// Code generated by ent, DO NOT EDIT. package group import ( "time" "entgo.io/ent/dialect/sql" "entgo.io/ent/dialect/sql/sqlgraph" "github.com/google/uuid" "github.com/hay-kot/content/backend/ent/predicate" ) // ID filters vertices based on their ID field. func ID(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDEQ applies the EQ predicate on the ID field. func IDEQ(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDNEQ applies the NEQ predicate on the ID field. func IDNEQ(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldID), id)) }) } // IDIn applies the In predicate on the ID field. func IDIn(ids ...uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.In(s.C(FieldID), v...)) }) } // IDNotIn applies the NotIn predicate on the ID field. func IDNotIn(ids ...uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.NotIn(s.C(FieldID), v...)) }) } // IDGT applies the GT predicate on the ID field. func IDGT(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldID), id)) }) } // IDGTE applies the GTE predicate on the ID field. func IDGTE(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldID), id)) }) } // IDLT applies the LT predicate on the ID field. func IDLT(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldID), id)) }) } // IDLTE applies the LTE predicate on the ID field. func IDLTE(id uuid.UUID) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldID), id)) }) } // CreatedAt applies equality check predicate on the "created_at" field. It's identical to CreatedAtEQ. func CreatedAt(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldCreatedAt), v)) }) } // UpdatedAt applies equality check predicate on the "updated_at" field. It's identical to UpdatedAtEQ. func UpdatedAt(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldUpdatedAt), v)) }) } // Name applies equality check predicate on the "name" field. It's identical to NameEQ. func Name(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldName), v)) }) } // CreatedAtEQ applies the EQ predicate on the "created_at" field. func CreatedAtEQ(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldCreatedAt), v)) }) } // CreatedAtNEQ applies the NEQ predicate on the "created_at" field. func CreatedAtNEQ(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldCreatedAt), v)) }) } // CreatedAtIn applies the In predicate on the "created_at" field. func CreatedAtIn(vs ...time.Time) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldCreatedAt), v...)) }) } // CreatedAtNotIn applies the NotIn predicate on the "created_at" field. func CreatedAtNotIn(vs ...time.Time) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldCreatedAt), v...)) }) } // CreatedAtGT applies the GT predicate on the "created_at" field. func CreatedAtGT(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldCreatedAt), v)) }) } // CreatedAtGTE applies the GTE predicate on the "created_at" field. func CreatedAtGTE(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldCreatedAt), v)) }) } // CreatedAtLT applies the LT predicate on the "created_at" field. func CreatedAtLT(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldCreatedAt), v)) }) } // CreatedAtLTE applies the LTE predicate on the "created_at" field. func CreatedAtLTE(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldCreatedAt), v)) }) } // UpdatedAtEQ applies the EQ predicate on the "updated_at" field. func UpdatedAtEQ(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtNEQ applies the NEQ predicate on the "updated_at" field. func UpdatedAtNEQ(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtIn applies the In predicate on the "updated_at" field. func UpdatedAtIn(vs ...time.Time) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldUpdatedAt), v...)) }) } // UpdatedAtNotIn applies the NotIn predicate on the "updated_at" field. func UpdatedAtNotIn(vs ...time.Time) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldUpdatedAt), v...)) }) } // UpdatedAtGT applies the GT predicate on the "updated_at" field. func UpdatedAtGT(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtGTE applies the GTE predicate on the "updated_at" field. func UpdatedAtGTE(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtLT applies the LT predicate on the "updated_at" field. func UpdatedAtLT(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtLTE applies the LTE predicate on the "updated_at" field. func UpdatedAtLTE(v time.Time) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldUpdatedAt), v)) }) } // NameEQ applies the EQ predicate on the "name" field. func NameEQ(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldName), v)) }) } // NameNEQ applies the NEQ predicate on the "name" field. func NameNEQ(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldName), v)) }) } // NameIn applies the In predicate on the "name" field. func NameIn(vs ...string) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldName), v...)) }) } // NameNotIn applies the NotIn predicate on the "name" field. func NameNotIn(vs ...string) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldName), v...)) }) } // NameGT applies the GT predicate on the "name" field. func NameGT(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldName), v)) }) } // NameGTE applies the GTE predicate on the "name" field. func NameGTE(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldName), v)) }) } // NameLT applies the LT predicate on the "name" field. func NameLT(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldName), v)) }) } // NameLTE applies the LTE predicate on the "name" field. func NameLTE(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldName), v)) }) } // NameContains applies the Contains predicate on the "name" field. func NameContains(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.Contains(s.C(FieldName), v)) }) } // NameHasPrefix applies the HasPrefix predicate on the "name" field. func NameHasPrefix(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.HasPrefix(s.C(FieldName), v)) }) } // NameHasSuffix applies the HasSuffix predicate on the "name" field. func NameHasSuffix(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.HasSuffix(s.C(FieldName), v)) }) } // NameEqualFold applies the EqualFold predicate on the "name" field. func NameEqualFold(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EqualFold(s.C(FieldName), v)) }) } // NameContainsFold applies the ContainsFold predicate on the "name" field. func NameContainsFold(v string) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.ContainsFold(s.C(FieldName), v)) }) } // CurrencyEQ applies the EQ predicate on the "currency" field. func CurrencyEQ(v Currency) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldCurrency), v)) }) } // CurrencyNEQ applies the NEQ predicate on the "currency" field. func CurrencyNEQ(v Currency) predicate.Group { return predicate.Group(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldCurrency), v)) }) } // CurrencyIn applies the In predicate on the "currency" field. func CurrencyIn(vs ...Currency) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldCurrency), v...)) }) } // CurrencyNotIn applies the NotIn predicate on the "currency" field. func CurrencyNotIn(vs ...Currency) predicate.Group { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Group(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldCurrency), v...)) }) } // HasUsers applies the HasEdge predicate on the "users" edge. func HasUsers() predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(UsersTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, UsersTable, UsersColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasUsersWith applies the HasEdge predicate on the "users" edge with a given conditions (other predicates). func HasUsersWith(preds ...predicate.User) predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(UsersInverseTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, UsersTable, UsersColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // HasLocations applies the HasEdge predicate on the "locations" edge. func HasLocations() predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(LocationsTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, LocationsTable, LocationsColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasLocationsWith applies the HasEdge predicate on the "locations" edge with a given conditions (other predicates). func HasLocationsWith(preds ...predicate.Location) predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(LocationsInverseTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, LocationsTable, LocationsColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // HasItems applies the HasEdge predicate on the "items" edge. func HasItems() predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(ItemsTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, ItemsTable, ItemsColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasItemsWith applies the HasEdge predicate on the "items" edge with a given conditions (other predicates). func HasItemsWith(preds ...predicate.Item) predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(ItemsInverseTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, ItemsTable, ItemsColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // HasLabels applies the HasEdge predicate on the "labels" edge. func HasLabels() predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(LabelsTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, LabelsTable, LabelsColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasLabelsWith applies the HasEdge predicate on the "labels" edge with a given conditions (other predicates). func HasLabelsWith(preds ...predicate.Label) predicate.Group { return predicate.Group(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(LabelsInverseTable, FieldID), sqlgraph.Edge(sqlgraph.O2M, false, LabelsTable, LabelsColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // And groups predicates with the AND operator between them. func And(predicates ...predicate.Group) predicate.Group { return predicate.Group(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for _, p := range predicates { p(s1) } s.Where(s1.P()) }) } // Or groups predicates with the OR operator between them. func Or(predicates ...predicate.Group) predicate.Group { return predicate.Group(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for i, p := range predicates { if i > 0 { s1.Or() } p(s1) } s.Where(s1.P()) }) } // Not applies the not operator on the given predicate. func Not(p predicate.Group) predicate.Group { return predicate.Group(func(s *sql.Selector) { p(s.Not()) }) }