add clang format file and reformating

This commit is contained in:
hongruichen 2024-07-04 22:18:45 +08:00
parent 38f88d5fb1
commit 000240cf62
12 changed files with 1514 additions and 1809 deletions

View file

@ -1,41 +1,48 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_QNN_MAX_DEVICES 3
enum QNNBackend {
QNN_BACKEND_CPU,
QNN_BACKEND_GPU,
QNN_BACKEND_NPU,
QNN_BACKEND_GGML, //"fake" QNN backend, used for compare performance between QNN and original GGML
QNN_BACKEND_GGML, //"fake" QNN backend, used for compare performance between
// QNN and original GGML
};
GGML_API int ggml_backend_qnn_reg_devices(void);
/**
*
* @param device 0: QNN_BACKEND_CPU 1: QNN_BACKEND_GPU 2: QNN_BACKEND_NPU
* @param qnn_lib_path qnn library path, such as "/data/local/tmp/" on Android or specified in JNI layer
* @param device 0: QNN_BACKEND_CPU 1: QNN_BACKEND_GPU 2:
* QNN_BACKEND_NPU
* @param qnn_lib_path qnn library path, such as "/data/local/tmp/" on
* Android or specified in JNI layer
* @return
*/
GGML_API ggml_backend_t ggml_backend_qnn_init(size_t dev_num, const char * qnn_lib_path);
GGML_API ggml_backend_t ggml_backend_qnn_init(size_t dev_num,
const char* qnn_lib_path);
GGML_API bool ggml_backend_is_qnn(ggml_backend_t backend);
GGML_API void ggml_backend_qnn_set_n_threads(ggml_backend_t backend, int thread_counts);
GGML_API void ggml_backend_qnn_set_n_threads(ggml_backend_t backend,
int thread_counts);
GGML_API int ggml_backend_qnn_get_device_count(void);
GGML_API void ggml_backend_qnn_get_device_description(size_t dev_num, char * description, size_t description_size);
GGML_API void ggml_backend_qnn_get_device_description(size_t dev_num,
char* description,
size_t description_size);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_qnn_buffer_type(size_t dev_num);
GGML_API GGML_CALL ggml_backend_buffer_type_t
ggml_backend_qnn_buffer_type(size_t dev_num);
#ifdef __cplusplus
}

View file

@ -0,0 +1,31 @@
---
BasedOnStyle: Google
IndentWidth: 4
AccessModifierOffset: -4
AlignAfterOpenBracket: Align
AlignOperands: true
AlignTrailingComments: true
BinPackArguments: true
BinPackParameters: true
BreakBeforeBraces: Custom
BreakConstructorInitializers: AfterColon
ColumnLimit: 120
Cpp11BracedListStyle: false
DerivePointerAlignment: false
IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 1
- Regex: '^<.*'
Priority: 2
- Regex: '^"ggml\.h"'
Priority: 3
- Regex: '^"ggml-.+\.h"'
Priority: 4
- Regex: '.*'
Priority: 5
KeepEmptyLinesAtTheStartOfBlocks: true
MaxEmptyLinesToKeep: 1
PointerAlignment: Right
SortIncludes: true
SpacesBeforeTrailingComments: 1
UseTab: Never

View file

@ -1,22 +1,21 @@
#include "backend-ops.hpp"
#include "utils.hpp"
#include "logger.hpp"
#include "tensor.hpp"
#include "utils.hpp"
static bool qnn_is_valid_params(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
static bool qnn_is_valid_params(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
if (!ctx || !src0 || !src1 || !dst) {
QNN_LOG_WARN("invalid params\n");
return false;
}
auto* instance = ctx->instance;
auto* tensor0 = src0->extra;
auto* tensor1 = src1->extra;
auto* tensor2 = dst->extra;
auto *instance = ctx->instance;
auto *tensor0 = src0->extra;
auto *tensor1 = src1->extra;
auto *tensor2 = dst->extra;
if (!instance || !tensor0 || !tensor1 || !tensor2) {
QNN_LOG_WARN("invalid tensors\n");
return false;
@ -37,13 +36,13 @@ static bool qnn_is_valid_params(ggml_backend_qnn_context* ctx, const ggml_tensor
#define CHECK_PARAMS(ctx, src0, src1, dst)
#endif
//TODO: this function can be removed later because there are duplicated codes with ggml_qnn_mul_mat
// TODO: this function can be removed later because there are duplicated codes with ggml_qnn_mul_mat
// keep it for illustrate how to implement a specified GGMPL OP using QNN API + QNN RPC
static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
static void ggml_qnn_add(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
bool graph_initialized = false;
qnn::qnn_instance* instance = nullptr;
qnn::qnn_instance *instance = nullptr;
std::string graph_name = "ggml_op_qnn_add";
Qnn_GraphHandle_t graph_handle = nullptr;
Qnn_Param_t qnn_params[] = {};
@ -57,16 +56,14 @@ static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
perf.start();
std::string map_entry(ggml_op_name(ggmlop));
if (instance->_qnn_graph_map.find(map_entry) !=
instance->_qnn_graph_map.end()) {
if (instance->_qnn_graph_map.find(map_entry) != instance->_qnn_graph_map.end()) {
graph_initialized = true;
auto& graph_item = instance->_qnn_graph_map[map_entry];
auto &graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
}
if (!graph_initialized) {
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
"_" + src0->name + "_" + src1->name;
graph_name = graph_name + "_" + std::to_string(ctx->threads) + "_" + src0->name + "_" + src1->name;
QNN_LOG_INFO("graph name %s", graph_name.c_str());
if (ctx->device == QNN_BACKEND_NPU) {
QnnHtpGraph_CustomConfig_t hvx_config;
@ -98,28 +95,22 @@ static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
graph_vtcm_config.customConfig = &vtcm_config;
const QnnGraph_Config_t* p_graphconfig[] = { &graph_hvx_config,
&graph_dlbc_config,
&graph_vtcm_config,
&graph_opt_config,
NULL };
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
const QnnGraph_Config_t *p_graphconfig[] = { &graph_hvx_config, &graph_dlbc_config, &graph_vtcm_config,
&graph_opt_config, NULL };
error = qnn_raw_interface.graphCreate(instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
&graph_handle);
}
else {
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
} else {
error = qnn_raw_interface.graphCreate(instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
&graph_handle);
}
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
QNN_LOG_INFO(
"can't create qnn graph handle with graph name %s, "
"error = %d\n",
graph_name.c_str(), error);
goto failure;
}
else {
} else {
QNN_LOG_INFO("create qnn graph handle with graph name %s ok\n", graph_name.c_str());
}
@ -139,30 +130,20 @@ static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
Qnn_OpConfig_t op_config = {
(Qnn_OpConfigVersion_t)1,
.v1 = {"ggml_op_add",
QNN_OP_PACKAGE_NAME_QTI_AISW,
QNN_OP_ELEMENT_WISE_ADD,
0, qnn_params,
2, tensor_inputs,
1,tensor_outputs}
};
Qnn_OpConfig_t op_config = { (Qnn_OpConfigVersion_t)1,
.v1 = { "ggml_op_add", QNN_OP_PACKAGE_NAME_QTI_AISW, QNN_OP_ELEMENT_WISE_ADD, 0,
qnn_params, 2, tensor_inputs, 1, tensor_outputs } };
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphFinalize(graph_handle,
nullptr, nullptr);
error = qnn_raw_interface.graphFinalize(graph_handle, nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
error = qnn_raw_interface.graphExecute(graph_handle, tensor_inputs, 2, tensor_outputs, 1, nullptr, nullptr);
if (ctx->device == QNN_BACKEND_NPU) {
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
@ -173,24 +154,18 @@ static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
goto failure;
}
auto graph_item = std::make_tuple(graph_handle,
tensor_input0.get_qnn_tensor(),
tensor_input1.get_qnn_tensor(),
auto graph_item = std::make_tuple(graph_handle, tensor_input0.get_qnn_tensor(), tensor_input1.get_qnn_tensor(),
tensor_output.get_qnn_tensor());
instance->_qnn_graph_map[map_entry] = graph_item;
}
else {
auto& graph_item = instance->_qnn_graph_map[map_entry];
} else {
auto &graph_item = instance->_qnn_graph_map[map_entry];
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
error = qnn_raw_interface.graphExecute(graph_handle, tensor_inputs, 2, tensor_outputs, 1, nullptr, nullptr);
if (ctx->device == QNN_BACKEND_NPU) {
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
@ -204,20 +179,17 @@ static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
failure:
if (QNN_SUCCESS != error) {
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type),
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type),
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type),
dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64
", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type), src0->ne[0], src0->ne[1], src0->ne[2],
src0->nb[0], src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64
", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type), src1->ne[0], src1->ne[1], src1->ne[2],
src1->nb[0], src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64
", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
dst->nb[1], dst->nb[2]);
}
@ -235,12 +207,11 @@ failure:
* mul_mat_f16_f32: src0 is F16 and src1 is F32.
* mul_mat_q_f32: src0 is quantized (Q4_0, Q4_1, ...), and src1 is F32.
*/
static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
static void ggml_qnn_mul_mat(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
bool graph_initialized = false;
qnn::qnn_instance* instance = nullptr;
qnn::qnn_instance *instance = nullptr;
std::string graph_name = "ggml_op_qnn_mul_mat";
Qnn_GraphHandle_t graph_handle = nullptr;
Qnn_Param_t qnn_params[] = {};
@ -254,21 +225,19 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
perf.start();
std::string map_entry = std::string(ggml_op_name(ggmlop));
if (instance->_qnn_graph_map.find(map_entry) !=
instance->_qnn_graph_map.end()) {
if (instance->_qnn_graph_map.find(map_entry) != instance->_qnn_graph_map.end()) {
graph_initialized = true;
auto& graph_item = instance->_qnn_graph_map[map_entry];
auto &graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
}
//TODO: for scenarios of quantized data in src0
// TODO: for scenarios of quantized data in src0
// pass-1: dequantize src0 to FP32
// pass-2: dq-src0 * src1
// the performance gains is worth although there is performance loss in pass-1
if (!graph_initialized) {
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
"_" + src0->name + "_" + src1->name;
graph_name = graph_name + "_" + std::to_string(ctx->threads) + "_" + src0->name + "_" + src1->name;
QNN_LOG_INFO("graph name %s", graph_name.c_str());
if (ctx->device == QNN_BACKEND_NPU) {
QnnHtpGraph_CustomConfig_t hvx_config;
@ -288,7 +257,7 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
QnnHtpGraph_CustomConfig_t opt_config;
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
opt_config.optimizationOption.floatValue = 1; //1 / 3
opt_config.optimizationOption.floatValue = 1; // 1 / 3
QnnGraph_Config_t graph_opt_config;
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
graph_opt_config.customConfig = &opt_config;
@ -300,22 +269,17 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
graph_vtcm_config.customConfig = &vtcm_config;
const QnnGraph_Config_t* p_graphconfig[] = { &graph_hvx_config,
&graph_dlbc_config,
&graph_vtcm_config,
&graph_opt_config,
NULL };
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
const QnnGraph_Config_t *p_graphconfig[] = { &graph_hvx_config, &graph_dlbc_config, &graph_vtcm_config,
&graph_opt_config, NULL };
error = qnn_raw_interface.graphCreate(instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
&graph_handle);
}
else {
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
} else {
error = qnn_raw_interface.graphCreate(instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
&graph_handle);
}
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
QNN_LOG_INFO(
"can't create qnn graph handle with graph name %s, "
"error = %d\n",
graph_name.c_str(), error);
goto failure;
@ -336,30 +300,20 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
Qnn_OpConfig_t op_config = {
(Qnn_OpConfigVersion_t)1,
.v1 = {"ggml_op_mul_mat",
QNN_OP_PACKAGE_NAME_QTI_AISW,
QNN_OP_MAT_MUL,
0, qnn_params,
2, tensor_inputs,
1, tensor_outputs}
};
Qnn_OpConfig_t op_config = { (Qnn_OpConfigVersion_t)1,
.v1 = { "ggml_op_mul_mat", QNN_OP_PACKAGE_NAME_QTI_AISW, QNN_OP_MAT_MUL, 0,
qnn_params, 2, tensor_inputs, 1, tensor_outputs } };
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphFinalize(graph_handle,
nullptr, nullptr);
error = qnn_raw_interface.graphFinalize(graph_handle, nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
error = qnn_raw_interface.graphExecute(graph_handle, tensor_inputs, 2, tensor_outputs, 1, nullptr, nullptr);
if (ctx->device == QNN_BACKEND_NPU) {
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
@ -370,24 +324,18 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
goto failure;
}
auto graph_item = std::make_tuple(graph_handle,
tensor_input0.get_qnn_tensor(),
tensor_input1.get_qnn_tensor(),
auto graph_item = std::make_tuple(graph_handle, tensor_input0.get_qnn_tensor(), tensor_input1.get_qnn_tensor(),
tensor_output.get_qnn_tensor());
instance->_qnn_graph_map[map_entry] = graph_item;
}
else {
auto& graph_item = instance->_qnn_graph_map[map_entry];
} else {
auto &graph_item = instance->_qnn_graph_map[map_entry];
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
error = qnn_raw_interface.graphExecute(graph_handle, tensor_inputs, 2, tensor_outputs, 1, nullptr, nullptr);
if (ctx->device == QNN_BACKEND_NPU) {
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
@ -401,181 +349,127 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
failure:
if (QNN_SUCCESS != error) {
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type),
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type),
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0],
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64
", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type), src0->ne[0], src0->ne[1], src0->ne[2],
src0->nb[0], src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64
", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type), src1->ne[0], src1->ne[1], src1->ne[2],
src1->nb[0], src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64
", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
dst->nb[1], dst->nb[2]);
}
perf.info();
}
static void ggml_qnn_repeat(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_repeat(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_get_rows(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_get_rows(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_acc(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_acc(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_div(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_div(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_gelu(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_gelu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_silu(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_silu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_tanh(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_tanh(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_relu(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_relu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_hardswish(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_hardswish(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_sqr(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_sqr(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_norm(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_norm(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_group_norm(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_group_norm(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_concat(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_concat(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_upscale(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_upscale(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_pad(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_pad(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_rms_norm(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_rms_norm(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_cpy(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_cpy(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_dup(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
static void ggml_qnn_dup(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
ggml_qnn_cpy(ctx, src0, dst, nullptr);
(void)src1;
}
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_scale(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_scale(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_clamp(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_clamp(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
}
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_soft_max(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_soft_max(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_rope(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
static void ggml_qnn_rope(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_pool2d(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_pool2d(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_im2col(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
}
static void ggml_qnn_im2col(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {}
static void ggml_qnn_sum_rows(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
static void ggml_qnn_sum_rows(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_argsort(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0, const ggml_tensor* src1,
ggml_tensor* dst) {
static void ggml_qnn_argsort(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_nop(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
static void ggml_qnn_nop(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
(void)src0;
(void)src1;
(void)dst;

View file

@ -1,17 +1,16 @@
#pragma once
#include "ggml.h"
#include "backend.hpp"
namespace qnn {
typedef void (*ggml_qnn_op_t)(ggml_backend_qnn_context* ctx,
const ggml_tensor* src0,
const ggml_tensor* src1,
ggml_tensor* dst);
typedef void (*ggml_qnn_op_t)(ggml_backend_qnn_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst);
typedef const ggml_qnn_op_t(&ggml_qnn_op_array_t)[GGML_OP_COUNT];
typedef const ggml_qnn_op_t (&ggml_qnn_op_array_t)[GGML_OP_COUNT];
ggml_qnn_op_array_t ggml_qnn_op_array();
ggml_qnn_op_array_t ggml_qnn_op_array();
}
} // namespace qnn

View file

@ -2,6 +2,7 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include "qnn.hpp"
@ -11,8 +12,8 @@ struct ggml_backend_qnn_context {
int threads;
char name[GGML_MAX_NAME];
char lib[GGML_MAX_NAME];
qnn::qnn_instance* instance;
ggml_backend* backend;
qnn::qnn_instance *instance;
ggml_backend *backend;
QNN_INTERFACE_VER_TYPE raw_interface;
QNN_SYSTEM_INTERFACE_VER_TYPE raw_system_interface;
qnn::qcom_socinfo socinfo;

View file

@ -2,6 +2,7 @@
#include "logger.hpp"
#include <stdio.h>
#include <mutex>
#if (defined __ANDROID__) || (defined ANDROID)
@ -10,9 +11,7 @@
#define QNN_LOGBUF_LEN 4096
void qnn::internal_log(ggml_log_level level, const char* file,
const char* func, int line,
const char* format, ...) {
void qnn::internal_log(ggml_log_level level, const char *file, const char *func, int line, const char *format, ...) {
static std::mutex qnn_internal_log_mutex;
static char s_qnn_internal_log_buf[QNN_LOGBUF_LEN];
@ -21,11 +20,8 @@ void qnn::internal_log(ggml_log_level level, const char* file,
va_list args;
va_start(args, format);
int len_prefix =
snprintf(s_qnn_internal_log_buf, QNN_LOGBUF_LEN,
"[%s, %d]: ", func, line);
int len = vsnprintf(s_qnn_internal_log_buf + len_prefix,
QNN_LOGBUF_LEN - len_prefix, format, args);
int len_prefix = snprintf(s_qnn_internal_log_buf, QNN_LOGBUF_LEN, "[%s, %d]: ", func, line);
int len = vsnprintf(s_qnn_internal_log_buf + len_prefix, QNN_LOGBUF_LEN - len_prefix, format, args);
if (len < (QNN_LOGBUF_LEN - len_prefix)) {
#if (defined __ANDROID__) || (defined ANDROID)
// for Android APK
@ -38,13 +34,12 @@ void qnn::internal_log(ggml_log_level level, const char* file,
}
}
void qnn::sdk_logcallback(const char* fmt, QnnLog_Level_t level,
uint64_t timestamp, va_list argp) {
void qnn::sdk_logcallback(const char *fmt, QnnLog_Level_t level, uint64_t timestamp, va_list argp) {
#if ENABLE_QNNSDK_LOG
static std::mutex log_mutex;
static unsigned char s_ggml_qnn_logbuf[QNN_LOGBUF_LEN];
const char* log_level_desc = "";
const char *log_level_desc = "";
switch (level) {
case QNN_LOG_LEVEL_ERROR:
log_level_desc = "ERROR";
@ -71,7 +66,7 @@ void qnn::sdk_logcallback(const char* fmt, QnnLog_Level_t level,
std::lock_guard<std::mutex> lock(log_mutex);
memset(s_ggml_qnn_logbuf, 0, QNN_LOGBUF_LEN);
vsnprintf(reinterpret_cast<char* const>(s_ggml_qnn_logbuf), QNN_LOGBUF_LEN, fmt, argp);
vsnprintf(reinterpret_cast<char *const>(s_ggml_qnn_logbuf), QNN_LOGBUF_LEN, fmt, argp);
QNN_LOG_INFO("%8.1fms [%-7s] %s\n", ms, log_level_desc, s_ggml_qnn_logbuf);
}
#endif

View file

@ -2,36 +2,29 @@
#include <stdint.h>
#include "QnnTypes.h"
#include "QnnCommon.h"
#include "QnnInterface.h"
#include "System/QnnSystemInterface.h"
#include "ggml.h"
#include "QnnCommon.h"
#include "QnnInterface.h"
#include "QnnTypes.h"
#include "System/QnnSystemInterface.h"
namespace qnn {
void internal_log(ggml_log_level level, const char* file,
const char* func, int line,
const char* format, ...);
void internal_log(ggml_log_level level, const char *file, const char *func, int line, const char *format, ...);
void sdk_logcallback(const char* fmt, QnnLog_Level_t level,
uint64_t timestamp, va_list argp);
}
void sdk_logcallback(const char *fmt, QnnLog_Level_t level, uint64_t timestamp, va_list argp);
} // namespace qnn
// =================================================================================================
//
// QNN backend internal log function
//
// =================================================================================================
#define QNN_LOG_ERROR(...) \
qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_ERROR(...) qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_WARN(...) \
qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_WARN(...) qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_INFO(...) \
qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_INFO(...) qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#ifdef NDEBUG
#define ENABLE_QNNBACKEND_DEBUG 0 // for troubleshooting QNN backend
@ -42,8 +35,7 @@ namespace qnn {
#endif
#if ENABLE_QNNBACKEND_DEBUG
#define QNN_LOG_DEBUG(...) \
qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_DEBUG(...) qnn::internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#else
#define QNN_LOG_DEBUG(...)
#endif

View file

@ -1,57 +1,53 @@
#pragma once
#include "QnnTypes.h"
#include "QnnCommon.h"
#include "QnnInterface.h"
#include "QnnTypes.h"
#include "Saver/QnnSaver.h"
#include "System/QnnSystemInterface.h"
namespace qnn {
// =================================================================================================
//
// helper data type / data structure / macros / functions of
// Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
// ref:https://github.com/pytorch/executorch/tree/main/backends/qualcomm
// =================================================================================================
enum sdk_profile_level {
profile_off = 0,
profile_basic = 1,
profile_detail = 2
};
// =================================================================================================
//
// helper data type / data structure / macros / functions of
// Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
// ref:https://github.com/pytorch/executorch/tree/main/backends/qualcomm
// =================================================================================================
enum sdk_profile_level { profile_off = 0, profile_basic = 1, profile_detail = 2 };
enum qcom_htp_arch {
enum qcom_htp_arch {
NONE = 0,
V68 = 68,
V69 = 69,
V73 = 73,
V75 = 75,
};
};
enum qcom_chipset {
enum qcom_chipset {
UNKNOWN_SM = 0,
SM8450 = 36, // v69
SM8475 = 42, // v69
SM8550 = 43, // v73
SM8650 = 57, // v75
};
};
struct qcom_socinfo {
struct qcom_socinfo {
uint32_t soc_model;
size_t htp_arch;
size_t vtcm_size_in_mb;
};
};
using pfn_rpc_mem_init = void (*)(void);
using pfn_rpc_mem_deinit = void (*)(void);
using pfn_rpc_mem_alloc = void* (*) (int, uint32_t, int);
using pfn_rpc_mem_free = void (*)(void*);
using pfn_rpc_mem_to_fd = int (*)(void*);
using pfn_rpc_mem_init = void (*)(void);
using pfn_rpc_mem_deinit = void (*)(void);
using pfn_rpc_mem_alloc = void *(*)(int, uint32_t, int);
using pfn_rpc_mem_free = void (*)(void *);
using pfn_rpc_mem_to_fd = int (*)(void *);
using pfn_qnnsaver_initialize = decltype(QnnSaver_initialize);
using pfn_qnninterface_getproviders = decltype(QnnInterface_getProviders);
using pfn_qnnsysteminterface_getproviders = decltype(QnnSystemInterface_getProviders);
}
using pfn_qnnsaver_initialize = decltype(QnnSaver_initialize);
using pfn_qnninterface_getproviders = decltype(QnnInterface_getProviders);
using pfn_qnnsysteminterface_getproviders = decltype(QnnSystemInterface_getProviders);
} // namespace qnn
#define QNN_VER_PTR(x) (&((x).v1)) // TODO: remove this macro after we have a separate header for QNN

File diff suppressed because it is too large Load diff

View file

@ -1,23 +1,21 @@
#pragma once
#include "ggml-qnn.h"
#include "QnnTensor.h"
#include "System/QnnSystemInterface.h"
#include "ggml-qnn.h"
#include "backend.hpp"
#include "qnn.hpp"
namespace qnn {
template <Qnn_TensorType_t _tensorType> class ggml_qnn_tensor_readwrite {
public:
ggml_qnn_tensor_readwrite(const ggml_tensor* tensor,
Qnn_GraphHandle_t graph_handle,
ggml_backend_qnn_context* ctx)
: _tensor(tensor),
_qnn_tensor(reinterpret_cast<Qnn_Tensor_t*>(tensor->extra)),
_context(ctx) {
template <Qnn_TensorType_t _tensorType>
class ggml_qnn_tensor_readwrite {
public:
explicit ggml_qnn_tensor_readwrite(const ggml_tensor *tensor, Qnn_GraphHandle_t graph_handle,
ggml_backend_qnn_context *ctx) :
_tensor(tensor), _qnn_tensor(reinterpret_cast<Qnn_Tensor_t *>(tensor->extra)), _context(ctx) {
_old_dimensions = QNN_VER_PTR(*_qnn_tensor)->dimensions;
const auto qnn_data_type = datatype_from_ggml_datatype(tensor->type);
const bool is_npu = ctx->device == QNN_BACKEND_NPU;
@ -27,12 +25,10 @@ namespace qnn {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = { .data = nullptr, .dataSize = 0 };
}
auto err =
ctx->raw_interface.tensorCreateGraphTensor(graph_handle, _qnn_tensor);
auto err = ctx->raw_interface.tensorCreateGraphTensor(graph_handle, _qnn_tensor);
if (err != QNN_SUCCESS) {
QNN_LOG_INFO("error = %d\n", err);
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor,
QNN_TENSOR_GET_NAME(*_qnn_tensor));
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor, QNN_TENSOR_GET_NAME(*_qnn_tensor));
_context = nullptr;
return;
}
@ -46,36 +42,30 @@ namespace qnn {
QNN_VER_PTR(*_qnn_tensor)->dataType = qnn_data_type;
if (is_npu) {
auto* instance = ctx->instance;
uint8_t* qnn_buffer = static_cast<uint8_t*>(
instance->alloc_rpcmem(ggml_nbytes(tensor), alignof(void*)));
auto *instance = ctx->instance;
uint8_t *qnn_buffer = static_cast<uint8_t *>(instance->alloc_rpcmem(ggml_nbytes(tensor), alignof(void *)));
if (!qnn_buffer) {
QNN_LOG_WARN("alloc rpcmem failure, %s\n", strerror(errno));
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor,
QNN_TENSOR_GET_NAME(*_qnn_tensor));
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor, QNN_TENSOR_GET_NAME(*_qnn_tensor));
_context = nullptr;
// No free for _qnn_tensor, because it's not registered.
return;
}
else {
} else {
QNN_LOG_INFO("alloc rpcmem successfully\n");
}
instance->register_rpcmem(qnn_buffer, _qnn_tensor);
if (_tensorType == QNN_TENSOR_TYPE_APP_WRITE ||
_tensorType == QNN_TENSOR_TYPE_APP_READWRITE) {
if (_tensorType == QNN_TENSOR_TYPE_APP_WRITE || _tensorType == QNN_TENSOR_TYPE_APP_READWRITE) {
memcpy(qnn_buffer, tensor->data, ggml_nbytes(tensor));
}
}
else {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = {
tensor->data, get_ggml_tensor_data_size(tensor) };
} else {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = { tensor->data, get_ggml_tensor_data_size(tensor) };
}
}
ggml_qnn_tensor_readwrite(const ggml_tensor* tensor, Qnn_Tensor_t* qnn_tensor,
ggml_backend_qnn_context* ctx)
: _tensor(tensor), _qnn_tensor(qnn_tensor), _context(ctx) {
explicit ggml_qnn_tensor_readwrite(const ggml_tensor *tensor, Qnn_Tensor_t *qnn_tensor,
ggml_backend_qnn_context *ctx) :
_tensor(tensor), _qnn_tensor(qnn_tensor), _context(ctx) {
_old_dimensions = QNN_VER_PTR(*_qnn_tensor)->dimensions;
const auto qnn_data_type = qnn::datatype_from_ggml_datatype(tensor->type);
const bool is_npu = ctx->device == QNN_BACKEND_NPU;
@ -89,33 +79,26 @@ namespace qnn {
QNN_VER_PTR(*_qnn_tensor)->dataType = qnn_data_type;
if (is_npu) {
uint8_t* qnn_buffer =
static_cast<uint8_t*>(ctx->instance->get_rpcmem_from_memhandle(
QNN_VER_PTR(*_qnn_tensor)->memHandle));
uint8_t *qnn_buffer =
static_cast<uint8_t *>(ctx->instance->get_rpcmem_from_memhandle(QNN_VER_PTR(*_qnn_tensor)->memHandle));
if (qnn_buffer) {
memcpy(qnn_buffer, tensor->data, ggml_nbytes(tensor));
}
else {
} else {
QNN_LOG_WARN("can't find rpcmem from qnn mem handle\n");
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor,
QNN_TENSOR_GET_NAME(*_qnn_tensor));
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor, QNN_TENSOR_GET_NAME(*_qnn_tensor));
_context = nullptr;
return;
}
}
else {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = {
tensor->data, get_ggml_tensor_data_size(tensor) };
} else {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = { tensor->data, get_ggml_tensor_data_size(tensor) };
}
}
~ggml_qnn_tensor_readwrite() {
if ((_tensorType == QNN_TENSOR_TYPE_APP_READWRITE ||
_tensorType == QNN_TENSOR_TYPE_APP_READ) &&
_context && _context->device == QNN_BACKEND_NPU) {
uint8_t* qnn_buffer =
static_cast<uint8_t*>(_context->instance->get_rpcmem_from_memhandle(
QNN_VER_PTR(*_qnn_tensor)->memHandle));
if ((_tensorType == QNN_TENSOR_TYPE_APP_READWRITE || _tensorType == QNN_TENSOR_TYPE_APP_READ) && _context &&
_context->device == QNN_BACKEND_NPU) {
uint8_t *qnn_buffer = static_cast<uint8_t *>(
_context->instance->get_rpcmem_from_memhandle(QNN_VER_PTR(*_qnn_tensor)->memHandle));
memcpy(_tensor->data, qnn_buffer, ggml_nbytes(_tensor));
}
@ -123,24 +106,22 @@ namespace qnn {
}
bool is_valid() const { return _context; }
Qnn_Tensor_t* get_qnn_tensor() const { return _qnn_tensor; }
Qnn_Tensor_t *get_qnn_tensor() const { return _qnn_tensor; }
private:
const ggml_tensor* _tensor;
Qnn_Tensor_t* _qnn_tensor;
ggml_backend_qnn_context* _context;
uint32_t* _old_dimensions;
private:
const ggml_tensor *_tensor;
Qnn_Tensor_t *_qnn_tensor;
ggml_backend_qnn_context *_context;
uint32_t *_old_dimensions;
uint32_t _dimensions[4] = {};
ggml_qnn_tensor_readwrite(const ggml_qnn_tensor_readwrite&) = delete;
void operator=(const ggml_qnn_tensor_readwrite&) = delete;
ggml_qnn_tensor_readwrite(ggml_qnn_tensor_readwrite&&) = delete;
void operator=(ggml_qnn_tensor_readwrite&&) = delete;
};
ggml_qnn_tensor_readwrite(const ggml_qnn_tensor_readwrite &) = delete;
void operator=(const ggml_qnn_tensor_readwrite &) = delete;
ggml_qnn_tensor_readwrite(ggml_qnn_tensor_readwrite &&) = delete;
void operator=(ggml_qnn_tensor_readwrite &&) = delete;
};
using ggml_qnn_tensor_output =
ggml_qnn_tensor_readwrite<QNN_TENSOR_TYPE_APP_READ>;
using ggml_qnn_tensor_input =
ggml_qnn_tensor_readwrite<QNN_TENSOR_TYPE_APP_WRITE>;
using ggml_qnn_tensor_output = ggml_qnn_tensor_readwrite<QNN_TENSOR_TYPE_APP_READ>;
using ggml_qnn_tensor_input = ggml_qnn_tensor_readwrite<QNN_TENSOR_TYPE_APP_WRITE>;
} // namespace qnn

View file

@ -2,13 +2,14 @@
#include "utils.hpp"
#include "ggml-qnn.h"
#include "qnn-types.hpp"
namespace qnn {
// TODO: mapping more ggml data type to QNN data type
// ref:explanation of k-quants, https://github.com/ggerganov/llama.cpp/pull/1684
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype) {
// TODO: mapping more ggml data type to QNN data type
// ref:explanation of k-quants, https://github.com/ggerganov/llama.cpp/pull/1684
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype) {
switch (ggmltype) {
case GGML_TYPE_F16:
return QNN_DATATYPE_FLOAT_16;
@ -24,10 +25,9 @@ namespace qnn {
break;
}
return QNN_DATATYPE_UNDEFINED;
}
}
uint32_t get_ggml_tensor_rank(const ggml_tensor* tensor) {
uint32_t get_ggml_tensor_rank(const ggml_tensor *tensor) {
uint32_t rank = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if ((0 != tensor->ne[i]) && (1 != tensor->ne[i])) {
@ -35,10 +35,9 @@ namespace qnn {
}
}
return rank;
}
}
const char* get_backend_name(int n_backend_type) {
const char *get_backend_name(int n_backend_type) {
switch (n_backend_type) {
case QNN_BACKEND_CPU:
return "QNN-CPU";
@ -51,9 +50,9 @@ namespace qnn {
default:
return "unknown";
}
}
}
const char* get_chipset_desc(uint32_t chipset_id) {
const char *get_chipset_desc(uint32_t chipset_id) {
switch (chipset_id) {
case SM8450:
return "SM8450";
@ -66,9 +65,9 @@ namespace qnn {
default:
return "unknown";
}
}
}
const char* get_htparch_desc(size_t htp_arch) {
const char *get_htparch_desc(size_t htp_arch) {
switch (htp_arch) {
case V68:
return "QCOM_HTP_V68";
@ -81,16 +80,15 @@ namespace qnn {
default:
return "unknown";
}
}
}
intptr_t align_to(size_t alignment, intptr_t offset) {
intptr_t align_to(size_t alignment, intptr_t offset) {
return offset % alignment == 0
? offset
: offset + (static_cast<intptr_t>(alignment) -
offset % static_cast<intptr_t>(alignment));
}
: offset + (static_cast<intptr_t>(alignment) - offset % static_cast<intptr_t>(alignment));
}
uint32_t get_ggml_tensor_data_size(const ggml_tensor* tensor) {
uint32_t get_ggml_tensor_data_size(const ggml_tensor *tensor) {
/*
size_t data_size = ggml_row_size(tensor->type, tensor->ne[0]);
size_t n_dims = qnn_get_ggml_tensor_rank(tensor);
@ -101,15 +99,15 @@ namespace qnn {
return data_size;
*/
return ggml_nbytes(tensor);
}
}
// =================================================================================================
//
// QNN backend internal helper functions
//
// =================================================================================================
// TODO: only support GGML_OP_ADD/GGML_OP_MUL/GGML_OP_MUL_MAT
const char* opname_from_ggmlop(enum ggml_op ggmlop) {
// =================================================================================================
//
// QNN backend internal helper functions
//
// =================================================================================================
// TODO: only support GGML_OP_ADD/GGML_OP_MUL/GGML_OP_MUL_MAT
const char *opname_from_ggmlop(enum ggml_op ggmlop) {
switch (ggmlop) {
case GGML_OP_ADD:
return QNN_OP_ELEMENT_WISE_ADD;
@ -121,6 +119,6 @@ namespace qnn {
break;
}
return nullptr;
}
}
} // namespace qnn

View file

@ -1,189 +1,183 @@
#pragma once
#include <stdint.h>
#include <stddef.h>
#include <inttypes.h>
#include <dlfcn.h>
#include <fcntl.h>
#include <string>
#include <inttypes.h>
#include <stddef.h>
#include <stdint.h>
#include "QnnTypes.h"
#include <string>
#include "ggml.h"
#include "QnnTypes.h"
#include "logger.hpp"
namespace qnn {
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype);
uint32_t get_ggml_tensor_rank(const ggml_tensor* tensor);
const char* get_backend_name(int n_backend_type);
const char* get_chipset_desc(uint32_t chipset_id);
const char* get_htparch_desc(size_t htp_arch);
intptr_t align_to(size_t alignment, intptr_t offset);
uint32_t get_ggml_tensor_data_size(const ggml_tensor* tensor);
Qnn_DataType_t datatype_from_ggml_datatype(enum ggml_type ggmltype);
uint32_t get_ggml_tensor_rank(const ggml_tensor *tensor);
const char *get_backend_name(int n_backend_type);
const char *get_chipset_desc(uint32_t chipset_id);
const char *get_htparch_desc(size_t htp_arch);
intptr_t align_to(size_t alignment, intptr_t offset);
uint32_t get_ggml_tensor_data_size(const ggml_tensor *tensor);
const char* opname_from_ggmlop(enum ggml_op ggmlop);
const char *opname_from_ggmlop(enum ggml_op ggmlop);
template <typename Fn> Fn load_qnn_functionpointers(void* handle, const char* function_name) {
template <typename Fn>
Fn load_qnn_functionpointers(void *handle, const char *function_name) {
return reinterpret_cast<Fn>(dlsym(handle, function_name));
}
}
inline int validate_tensor_version(Qnn_Tensor_t tensor) {
inline int validate_tensor_version(Qnn_Tensor_t tensor) {
if (tensor.version != QNN_TENSOR_VERSION_1) {
QNN_LOG_WARN(
"validate_tensor_version() tensor %s, got unsupported version %d\n",
tensor.v1.name, tensor.version);
QNN_LOG_WARN("validate_tensor_version() tensor %s, got unsupported version %d\n", tensor.v1.name,
tensor.version);
return 1;
}
return 0;
}
}
inline uint32_t get_qnn_tensorid(const Qnn_Tensor_t& tensor) {
inline uint32_t get_qnn_tensorid(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.id;
}
return 0u;
}
}
inline const char* get_qnn_tensorname(const Qnn_Tensor_t& tensor) {
inline const char *get_qnn_tensorname(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.name;
}
return nullptr;
}
}
inline Qnn_TensorType_t get_qnn_tensortype(const Qnn_Tensor_t& tensor) {
inline Qnn_TensorType_t get_qnn_tensortype(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.type;
}
return QNN_TENSOR_TYPE_UNDEFINED;
}
}
inline Qnn_TensorDataFormat_t
get_qnn_tensor_dataformat(const Qnn_Tensor_t& tensor) {
inline Qnn_TensorDataFormat_t get_qnn_tensor_dataformat(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.dataFormat;
}
return QNN_TENSOR_DATA_FORMAT_FLAT_BUFFER;
}
}
inline Qnn_DataType_t
get_qnn_tensor_datatype(const Qnn_Tensor_t& tensor) {
inline Qnn_DataType_t get_qnn_tensor_datatype(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.dataType;
}
return QNN_DATATYPE_UNDEFINED;
}
}
inline Qnn_QuantizeParams_t
get_qnn_tensor_quantparams(const Qnn_Tensor_t& tensor) {
inline Qnn_QuantizeParams_t get_qnn_tensor_quantparams(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.quantizeParams;
}
return QNN_QUANTIZE_PARAMS_INIT;
}
}
inline uint32_t get_qnn_tensor_rank(const Qnn_Tensor_t& tensor) {
inline uint32_t get_qnn_tensor_rank(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.rank;
}
return 0u;
}
}
inline uint32_t* get_qnn_tensor_dimensions(const Qnn_Tensor_t& tensor) {
inline uint32_t *get_qnn_tensor_dimensions(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.dimensions;
}
return nullptr;
}
}
inline Qnn_TensorMemType_t get_qnn_tensor_memtype(const Qnn_Tensor_t& tensor) {
inline Qnn_TensorMemType_t get_qnn_tensor_memtype(const Qnn_Tensor_t &tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.memType;
}
return QNN_TENSORMEMTYPE_UNDEFINED;
}
}
inline void set_qnn_tensor_id(Qnn_Tensor_t& tensor, uint32_t id) {
inline void set_qnn_tensor_id(Qnn_Tensor_t &tensor, uint32_t id) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.id = id;
}
}
}
inline void set_qnn_tensor_name(Qnn_Tensor_t& tensor, const char* name) {
inline void set_qnn_tensor_name(Qnn_Tensor_t &tensor, const char *name) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.name = name;
}
}
}
inline void set_qnn_tensor_type(Qnn_Tensor_t& tensor, Qnn_TensorType_t type) {
inline void set_qnn_tensor_type(Qnn_Tensor_t &tensor, Qnn_TensorType_t type) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.type = type;
}
}
}
inline void set_qnn_tensor_dataformat(Qnn_Tensor_t& tensor, Qnn_TensorDataFormat_t format) {
inline void set_qnn_tensor_dataformat(Qnn_Tensor_t &tensor, Qnn_TensorDataFormat_t format) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.dataFormat = format;
}
}
}
inline void set_qnn_tensor_datatype(Qnn_Tensor_t& tensor, Qnn_DataType_t dataType) {
inline void set_qnn_tensor_datatype(Qnn_Tensor_t &tensor, Qnn_DataType_t dataType) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.dataType = dataType;
}
}
}
inline void set_qnn_tensor_quantparams(Qnn_Tensor_t& tensor, Qnn_QuantizeParams_t params) {
inline void set_qnn_tensor_quantparams(Qnn_Tensor_t &tensor, Qnn_QuantizeParams_t params) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.quantizeParams = params;
}
}
}
inline void set_qnn_tensor_rank(Qnn_Tensor_t& tensor, uint32_t rank) {
inline void set_qnn_tensor_rank(Qnn_Tensor_t &tensor, uint32_t rank) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.rank = rank;
}
}
}
inline void set_qnn_tensor_dimensions(Qnn_Tensor_t& tensor, uint32_t* dims) {
inline void set_qnn_tensor_dimensions(Qnn_Tensor_t &tensor, uint32_t *dims) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.dimensions = dims;
}
}
}
inline void set_qnn_tensor_memtype(Qnn_Tensor_t& tensor, Qnn_TensorMemType_t mem_type) {
inline void set_qnn_tensor_memtype(Qnn_Tensor_t &tensor, Qnn_TensorMemType_t mem_type) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.memType = mem_type;
}
}
}
inline void set_qnn_tensor_clientbuf(Qnn_Tensor_t& tensor, Qnn_ClientBuffer_t client_buf) {
inline void set_qnn_tensor_clientbuf(Qnn_Tensor_t &tensor, Qnn_ClientBuffer_t client_buf) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.clientBuf = client_buf;
}
}
}
inline void set_qnn_tensor_memhandle(Qnn_Tensor_t& tensor, Qnn_MemHandle_t handle) {
inline void set_qnn_tensor_memhandle(Qnn_Tensor_t &tensor, Qnn_MemHandle_t handle) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.memHandle = handle;
}
}
}
#if ENABLE_QNNBACKEND_PERF
class qnn_perf {
public:
qnn_perf(const std::string& perf_name) : _perf_name(std::move(perf_name)) {};
class qnn_perf {
public:
qnn_perf(const std::string &perf_name) : _perf_name(std::move(perf_name)) {};
qnn_perf() = delete;
qnn_perf(const qnn_perf&) = delete;
qnn_perf& operator= (const qnn_perf&) = delete;
qnn_perf(const qnn_perf &) = delete;
qnn_perf &operator=(const qnn_perf &) = delete;
void start() {
_begin_time = ggml_time_us();
}
void start() { _begin_time = ggml_time_us(); }
void info() {
_end_time = ggml_time_us();
@ -191,27 +185,26 @@ namespace qnn {
QNN_LOG_INFO("duration of %s : %lld microseconds\n", _perf_name.c_str(), _duration);
}
private:
private:
int64_t _begin_time = 0LL;
int64_t _end_time = 0LL;
int64_t _duration = 0LL;
std::string _perf_name;
};
};
#else
class qnn_perf {
public:
qnn_perf(const std::string& perf_name) {}
class qnn_perf {
public:
qnn_perf(const std::string &perf_name) {}
qnn_perf() = delete;
qnn_perf(const qnn_perf&) = delete;
qnn_perf& operator= (const qnn_perf&) = delete;
qnn_perf(const qnn_perf &) = delete;
qnn_perf &operator=(const qnn_perf &) = delete;
void start() {}
void info() {}
};
};
#endif
}
} // namespace qnn
#define VALIDATE(value, status) \
do { \