// Code generated by ent, DO NOT EDIT. package attachment import ( "time" "entgo.io/ent/dialect/sql" "entgo.io/ent/dialect/sql/sqlgraph" "github.com/google/uuid" "github.com/hay-kot/content/backend/ent/predicate" ) // ID filters vertices based on their ID field. func ID(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDEQ applies the EQ predicate on the ID field. func IDEQ(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldID), id)) }) } // IDNEQ applies the NEQ predicate on the ID field. func IDNEQ(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldID), id)) }) } // IDIn applies the In predicate on the ID field. func IDIn(ids ...uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.In(s.C(FieldID), v...)) }) } // IDNotIn applies the NotIn predicate on the ID field. func IDNotIn(ids ...uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { v := make([]interface{}, len(ids)) for i := range v { v[i] = ids[i] } s.Where(sql.NotIn(s.C(FieldID), v...)) }) } // IDGT applies the GT predicate on the ID field. func IDGT(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldID), id)) }) } // IDGTE applies the GTE predicate on the ID field. func IDGTE(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldID), id)) }) } // IDLT applies the LT predicate on the ID field. func IDLT(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldID), id)) }) } // IDLTE applies the LTE predicate on the ID field. func IDLTE(id uuid.UUID) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldID), id)) }) } // CreatedAt applies equality check predicate on the "created_at" field. It's identical to CreatedAtEQ. func CreatedAt(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldCreatedAt), v)) }) } // UpdatedAt applies equality check predicate on the "updated_at" field. It's identical to UpdatedAtEQ. func UpdatedAt(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldUpdatedAt), v)) }) } // CreatedAtEQ applies the EQ predicate on the "created_at" field. func CreatedAtEQ(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldCreatedAt), v)) }) } // CreatedAtNEQ applies the NEQ predicate on the "created_at" field. func CreatedAtNEQ(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldCreatedAt), v)) }) } // CreatedAtIn applies the In predicate on the "created_at" field. func CreatedAtIn(vs ...time.Time) predicate.Attachment { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldCreatedAt), v...)) }) } // CreatedAtNotIn applies the NotIn predicate on the "created_at" field. func CreatedAtNotIn(vs ...time.Time) predicate.Attachment { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldCreatedAt), v...)) }) } // CreatedAtGT applies the GT predicate on the "created_at" field. func CreatedAtGT(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldCreatedAt), v)) }) } // CreatedAtGTE applies the GTE predicate on the "created_at" field. func CreatedAtGTE(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldCreatedAt), v)) }) } // CreatedAtLT applies the LT predicate on the "created_at" field. func CreatedAtLT(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldCreatedAt), v)) }) } // CreatedAtLTE applies the LTE predicate on the "created_at" field. func CreatedAtLTE(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldCreatedAt), v)) }) } // UpdatedAtEQ applies the EQ predicate on the "updated_at" field. func UpdatedAtEQ(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtNEQ applies the NEQ predicate on the "updated_at" field. func UpdatedAtNEQ(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtIn applies the In predicate on the "updated_at" field. func UpdatedAtIn(vs ...time.Time) predicate.Attachment { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldUpdatedAt), v...)) }) } // UpdatedAtNotIn applies the NotIn predicate on the "updated_at" field. func UpdatedAtNotIn(vs ...time.Time) predicate.Attachment { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldUpdatedAt), v...)) }) } // UpdatedAtGT applies the GT predicate on the "updated_at" field. func UpdatedAtGT(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.GT(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtGTE applies the GTE predicate on the "updated_at" field. func UpdatedAtGTE(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.GTE(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtLT applies the LT predicate on the "updated_at" field. func UpdatedAtLT(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.LT(s.C(FieldUpdatedAt), v)) }) } // UpdatedAtLTE applies the LTE predicate on the "updated_at" field. func UpdatedAtLTE(v time.Time) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.LTE(s.C(FieldUpdatedAt), v)) }) } // TypeEQ applies the EQ predicate on the "type" field. func TypeEQ(v Type) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.EQ(s.C(FieldType), v)) }) } // TypeNEQ applies the NEQ predicate on the "type" field. func TypeNEQ(v Type) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NEQ(s.C(FieldType), v)) }) } // TypeIn applies the In predicate on the "type" field. func TypeIn(vs ...Type) predicate.Attachment { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.In(s.C(FieldType), v...)) }) } // TypeNotIn applies the NotIn predicate on the "type" field. func TypeNotIn(vs ...Type) predicate.Attachment { v := make([]interface{}, len(vs)) for i := range v { v[i] = vs[i] } return predicate.Attachment(func(s *sql.Selector) { s.Where(sql.NotIn(s.C(FieldType), v...)) }) } // HasItem applies the HasEdge predicate on the "item" edge. func HasItem() predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(ItemTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, ItemTable, ItemColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasItemWith applies the HasEdge predicate on the "item" edge with a given conditions (other predicates). func HasItemWith(preds ...predicate.Item) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(ItemInverseTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, ItemTable, ItemColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // HasDocument applies the HasEdge predicate on the "document" edge. func HasDocument() predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(DocumentTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, DocumentTable, DocumentColumn), ) sqlgraph.HasNeighbors(s, step) }) } // HasDocumentWith applies the HasEdge predicate on the "document" edge with a given conditions (other predicates). func HasDocumentWith(preds ...predicate.Document) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { step := sqlgraph.NewStep( sqlgraph.From(Table, FieldID), sqlgraph.To(DocumentInverseTable, FieldID), sqlgraph.Edge(sqlgraph.M2O, true, DocumentTable, DocumentColumn), ) sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) { for _, p := range preds { p(s) } }) }) } // And groups predicates with the AND operator between them. func And(predicates ...predicate.Attachment) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for _, p := range predicates { p(s1) } s.Where(s1.P()) }) } // Or groups predicates with the OR operator between them. func Or(predicates ...predicate.Attachment) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { s1 := s.Clone().SetP(nil) for i, p := range predicates { if i > 0 { s1.Or() } p(s1) } s.Where(s1.P()) }) } // Not applies the not operator on the given predicate. func Not(p predicate.Attachment) predicate.Attachment { return predicate.Attachment(func(s *sql.Selector) { p(s.Not()) }) }