParams.windowSize > (1ULL << STREAM_ACCUMULATOR_MIN)));
DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
if (srcSize >= ZSTD_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);
/* Decode literals section */
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : %u", (U32)litCSize);
if (ZSTD_isError(litCSize)) return litCSize;
ip += litCSize;
srcSize -= litCSize;
}
/* Build Decoding Tables */
{ int nbSeq;
size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
if (ZSTD_isError(seqHSize)) return seqHSize;
ip += seqHSize;
srcSize -= seqHSize;
if ( (!frame || dctx->fParams.windowSize > (1<<24))
&& (nbSeq>0) ) { /* could probably use a larger nbSeq limit */
U32 const shareLongOffsets = ZSTD_getLongOffsetsShare(dctx->OFTptr);
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
if (shareLongOffsets >= minShare)
return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
}
return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
}
}
static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
{
if (dst != dctx->previousDstEnd) { /* not contiguous */
dctx->dictEnd = dctx->previousDstEnd;
dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
dctx->prefixStart = dst;
dctx->previousDstEnd = dst;
}
}
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize)
{
size_t dSize;
ZSTD_checkContinuity(dctx, dst);
dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0);
dctx->previousDstEnd = (char*)dst + dSize;
return dSize;
}
/** ZSTD_insertBlock() :
insert `src` block into `dctx` history. Useful to track uncompressed blocks. */
ZSTDLIB_API size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize)
{
ZSTD_checkContinuity(dctx, blockStart);
dctx->previousDstEnd = (const char*)blockStart + blockSize;
return blockSize;
}
static size_t ZSTD_generateNxBytes(void* dst, size_t dstCapacity, BYTE value, size_t length)
{
if (length > dstCapacity) return ERROR(dstSize_tooSmall);
memset(dst, value, length);
return length;
}
/** ZSTD_findFrameCompressedSize() :
* compatible with legacy mode
* `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame
* `srcSize` must be at least as large as the frame contained
* @return : the compressed size of the frame starting at `src` */
size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize)
{
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize))
return ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
#endif
if ( (srcSize >= ZSTD_skippableHeaderSize)
&& (MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START ) {
return ZSTD_skippableHeaderSize + MEM_readLE32((const BYTE*)src + ZSTD_FRAMEIDSIZE);
} else {
const BYTE* ip = (const BYTE*)src;
const BYTE* const ipstart = ip;
size_t remainingSize = srcSize;
ZSTD_frameHeader zfh;
/* Extract Frame Header */
{ size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(ret)) return ret;
if (ret > 0) return ERROR(srcSize_wrong);
}
ip += zfh.headerSize;
remainingSize -= zfh.headerSize;
/* Loop on each block */
while (1) {
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
if (ZSTD_blockHeaderSize + cBlockSize > remainingSize)
return ERROR(srcSize_wrong);
ip += ZSTD_blockHeaderSize + cBlockSize;
remainingSize -= ZSTD_blockHeaderSize + cBlockSize;
if (blockProperties.lastBlock) break;
}
if (zfh.checksumFlag) { /* Final frame content checksum */
if (remainingSize < 4) return ERROR(srcSize_wrong);
ip += 4;
}
return ip - ipstart;
}
}
/*! ZSTD_decompressFrame() :
* @dctx must be properly initialized */
static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void** srcPtr, size_t *srcSizePtr)
{
const BYTE* ip = (const BYTE*)(*srcPtr);
BYTE* const ostart = (BYTE* const)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
size_t remainingSize = *srcSizePtr;
/* check */
if (remainingSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize)
return ERROR(srcSize_wrong);
/* Frame Header */
{ size_t const frameHeaderSize = ZSTD_frameHeaderSize(ip, ZSTD_frameHeaderSize_prefix);
if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
if (remainingSize < frameHeaderSize+ZSTD_blockHeaderSize)
return ERROR(srcSize_wrong);
CHECK_F( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) );
ip += frameHeaderSize; remainingSize -= frameHeaderSize;
}
/* Loop on each block */
while (1) {
size_t decodedSize;
blockProperties_t blockProperties;
size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
ip += ZSTD_blockHeaderSize;
remainingSize -= ZSTD_blockHeaderSize;
if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
switch(blockProperties.blockType)
{
case bt_compressed:
decodedSize = ZSTD_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize, /* frame */ 1);
break;
case bt_raw :
decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
break;
case bt_rle :
decodedSize = ZSTD_generateNxBytes(op, oend-op, *ip, blockProperties.origSize);
break;
case bt_reserved :
default:
return ERROR(corruption_detected);
}
if (ZSTD_isError(decodedSize)) return decodedSize;
if (dctx->fParams.checksumFlag)
XXH64_update(&dctx->xxhState, op, decodedSize);
op += decodedSize;
ip += cBlockSize;
remainingSize -= cBlockSize;
if (blockProperties.lastBlock) break;
}
if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
if ((U64)(op-ostart) != dctx->fParams.frameContentSize) {
return ERROR(corruption_detected);
} }
if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */
U32 const checkCalc = (U32)XXH64_digest(&dctx->xxhState);
U32 checkRead;
if (remainingSize<4) return ERROR(checksum_wrong);
checkRead = MEM_readLE32(ip);
if (checkRead != checkCalc) return ERROR(checksum_wrong);
ip += 4;
remainingSize -= 4;
}
/* Allow caller to get size read */
*srcPtr = ip;
*srcSizePtr = remainingSize;
return op-ostart;
}
static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize,
const ZSTD_DDict* ddict)
{
void* const dststart = dst;
int moreThan1Frame = 0;
DEBUGLOG(5, "ZSTD_decompressMultiFrame");
assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */
if (ddict) {
dict = ZSTD_DDictDictContent(ddict);
dictSize = ZSTD_DDictDictSize(ddict);
}
while (srcSize >= ZSTD_frameHeaderSize_prefix) {
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT >= 1)
if (ZSTD_isLegacy(src, srcSize)) {
size_t decodedSize;
size_t const frameSize = ZSTD_findFrameCompressedSizeLegacy(src, srcSize);
if (ZSTD_isError(frameSize)) return frameSize;
/* legacy support is not compatible with static dctx */
if (dctx->staticSize) return ERROR(memory_allocation);
decodedSize = ZSTD_decompressLegacy(dst, dstCapacity, src, frameSize, dict, dictSize);
dst = (BYTE*)dst + decodedSize;
dstCapacity -= decodedSize;
src = (const BYTE*)src + frameSize;
srcSize -= frameSize;
continue;
}
#endif
{ U32 const magicNumber = MEM_readLE32(src);
DEBUGLOG(4, "reading magic number %08X (expecting %08X)",
(U32)magicNumber, (U32)ZSTD_MAGICNUMBER);
if ((magicNumber & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) {
size_t skippableSize;
if (srcSize < ZSTD_skippableHeaderSize)
return ERROR(srcSize_wrong);
skippableSize = MEM_readLE32((const BYTE*)src + ZSTD_FRAMEIDSIZE)
+ ZSTD_skippableHeaderSize;
if (srcSize < skippableSize) return ERROR(srcSize_wrong);
src = (const BYTE *)src + skippableSize;
srcSize -= skippableSize;
continue;
} }
if (ddict) {
/* we were called from ZSTD_decompress_usingDDict */
CHECK_F(ZSTD_decompressBegin_usingDDict(dctx, ddict));
} else {
/* this will initialize correctly with no dict if dict == NULL, so
* use this in all cases but ddict */
CHECK_F(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize));
}
ZSTD_checkContinuity(dctx, dst);
{ const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity,
&src, &srcSize);
if ( (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown)
&& (moreThan1Frame==1) ) {
/* at least one frame successfully completed,
* but following bytes are garbage :
* it's more likely to be a srcSize error,
* specifying more bytes than compressed size of frame(s).
* This error message replaces ERROR(prefix_unknown),
* which would be confusing, as the first header is actually correct.
* Note that one could be unlucky, it might be a corruption error instead,
* happening right at the place where we expect zstd magic bytes.
* But this is _much_ less likely than a srcSize field error. */
return ERROR(srcSize_wrong);
}
if (ZSTD_isError(res)) return res;
/* no need to bound check, ZSTD_decompressFrame already has */
dst = (BYTE*)dst + res;
dstCapacity -= res;
}
moreThan1Frame = 1;
} /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */
if (srcSize) return ERROR(srcSize_wrong); /* input not entirely consumed */
return (BYTE*)dst - (BYTE*)dststart;
}
size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const void* dict, size_t dictSize)
{
return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL);
}
size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
return ZSTD_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0);
}
size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
#if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1)
size_t regenSize;
ZSTD_DCtx* const dctx = ZSTD_createDCtx();
if (dctx==NULL) return ERROR(memory_allocation);
regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize);
ZSTD_freeDCtx(dctx);
return regenSize;
#else /* stack mode */
ZSTD_DCtx dctx;
ZSTD_initDCtx_internal(&dctx);
return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize);
#endif
}
/*-**************************************
* Advanced Streaming Decompression API
* Bufferless and synchronous
****************************************/
size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; }
ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) {
switch(dctx->stage)
{
default: /* should not happen */
assert(0);
case ZSTDds_getFrameHeaderSize:
case ZSTDds_decodeFrameHeader:
return ZSTDnit_frameHeader;
case ZSTDds_decodeBlockHeader:
return ZSTDnit_blockHeader;
case ZSTDds_decompressBlock:
return ZSTDnit_block;
case ZSTDds_decompressLastBlock:
return ZSTDnit_lastBlock;
case ZSTDds_checkChecksum:
return ZSTDnit_checksum;
case ZSTDds_decodeSkippableHeader:
case ZSTDds_skipFrame:
return ZSTDnit_skippableFrame;
}
}
static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; }
/** ZSTD_decompressContinue() :
* srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress())
* @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity)
* or an error code, which can be tested using ZSTD_isError() */
size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (U32)srcSize);
/* Sanity check */
if (srcSize != dctx->expected) return ERROR(srcSize_wrong); /* not allowed */
if (dstCapacity) ZSTD_checkContinuity(dctx, dst);
switch (dctx->stage)
{
case ZSTDds_getFrameHeaderSize :
assert(src != NULL);
if (dctx->format == ZSTD_f_zstd1) { /* allows header */
assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */
if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
memcpy(dctx->headerBuffer, src, srcSize);
dctx->expected = ZSTD_skippableHeaderSize - srcSize; /* remaining to load to get full skippable frame header */
dctx->stage = ZSTDds_decodeSkippableHeader;
return 0;
} }
dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format);
if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize;
memcpy(dctx->headerBuffer, src, srcSize);
dctx->expected = dctx->headerSize - srcSize;
dctx->stage = ZSTDds_decodeFrameHeader;
return 0;
case ZSTDds_decodeFrameHeader:
assert(src != NULL);
memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize);
CHECK_F(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize));
dctx->expected = ZSTD_blockHeaderSize;
dctx->stage = ZSTDds_decodeBlockHeader;
return 0;
case ZSTDds_decodeBlockHeader:
{ blockProperties_t bp;
size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
if (ZSTD_isError(cBlockSize)) return cBlockSize;
dctx->expected = cBlockSize;
dctx->bType = bp.blockType;
dctx->rleSize = bp.origSize;
if (cBlockSize) {
dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock;
return 0;
}
/* empty block */
if (bp.lastBlock) {
if (dctx->fParams.checksumFlag) {
dctx->expected = 4;
dctx->stage = ZSTDds_checkChecksum;
} else {
dctx->expected = 0; /* end of frame */
dctx->stage = ZSTDds_getFrameHeaderSize;
}
} else {
dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */
dctx->stage = ZSTDds_decodeBlockHeader;
}
return 0;
}
case ZSTDds_decompressLastBlock:
case ZSTDds_decompressBlock:
DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock");
{ size_t rSize;
switch(dctx->bType)
{
case bt_compressed:
DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed");
rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1);
break;
case bt_raw :
rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize);
break;
case bt_rle :
rSize = ZSTD_setRleBlock(dst, dstCapacity, src, srcSize, dctx->rleSize);
break;
case bt_reserved : /* should never happen */
default:
return ERROR(corruption_detected);
}
if (ZSTD_isError(rSize)) return rSize;
DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (U32)rSize);
dctx->decodedSize += rSize;
if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize);
if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */
DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (U32)dctx->decodedSize);
if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) {
if (dctx->decodedSize != dctx->fParams.frameContentSize) {
return ERROR(corruption_detected);
} }
if (dctx->fParams.checksumFlag) { /* another round for frame checksum */
dctx->expected = 4;
dctx->stage = ZSTDds_checkChecksum;
} else {
dctx->expected = 0; /* ends here */
dctx->stage = ZSTDds_getFrameHeaderSize;
}
} else {
dctx->stage = ZSTDds_decodeBlockHeader;
dctx->expected = ZSTD_blockHeaderSize;
dctx->previousDstEnd = (char*)dst + rSize;
}
return rSize;
}
case ZSTDds_checkChecksum:
assert(srcSize == 4); /* guaranteed by dctx->expected */
{ U32 const h32 = (U32)XXH64_digest(&dctx->xxhState);
U32 const check32 = MEM_readLE32(src);
DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", h32, check32);
if (check32 != h32) return ERROR(checksum_wrong);
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
return 0;
}
case ZSTDds_decodeSkippableHeader:
assert(src != NULL);
assert(srcSize <= ZSTD_skippableHeaderSize);
memcpy(dctx->headerBuffer + (ZSTD_skippableHeaderSize - srcSize), src, srcSize); /* complete skippable header */
dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */
dctx->stage = ZSTDds_skipFrame;
return 0;
case ZSTDds_skipFrame:
dctx->expected = 0;
dctx->stage = ZSTDds_getFrameHeaderSize;
return 0;
default:
return ERROR(GENERIC); /* impossible */
}
}
static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
dctx->dictEnd = dctx->previousDstEnd;
dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
dctx->prefixStart = dict;
dctx->previousDstEnd = (const char*)dict + dictSize;
return 0;
}
/*! ZSTD_loadEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* @return : size of entropy tables read */
static size_t ZSTD_loadEntropy(ZSTD_entropyDTables_t* entropy,
const void* const dict, size_t const dictSize)
{
const BYTE* dictPtr = (const BYTE*)dict;
const BYTE* const dictEnd = dictPtr + dictSize;
if (dictSize <= 8) return ERROR(dictionary_corrupted);
assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */
dictPtr += 8; /* skip header = magic + dictID */
ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable));
ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable));
ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE);
{ void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */
size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable);
size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable,
dictPtr, dictEnd - dictPtr,
workspace, workspaceSize);
if (HUF_isError(hSize)) return ERROR(dictionary_corrupted);
dictPtr += hSize;
}
{ short offcodeNCount[MaxOff+1];
U32 offcodeMaxValue = MaxOff, offcodeLog;
size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted);
if (offcodeMaxValue > MaxOff) return ERROR(dictionary_corrupted);
if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted);
ZSTD_buildFSETable( entropy->OFTable,
offcodeNCount, offcodeMaxValue,
OF_base, OF_bits,
offcodeLog);
dictPtr += offcodeHeaderSize;
}
{ short matchlengthNCount[MaxML+1];
unsigned matchlengthMaxValue = MaxML, matchlengthLog;
size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (matchlengthMaxValue > MaxML) return ERROR(dictionary_corrupted);
if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted);
ZSTD_buildFSETable( entropy->MLTable,
matchlengthNCount, matchlengthMaxValue,
ML_base, ML_bits,
matchlengthLog);
dictPtr += matchlengthHeaderSize;
}
{ short litlengthNCount[MaxLL+1];
unsigned litlengthMaxValue = MaxLL, litlengthLog;
size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr);
if (FSE_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted);
if (litlengthMaxValue > MaxLL) return ERROR(dictionary_corrupted);
if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted);
ZSTD_buildFSETable( entropy->LLTable,
litlengthNCount, litlengthMaxValue,
LL_base, LL_bits,
litlengthLog);
dictPtr += litlengthHeaderSize;
}
if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted);
{ int i;
size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12));
for (i=0; i<3; i++) {
U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4;
if (rep==0 || rep >= dictContentSize) return ERROR(dictionary_corrupted);
entropy->rep[i] = rep;
} }
return dictPtr - (const BYTE*)dict;
}
static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize);
{ U32 const magic = MEM_readLE32(dict);
if (magic != ZSTD_MAGIC_DICTIONARY) {
return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */
} }
dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
{ size_t const eSize = ZSTD_loadEntropy(&dctx->entropy, dict, dictSize);
if (ZSTD_isError(eSize)) return ERROR(dictionary_corrupted);
dict = (const char*)dict + eSize;
dictSize -= eSize;
}
dctx->litEntropy = dctx->fseEntropy = 1;
/* reference dictionary content */
return ZSTD_refDictContent(dctx, dict, dictSize);
}
size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx)
{
assert(dctx != NULL);
dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */
dctx->stage = ZSTDds_getFrameHeaderSize;
dctx->decodedSize = 0;
dctx->previousDstEnd = NULL;
dctx->prefixStart = NULL;
dctx->virtualStart = NULL;
dctx->dictEnd = NULL;
dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
dctx->litEntropy = dctx->fseEntropy = 0;
dctx->dictID = 0;
ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue));
memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */
dctx->LLTptr = dctx->entropy.LLTable;
dctx->MLTptr = dctx->entropy.MLTable;
dctx->OFTptr = dctx->entropy.OFTable;
dctx->HUFptr = dctx->entropy.hufTable;
return 0;
}
size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
CHECK_F( ZSTD_decompressBegin(dctx) );
if (dict && dictSize)
CHECK_E(ZSTD_decompress_insertDictionary(dctx, dict, dictSize), dictionary_corrupted);
return 0;
}
/* ====== ZSTD_DDict ====== */
struct ZSTD_DDict_s {
void* dictBuffer;
const void* dictContent;
size_t dictSize;
ZSTD_entropyDTables_t entropy;
U32 dictID;
U32 entropyPresent;
ZSTD_customMem cMem;
}; /* typedef'd to ZSTD_DDict within "zstd.h" */
static const void* ZSTD_DDictDictContent(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictContent;
}
static size_t ZSTD_DDictDictSize(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictSize;
}
size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict");
assert(dctx != NULL);
if (ddict) {
dctx->ddictIsCold = (dctx->dictEnd != (const char*)ddict->dictContent + ddict->dictSize);
DEBUGLOG(4, "DDict is %s",
dctx->ddictIsCold ? "~cold~" : "hot!");
}
CHECK_F( ZSTD_decompressBegin(dctx) );
if (ddict) { /* NULL ddict is equivalent to no dictionary */
dctx->dictID = ddict->dictID;
dctx->prefixStart = ddict->dictContent;
dctx->virtualStart = ddict->dictContent;
dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
dctx->previousDstEnd = dctx->dictEnd;
if (ddict->entropyPresent) {
dctx->litEntropy = 1;
dctx->fseEntropy = 1;
dctx->LLTptr = ddict->entropy.LLTable;
dctx->MLTptr = ddict->entropy.MLTable;
dctx->OFTptr = ddict->entropy.OFTable;
dctx->HUFptr = ddict->entropy.hufTable;
dctx->entropy.rep[0] = ddict->entropy.rep[0];
dctx->entropy.rep[1] = ddict->entropy.rep[1];
dctx->entropy.rep[2] = ddict->entropy.rep[2];
} else {
dctx->litEntropy = 0;
dctx->fseEntropy = 0;
}
}
return 0;
}
static size_t
ZSTD_loadEntropy_inDDict(ZSTD_DDict* ddict,
ZSTD_dictContentType_e dictContentType)
{
ddict->dictID = 0;
ddict->entropyPresent = 0;
if (dictContentType == ZSTD_dct_rawContent) return 0;
if (ddict->dictSize < 8) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
{ U32 const magic = MEM_readLE32(ddict->dictContent);
if (magic != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
}
ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
CHECK_E( ZSTD_loadEntropy(&ddict->entropy,
ddict->dictContent, ddict->dictSize),
dictionary_corrupted );
ddict->entropyPresent = 1;
return 0;
}
static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) {
ddict->dictBuffer = NULL;
ddict->dictContent = dict;
if (!dict) dictSize = 0;
} else {
void* const internalBuffer = ZSTD_malloc(dictSize, ddict->cMem);
ddict->dictBuffer = internalBuffer;
ddict->dictContent = internalBuffer;
if (!internalBuffer) return ERROR(memory_allocation);
memcpy(internalBuffer, dict, dictSize);
}
ddict->dictSize = dictSize;
ddict->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */
/* parse dictionary content */
CHECK_F( ZSTD_loadEntropy_inDDict(ddict, dictContentType) );
return 0;
}
ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_customMem customMem)
{
if (!customMem.customAlloc ^ !customMem.customFree) return NULL;
{ ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_malloc(sizeof(ZSTD_DDict), customMem);
if (ddict == NULL) return NULL;
ddict->cMem = customMem;
{ size_t const initResult = ZSTD_initDDict_internal(ddict,
dict, dictSize,
dictLoadMethod, dictContentType);
if (ZSTD_isError(initResult)) {
ZSTD_freeDDict(ddict);
return NULL;
} }
return ddict;
}
}
/*! ZSTD_createDDict() :
* Create a digested dictionary, to start decompression without startup delay.
* `dict` content is copied inside DDict.
* Consequently, `dict` can be released after `ZSTD_DDict` creation */
ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator);
}
/*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, to start decompression without startup delay.
* Dictionary content is simply referenced, it will be accessed during decompression.
* Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */
ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator);
}
const ZSTD_DDict* ZSTD_initStaticDDict(
void* sBuffer, size_t sBufferSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
size_t const neededSpace = sizeof(ZSTD_DDict)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer;
assert(sBuffer != NULL);
assert(dict != NULL);
if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */
if (sBufferSize < neededSpace) return NULL;
if (dictLoadMethod == ZSTD_dlm_byCopy) {
memcpy(ddict+1, dict, dictSize); /* local copy */
dict = ddict+1;
}
if (ZSTD_isError( ZSTD_initDDict_internal(ddict,
dict, dictSize,
ZSTD_dlm_byRef, dictContentType) ))
return NULL;
return ddict;
}
size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = ddict->cMem;
ZSTD_free(ddict->dictBuffer, cMem);
ZSTD_free(ddict, cMem);
return 0;
}
}
/*! ZSTD_estimateDDictSize() :
* Estimate amount of memory that will be needed to create a dictionary for decompression.
* Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */
size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod)
{
return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
}
size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support sizeof on NULL */
return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ;
}
/*! ZSTD_getDictID_fromDict() :
* Provides the dictID stored within dictionary.
* if @return == 0, the dictionary is not conformant with Zstandard specification.
* It can still be loaded, but as a content-only dictionary. */
unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize)
{
if (dictSize < 8) return 0;
if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0;
return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE);
}
/*! ZSTD_getDictID_fromDDict() :
* Provides the dictID of the dictionary loaded into `ddict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0;
return ZSTD_getDictID_fromDict(ddict->dictContent, ddict->dictSize);
}
/*! ZSTD_getDictID_fromFrame() :
* Provides the dictID required to decompresse frame stored within `src`.
* If @return == 0, the dictID could not be decoded.
* This could for one of the following reasons :
* - The frame does not require a dictionary (most common case).
* - The frame was built with dictID intentionally removed.
* Needed dictionary is a hidden information.
* Note : this use case also happens when using a non-conformant dictionary.
* - `srcSize` is too small, and as a result, frame header could not be decoded.
* Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`.
* - This is not a Zstandard frame.
* When identifying the exact failure cause, it's possible to use
* ZSTD_getFrameHeader(), which will provide a more precise error code. */
unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize)
{
ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 };
size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize);
if (ZSTD_isError(hError)) return 0;
return zfp.dictID;
}
/*! ZSTD_decompress_usingDDict() :
* Decompression using a pre-digested Dictionary
* Use dictionary without significant overhead. */
size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const ZSTD_DDict* ddict)
{
/* pass content and size in case legacy frames are encountered */
return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize,
NULL, 0,
ddict);
}
/*=====================================
* Streaming decompression
*====================================*/
ZSTD_DStream* ZSTD_createDStream(void)
{
DEBUGLOG(3, "ZSTD_createDStream");
return ZSTD_createDStream_advanced(ZSTD_defaultCMem);
}
ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize)
{
return ZSTD_initStaticDCtx(workspace, workspaceSize);
}
ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem)
{
return ZSTD_createDCtx_advanced(customMem);
}
size_t ZSTD_freeDStream(ZSTD_DStream* zds)
{
return ZSTD_freeDCtx(zds);
}
/* *** Initialization *** */
size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; }
size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; }
size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
ZSTD_freeDDict(dctx->ddictLocal);
if (dict && dictSize >= 8) {
dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem);
if (dctx->ddictLocal == NULL) return ERROR(memory_allocation);
} else {
dctx->ddictLocal = NULL;
}
dctx->ddict = dctx->ddictLocal;
return 0;
}
size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto);
}
size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize)
{
return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto);
}
size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType)
{
return ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType);
}
size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize)
{
return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent);
}
/* ZSTD_initDStream_usingDict() :
* return : expected size, aka ZSTD_frameHeaderSize_prefix.
* this function cannot fail */
size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize)
{
DEBUGLOG(4, "ZSTD_initDStream_usingDict");
zds->streamStage = zdss_init;
zds->noForwardProgress = 0;
CHECK_F( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) );
return ZSTD_frameHeaderSize_prefix;
}
/* note : this variant can't fail */
size_t ZSTD_initDStream(ZSTD_DStream* zds)
{
DEBUGLOG(4, "ZSTD_initDStream");
return ZSTD_initDStream_usingDict(zds, NULL, 0);
}
/* ZSTD_initDStream_usingDDict() :
* ddict will just be referenced, and must outlive decompression session
* this function cannot fail */
size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict)
{
size_t const initResult = ZSTD_initDStream(dctx);
dctx->ddict = ddict;
return initResult;
}
/* ZSTD_resetDStream() :
* return : expected size, aka ZSTD_frameHeaderSize_prefix.
* this function cannot fail */
size_t ZSTD_resetDStream(ZSTD_DStream* dctx)
{
DEBUGLOG(4, "ZSTD_resetDStream");
dctx->streamStage = zdss_loadHeader;
dctx->lhSize = dctx->inPos = dctx->outStart = dctx->outEnd = 0;
dctx->legacyVersion = 0;
dctx->hostageByte = 0;
return ZSTD_frameHeaderSize_prefix;
}
size_t ZSTD_setDStreamParameter(ZSTD_DStream* dctx,
ZSTD_DStreamParameter_e paramType, unsigned paramValue)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
switch(paramType)
{
default : return ERROR(parameter_unsupported);
case DStream_p_maxWindowSize :
DEBUGLOG(4, "setting maxWindowSize = %u KB", paramValue >> 10);
dctx->maxWindowSize = paramValue ? paramValue : (U32)(-1);
break;
}
return 0;
}
size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
dctx->ddict = ddict;
return 0;
}
size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize)
{
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
dctx->maxWindowSize = maxWindowSize;
return 0;
}
size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format)
{
DEBUGLOG(4, "ZSTD_DCtx_setFormat : %u", (unsigned)format);
if (dctx->streamStage != zdss_init) return ERROR(stage_wrong);
dctx->format = format;
return 0;
}
size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx)
{
return ZSTD_sizeof_DCtx(dctx);
}
size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize)
{
size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
unsigned long long const neededRBSize = windowSize + blockSize + (WILDCOPY_OVERLENGTH * 2);
unsigned long long const neededSize = MIN(frameContentSize, neededRBSize);
size_t const minRBSize = (size_t) neededSize;
if ((unsigned long long)minRBSize != neededSize) return ERROR(frameParameter_windowTooLarge);
return minRBSize;
}
size_t ZSTD_estimateDStreamSize(size_t windowSize)
{
size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX);
size_t const inBuffSize = blockSize; /* no block can be larger */
size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN);
return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize;
}
size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize)
{
U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable */
ZSTD_frameHeader zfh;
size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize);
if (ZSTD_isError(err)) return err;
if (err>0) return ERROR(srcSize_wrong);
if (zfh.windowSize > windowSizeMax)
return ERROR(frameParameter_windowTooLarge);
return ZSTD_estimateDStreamSize((size_t)zfh.windowSize);
}
/* ***** Decompression ***** */
MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
memcpy(dst, src, length);
return length;
}
size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
const char* const istart = (const char*)(input->src) + input->pos;
const char* const iend = (const char*)(input->src) + input->size;
const char* ip = istart;
char* const ostart = (char*)(output->dst) + output->pos;
char* const oend = (char*)(output->dst) + output->size;
char* op = ostart;
U32 someMoreWork = 1;
DEBUGLOG(5, "ZSTD_decompressStream");
if (input->pos > input->size) { /* forbidden */
DEBUGLOG(5, "in: pos: %u vs size: %u",
(U32)input->pos, (U32)input->size);
return ERROR(srcSize_wrong);
}
if (output->pos > output->size) { /* forbidden */
DEBUGLOG(5, "out: pos: %u vs size: %u",
(U32)output->pos, (U32)output->size);
return ERROR(dstSize_tooSmall);
}
DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos));
while (someMoreWork) {
switch(zds->streamStage)
{
case zdss_init :
DEBUGLOG(5, "stage zdss_init => transparent reset ");
ZSTD_resetDStream(zds); /* transparent reset on starting decoding a new frame */
/* fall-through */
case zdss_loadHeader :
DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip));
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
if (zds->legacyVersion) {
/* legacy support is incompatible with static dctx */
if (zds->staticSize) return ERROR(memory_allocation);
{ size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, zds->legacyVersion, output, input);
if (hint==0) zds->streamStage = zdss_init;
return hint;
} }
#endif
{ size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format);
DEBUGLOG(5, "header size : %u", (U32)hSize);
if (ZSTD_isError(hSize)) {
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
U32 const legacyVersion = ZSTD_isLegacy(istart, iend-istart);
if (legacyVersion) {
const void* const dict = zds->ddict ? zds->ddict->dictContent : NULL;
size_t const dictSize = zds->ddict ? zds->ddict->dictSize : 0;
DEBUGLOG(5, "ZSTD_decompressStream: detected legacy version v0.%u", legacyVersion);
/* legacy support is incompatible with static dctx */
if (zds->staticSize) return ERROR(memory_allocation);
CHECK_F(ZSTD_initLegacyStream(&zds->legacyContext,
zds->previousLegacyVersion, legacyVersion,
dict, dictSize));
zds->legacyVersion = zds->previousLegacyVersion = legacyVersion;
{ size_t const hint = ZSTD_decompressLegacyStream(zds->legacyContext, legacyVersion, output, input);
if (hint==0) zds->streamStage = zdss_init; /* or stay in stage zdss_loadHeader */
return hint;
} }
#endif
return hSize; /* error */
}
if (hSize != 0) { /* need more input */
size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */
size_t const remainingInput = (size_t)(iend-ip);
assert(iend >= ip);
if (toLoad > remainingInput) { /* not enough input to load full header */
if (remainingInput > 0) {
memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput);
zds->lhSize += remainingInput;
}
input->pos = input->size;
return (MAX(ZSTD_frameHeaderSize_min, hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */
}
assert(ip != NULL);
memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad;
break;
} }
/* check for single-pass mode opportunity */
if (zds->fParams.frameContentSize && zds->fParams.windowSize /* skippable frame if == 0 */
&& (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) {
size_t const cSize = ZSTD_findFrameCompressedSize(istart, iend-istart);
if (cSize <= (size_t)(iend-istart)) {
/* shortcut : using single-pass mode */
size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, oend-op, istart, cSize, zds->ddict);
if (ZSTD_isError(decompressedSize)) return decompressedSize;
DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()")
ip = istart + cSize;
op += decompressedSize;
zds->expected = 0;
zds->streamStage = zdss_init;
someMoreWork = 0;
break;
} }
/* Consume header (see ZSTDds_decodeFrameHeader) */
DEBUGLOG(4, "Consume header");
CHECK_F(ZSTD_decompressBegin_usingDDict(zds, zds->ddict));
if ((MEM_readLE32(zds->headerBuffer) & 0xFFFFFFF0U) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */
zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE);
zds->stage = ZSTDds_skipFrame;
} else {
CHECK_F(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize));
zds->expected = ZSTD_blockHeaderSize;
zds->stage = ZSTDds_decodeBlockHeader;
}
/* control buffer memory usage */
DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)",
(U32)(zds->fParams.windowSize >>10),
(U32)(zds->maxWindowSize >> 10) );
zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN);
if (zds->fParams.windowSize > zds->maxWindowSize) return ERROR(frameParameter_windowTooLarge);
/* Adapt buffer sizes to frame header instructions */
{ size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */);
size_t const neededOutBuffSize = ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize);
if ((zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize)) {
size_t const bufferSize = neededInBuffSize + neededOutBuffSize;
DEBUGLOG(4, "inBuff : from %u to %u",
(U32)zds->inBuffSize, (U32)neededInBuffSize);
DEBUGLOG(4, "outBuff : from %u to %u",
(U32)zds->outBuffSize, (U32)neededOutBuffSize);
if (zds->staticSize) { /* static DCtx */
DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize);
assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */
if (bufferSize > zds->staticSize - sizeof(ZSTD_DCtx))
return ERROR(memory_allocation);
} else {
ZSTD_free(zds->inBuff, zds->customMem);
zds->inBuffSize = 0;
zds->outBuffSize = 0;
zds->inBuff = (char*)ZSTD_malloc(bufferSize, zds->customMem);
if (zds->inBuff == NULL) return ERROR(memory_allocation);
}
zds->inBuffSize = neededInBuffSize;
zds->outBuff = zds->inBuff + zds->inBuffSize;
zds->outBuffSize = neededOutBuffSize;
} }
zds->streamStage = zdss_read;
/* fall-through */
case zdss_read:
DEBUGLOG(5, "stage zdss_read");
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);
DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize);
if (neededInSize==0) { /* end of frame */
zds->streamStage = zdss_init;
someMoreWork = 0;
break;
}
if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */
int const isSkipFrame = ZSTD_isSkipFrame(zds);
size_t const decodedSize = ZSTD_decompressContinue(zds,
zds->outBuff + zds->outStart, (isSkipFrame ? 0 : zds->outBuffSize - zds->outStart),
ip, neededInSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
ip += neededInSize;
if (!decodedSize && !isSkipFrame) break; /* this was just a header */
zds->outEnd = zds->outStart + decodedSize;
zds->streamStage = zdss_flush;
break;
} }
if (ip==iend) { someMoreWork = 0; break; } /* no more input */
zds->streamStage = zdss_load;
/* fall-through */
case zdss_load:
{ size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds);
size_t const toLoad = neededInSize - zds->inPos;
int const isSkipFrame = ZSTD_isSkipFrame(zds);
size_t loadedSize;
if (isSkipFrame) {
loadedSize = MIN(toLoad, (size_t)(iend-ip));
} else {
if (toLoad > zds->inBuffSize - zds->inPos) return ERROR(corruption_detected); /* should never happen */
loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, iend-ip);
}
ip += loadedSize;
zds->inPos += loadedSize;
if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */
/* decode loaded input */
{ size_t const decodedSize = ZSTD_decompressContinue(zds,
zds->outBuff + zds->outStart, zds->outBuffSize - zds->outStart,
zds->inBuff, neededInSize);
if (ZSTD_isError(decodedSize)) return decodedSize;
zds->inPos = 0; /* input is consumed */
if (!decodedSize && !isSkipFrame) { zds->streamStage = zdss_read; break; } /* this was just a header */
zds->outEnd = zds->outStart + decodedSize;
} }
zds->streamStage = zdss_flush;
/* fall-through */
case zdss_flush:
{ size_t const toFlushSize = zds->outEnd - zds->outStart;
size_t const flushedSize = ZSTD_limitCopy(op, oend-op, zds->outBuff + zds->outStart, toFlushSize);
op += flushedSize;
zds->outStart += flushedSize;
if (flushedSize == toFlushSize) { /* flush completed */
zds->streamStage = zdss_read;
if ( (zds->outBuffSize < zds->fParams.frameContentSize)
&& (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) {
DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)",
(int)(zds->outBuffSize - zds->outStart),
(U32)zds->fParams.blockSizeMax);
zds->outStart = zds->outEnd = 0;
}
break;
} }
/* cannot complete flush */
someMoreWork = 0;
break;
default: return ERROR(GENERIC); /* impossible */
} }
/* result */
input->pos = (size_t)(ip - (const char*)(input->src));
output->pos = (size_t)(op - (char*)(output->dst));
if ((ip==istart) && (op==ostart)) { /* no forward progress */
zds->noForwardProgress ++;
if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) {
if (op==oend) return ERROR(dstSize_tooSmall);
if (ip==iend) return ERROR(srcSize_wrong);
assert(0);
}
} else {
zds->noForwardProgress = 0;
}
{ size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds);
if (!nextSrcSizeHint) { /* frame fully decoded */
if (zds->outEnd == zds->outStart) { /* output fully flushed */
if (zds->hostageByte) {
if (input->pos >= input->size) {
/* can't release hostage (not present) */
zds->streamStage = zdss_read;
return 1;
}
input->pos++; /* release hostage */
} /* zds->hostageByte */
return 0;
} /* zds->outEnd == zds->outStart */
if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */
input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */
zds->hostageByte=1;
}
return 1;
} /* nextSrcSizeHint==0 */
nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */
assert(zds->inPos <= nextSrcSizeHint);
nextSrcSizeHint -= zds->inPos; /* part already loaded*/
return nextSrcSizeHint;
}
}
size_t ZSTD_decompress_generic(ZSTD_DCtx* dctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
return ZSTD_decompressStream(dctx, output, input);
}
size_t ZSTD_decompress_generic_simpleArgs (
ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity, size_t* dstPos,
const void* src, size_t srcSize, size_t* srcPos)
{
ZSTD_outBuffer output = { dst, dstCapacity, *dstPos };
ZSTD_inBuffer input = { src, srcSize, *srcPos };
/* ZSTD_compress_generic() will check validity of dstPos and srcPos */
size_t const cErr = ZSTD_decompress_generic(dctx, &output, &input);
*dstPos = output.pos;
*srcPos = input.pos;
return cErr;
}
void ZSTD_DCtx_reset(ZSTD_DCtx* dctx)
{
(void)ZSTD_initDStream(dctx);
dctx->format = ZSTD_f_zstd1;
dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT;
}