diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 08b71d410..8d96a04b5 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -490,7 +490,7 @@ if (GGML_SYCL) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") add_compile_definitions(GGML_SYCL_WARP_SIZE=32) else() - add_compile_definitions(GGML_SYCL_WARP_SIZE=32) + add_compile_definitions(GGML_SYCL_WARP_SIZE=16) endif() file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp") diff --git a/ggml/src/ggml-sycl/dmmv.cpp b/ggml/src/ggml-sycl/dmmv.cpp index 927819281..b8abba66f 100644 --- a/ggml/src/ggml-sycl/dmmv.cpp +++ b/ggml/src/ggml-sycl/dmmv.cpp @@ -3,6 +3,8 @@ #include "dequantize.hpp" #include "presets.hpp" +int constexpr QK_WARP_SIZE = 32; + static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){ const sycl::half *x = (const sycl::half *)vx; @@ -227,7 +229,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -346,7 +348,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -499,7 +501,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -633,7 +635,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -748,7 +750,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = QK_WARP_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -873,10 +875,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y, const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -889,10 +891,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -905,10 +907,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -918,10 +920,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); - const sycl::range<3> block_dims(1, 1, WARP_SIZE); + const sycl::range<3> block_dims(1, 1, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1); }); } @@ -934,10 +936,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, QK_WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(QK_WARP_SIZE)]] { dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1); }); } diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 2bb71ac03..95707794f 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -2165,7 +2165,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps)); } - for (ggml_type type_a : base_types) { + for (ggml_type type_a : {GGML_TYPE_Q4_K}) { for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));