Support all LLaMA models + change Q4_0 quantization storage
This commit is contained in:
parent
5f2f970d51
commit
007a8f6f45
5 changed files with 404 additions and 205 deletions
|
@ -33,12 +33,23 @@ if len(sys.argv) < 3:
|
|||
|
||||
# output in the same directory as the model
|
||||
dir_model = sys.argv[1]
|
||||
fname_out = sys.argv[1] + "/ggml-model.bin"
|
||||
|
||||
fname_hparams = sys.argv[1] + "/params.json"
|
||||
fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
||||
|
||||
def get_n_parts(dim):
|
||||
if dim == 4096:
|
||||
return 1
|
||||
elif dim == 5120:
|
||||
return 2
|
||||
elif dim == 6656:
|
||||
return 4
|
||||
elif dim == 8192:
|
||||
return 8
|
||||
else:
|
||||
print("Invalid dim: " + str(dim))
|
||||
sys.exit(1)
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
@ -61,76 +72,91 @@ tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|||
|
||||
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||
|
||||
n_parts = get_n_parts(hparams["dim"])
|
||||
|
||||
print(hparams)
|
||||
print('n_parts = ', n_parts)
|
||||
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
for p in range(n_parts):
|
||||
print('Processing part ', p)
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
||||
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
||||
if (p > 0):
|
||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["dim"]))
|
||||
fout.write(struct.pack("i", hparams["multiple_of"]))
|
||||
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
||||
fout.write(struct.pack("i", ftype))
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
|
||||
# Is this correct??
|
||||
for i in range(32000):
|
||||
# TODO: this is probably wrong - not sure how this tokenizer works
|
||||
text = tokenizer.decode([29889, i]).encode('utf-8')
|
||||
# remove the first byte (it's always '.')
|
||||
text = text[1:]
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
for k, v in model.items():
|
||||
name = k
|
||||
shape = v.shape
|
||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
||||
fout.write(struct.pack("i", hparams["dim"]))
|
||||
fout.write(struct.pack("i", hparams["multiple_of"]))
|
||||
fout.write(struct.pack("i", hparams["n_heads"]))
|
||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
||||
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
||||
fout.write(struct.pack("i", ftype))
|
||||
|
||||
# skip layers.X.attention.inner_attention.rope.freqs
|
||||
if name[-5:] == "freqs":
|
||||
continue
|
||||
# Is this correct??
|
||||
for i in range(32000):
|
||||
# TODO: this is probably wrong - not sure how this tokenizer works
|
||||
text = tokenizer.decode([29889, i]).encode('utf-8')
|
||||
# remove the first byte (it's always '.')
|
||||
text = text[1:]
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
|
||||
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||
for k, v in model.items():
|
||||
name = k
|
||||
shape = v.shape
|
||||
|
||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
data = v.numpy().squeeze()
|
||||
n_dims = len(data.shape);
|
||||
# skip layers.X.attention.inner_attention.rope.freqs
|
||||
if name[-5:] == "freqs":
|
||||
continue
|
||||
|
||||
# for efficiency - transpose some matrices
|
||||
# "model/h.*/attn/c_attn/w"
|
||||
# "model/h.*/attn/c_proj/w"
|
||||
# "model/h.*/mlp/c_fc/w"
|
||||
# "model/h.*/mlp/c_proj/w"
|
||||
#if name[-14:] == "/attn/c_attn/w" or \
|
||||
# name[-14:] == "/attn/c_proj/w" or \
|
||||
# name[-11:] == "/mlp/c_fc/w" or \
|
||||
# name[-13:] == "/mlp/c_proj/w":
|
||||
# print(" Transposing")
|
||||
# data = data.transpose()
|
||||
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
||||
|
||||
dshape = data.shape
|
||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
||||
data = v.numpy().squeeze()
|
||||
n_dims = len(data.shape);
|
||||
|
||||
# default type is fp16
|
||||
ftype_cur = 1
|
||||
if ftype == 0 or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
# for efficiency - transpose some matrices
|
||||
# "model/h.*/attn/c_attn/w"
|
||||
# "model/h.*/attn/c_proj/w"
|
||||
# "model/h.*/mlp/c_fc/w"
|
||||
# "model/h.*/mlp/c_proj/w"
|
||||
#if name[-14:] == "/attn/c_attn/w" or \
|
||||
# name[-14:] == "/attn/c_proj/w" or \
|
||||
# name[-11:] == "/mlp/c_fc/w" or \
|
||||
# name[-13:] == "/mlp/c_proj/w":
|
||||
# print(" Transposing")
|
||||
# data = data.transpose()
|
||||
|
||||
# header
|
||||
str = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||
fout.write(str);
|
||||
dshape = data.shape
|
||||
|
||||
# data
|
||||
data.tofile(fout)
|
||||
# default type is fp16
|
||||
ftype_cur = 1
|
||||
if ftype == 0 or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
fout.close()
|
||||
# header
|
||||
sname = name.encode('utf-8')
|
||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||
for i in range(n_dims):
|
||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
||||
fout.write(sname);
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
||||
print("")
|
||||
# data
|
||||
data.tofile(fout)
|
||||
|
||||
# I hope this deallocates the memory ..
|
||||
model = None
|
||||
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
||||
print("")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue