Merge branch 'master' into multiple-mount-points

This commit is contained in:
jorgealias 2024-02-26 00:33:24 -07:00
commit 00d5cdbdbe
41 changed files with 1846 additions and 1014 deletions

View file

@ -669,8 +669,7 @@ jobs:
run: |
cd examples/llama.android
# Skip armeabi-v7a for now (https://github.com/llvm/llvm-project/issues/65820).
./gradlew build --no-daemon -Pskip-armeabi-v7a
./gradlew build --no-daemon
# freeBSD-latest:
# runs-on: macos-12

View file

@ -936,10 +936,16 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
# Android armeabi-v7a
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
else()
# Raspberry Pi 2
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
endif()
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
# Android arm64-v8a
# Raspberry Pi 3, 4, Zero 2 (32-bit)
list(APPEND ARCH_FLAGS -mno-unaligned-access)
endif()

View file

@ -597,7 +597,7 @@ $(info I CC: $(shell $(CC) --version | head -n 1))
$(info I CXX: $(shell $(CXX) --version | head -n 1))
ifdef LLAMA_CUBLAS
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
CUDA_VERSION := $(shell nvcc --version | grep -oP 'release (\K[0-9]+\.[0-9])')
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
ifndef CUDA_DOCKER_ARCH
ifndef CUDA_POWER_ARCH

View file

@ -114,6 +114,9 @@ Typically finetunes of the base models below are supported as well.
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
**HTTP server**
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
**Bindings:**
@ -155,6 +158,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
- [Msty](https://msty.app) (proprietary)
---

View file

@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
} else if (arg == "--rope-scale") {
if (++i >= argc) {
@ -630,11 +630,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
}
std::string arg_next = argv[i];
if (arg_next == "none") {
params.split_mode = LLAMA_SPLIT_NONE;
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
params.split_mode = LLAMA_SPLIT_LAYER;
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
params.split_mode = LLAMA_SPLIT_ROW;
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;
@ -837,15 +837,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_INT;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {

View file

@ -61,7 +61,7 @@ struct gpt_params {
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
@ -75,7 +75,7 @@ struct gpt_params {
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
// // sampling parameters

View file

@ -266,7 +266,7 @@ static llama_token llama_sampling_sample_impl(
// }
//}
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}

View file

@ -31,7 +31,7 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f;
@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
std::string opt_type;
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
opt->params.type = GGML_OPT_ADAM;
opt->params.type = GGML_OPT_TYPE_ADAM;
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
opt->params.type = GGML_OPT_LBFGS;
opt->params.type = GGML_OPT_TYPE_LBFGS;
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
switch (opt->params.type) {
case GGML_OPT_ADAM:
case GGML_OPT_TYPE_ADAM:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_add_tensor(fctx, opt->adam.pf);
}
} break;
case GGML_OPT_LBFGS:
case GGML_OPT_TYPE_LBFGS:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);

View file

@ -192,7 +192,7 @@ class Model:
return RefactModel
if model_architecture == "PersimmonForCausalLM":
return PersimmonModel
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
if model_architecture in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return StableLMModel
if model_architecture == "QWenLMHeadModel":
return QwenModel
@ -253,7 +253,7 @@ class Model:
return gguf.MODEL_ARCH.REFACT
if arch == "PersimmonForCausalLM":
return gguf.MODEL_ARCH.PERSIMMON
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
if arch in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
return gguf.MODEL_ARCH.STABLELM
if arch == "QWenLMHeadModel":
return gguf.MODEL_ARCH.QWEN
@ -1074,10 +1074,11 @@ class StableLMModel(Model):
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(1e-5)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
class MixtralModel(Model):

View file

@ -1547,7 +1547,7 @@ int main(int argc, char ** argv) {
float error_before_opt = ggml_get_f32_1d(e, 0);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false;
opt_params_lbfgs.lbfgs.n_iter = 16;

View file

@ -1531,7 +1531,7 @@ int main(int argc, char ** argv) {
lora.hparams.n_rank_output = n_rank_output;
// set opt params from command line
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;

View file

@ -448,7 +448,7 @@ int main(int argc, char ** argv) {
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;

View file

@ -157,9 +157,9 @@ static const char * output_format_str(output_formats format) {
static const char * split_mode_str(llama_split_mode mode) {
switch (mode) {
case LLAMA_SPLIT_NONE: return "none";
case LLAMA_SPLIT_LAYER: return "layer";
case LLAMA_SPLIT_ROW: return "row";
case LLAMA_SPLIT_MODE_NONE: return "none";
case LLAMA_SPLIT_MODE_LAYER: return "layer";
case LLAMA_SPLIT_MODE_ROW: return "row";
default: GGML_ASSERT(!"invalid split mode");
}
}
@ -193,7 +193,7 @@ static const cmd_params cmd_params_defaults = {
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99},
/* split_mode */ {LLAMA_SPLIT_LAYER},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* mul_mat_q */ {true},
@ -358,11 +358,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
for (const auto & m : p) {
llama_split_mode mode;
if (m == "none") {
mode = LLAMA_SPLIT_NONE;
mode = LLAMA_SPLIT_MODE_NONE;
} else if (m == "layer") {
mode = LLAMA_SPLIT_LAYER;
mode = LLAMA_SPLIT_MODE_LAYER;
} else if (m == "row") {
mode = LLAMA_SPLIT_ROW;
mode = LLAMA_SPLIT_MODE_ROW;
} else {
invalid_param = true;
break;

View file

@ -21,12 +21,8 @@ android {
useSupportLibrary = true
}
ndk {
// Workaround for https://github.com/llvm/llvm-project/issues/65820
// affecting armeabi-v7a. Skip armeabi-v7a when invoked with
// -Pskip-armeabi-v7a (e.g., ./gradlew build -Pskip-armeabi-v7a).
if (project.hasProperty("skip-armeabi-v7a")) {
abiFilters += listOf("arm64-v8a", "x86_64", "x86")
}
// Add NDK properties if wanted, e.g.
// abiFilters += listOf("arm64-v8a")
}
externalNativeBuild {
cmake {

View file

@ -152,7 +152,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
if (newline_tmp->backend != GGML_BACKEND_CPU) {
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
if (newline_tmp->buffer == NULL) {
printf("newline_tmp tensor buffer is NULL\n");
}

View file

@ -549,7 +549,7 @@ int main(int argc, char ** argv) {
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
@ -576,9 +576,9 @@ int main(int argc, char ** argv) {
LOG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_cache_seq_shift(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_shift(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;

View file

@ -126,7 +126,7 @@ int main(int argc, char ** argv) {
const int n_batch = ctx_params.n_batch;
const int n_batch_grp = ctx_params.n_batch/n_grp;
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
// print the prompt token-by-token
@ -146,10 +146,11 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_cache_update (ctx);
n_past -= bd;
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
}
llama_batch_clear(batch);
@ -180,9 +181,11 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
n_past -= n_discard;
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
llama_batch_clear(batch);
@ -209,9 +212,11 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
n_past -= n_discard;
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
}
}

View file

@ -1,8 +1,20 @@
# llama.cpp/example/server
# LLaMA.cpp HTTP Server
This example demonstrates a simple HTTP API server and a simple web front end to interact with llama.cpp.
Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/yhirose/cpp-httplib), [nlohmann::json](https://github.com/nlohmann/json) and **llama.cpp**.
Command line options:
Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
**Features:**
* LLM inference of F16 and quantum models on GPU and CPU
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
* Parallel decoding with multi-user support
* Continuous batching
* Multimodal (wip)
* Monitoring endpoints
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggerganov/llama.cpp/issues/4216).
**Command line options:**
- `--threads N`, `-t N`: Set the number of threads to use during generation.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
@ -39,9 +51,12 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1)
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
- `--log-disable`: Output logs to stdout only, default: enabled.
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
## Build
@ -457,6 +472,18 @@ Notice that each `probs` is an array of length `n_probs`.
]
```
- **GET** `/metrics`: [Prometheus](https://prometheus.io/) compatible metrics exporter endpoint if `--metrics` is enabled:
Available metrics:
- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed.
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage.
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
- `llamacpp:requests_processing`: Number of request processing.
- `llamacpp:requests_deferred`: Number of request deferred.
## More examples
### Change system prompt on runtime

View file

@ -43,9 +43,11 @@ struct server_params
int32_t read_timeout = 600;
int32_t write_timeout = 600;
bool slots_endpoint = true;
bool metrics_endpoint = false;
};
bool server_verbose = false;
bool server_log_json = true;
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
@ -301,12 +303,76 @@ struct llama_client_slot
}
void print_timings() const {
LOG_TEE("\n");
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
char buffer[512];
double t_token = t_prompt_processing / num_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, num_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
{"num_prompt_tokens_processed", num_prompt_tokens_processed},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_token_generation", t_token_generation},
{"n_decoded", n_decoded},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_INFO(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
{"t_token_generation", t_token_generation},
{"t_total", t_prompt_processing + t_token_generation},
});
}
};
struct llama_metrics {
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t n_tokens_predicted_total = 0;
uint64_t n_prompt_tokens_processed = 0;
uint64_t t_prompt_processing = 0;
uint64_t n_tokens_predicted = 0;
uint64_t t_tokens_generation = 0;
void on_prompt_eval(const llama_client_slot &slot) {
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;
n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
t_prompt_processing += slot.t_prompt_processing;
}
void on_prediction(const llama_client_slot &slot) {
n_tokens_predicted_total += slot.n_decoded;
n_tokens_predicted += slot.n_decoded;
t_tokens_generation += slot.t_token_generation;
}
void reset_bucket() {
n_prompt_tokens_processed = 0;
t_prompt_processing = 0;
n_tokens_predicted = 0;
t_tokens_generation = 0;
}
};
@ -344,6 +410,8 @@ struct llama_server_context
llama_server_queue queue_tasks;
llama_server_response queue_results;
llama_metrics metrics;
~llama_server_context()
{
if (ctx)
@ -363,7 +431,7 @@ struct llama_server_context
params = params_;
if (!params.mmproj.empty()) {
multimodal = true;
LOG_TEE("Multi Modal Mode Enabled");
LOG_INFO("Multi Modal Mode Enabled", {});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
@ -416,7 +484,7 @@ struct llama_server_context
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_TEE("Available slots:\n");
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
for (int i = 0; i < params.n_parallel; i++)
{
llama_client_slot slot;
@ -425,7 +493,10 @@ struct llama_server_context
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
LOG_INFO("new slot", {
{"slot_id", slot.id},
{"n_ctx_slot", slot.n_ctx}
});
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
@ -435,7 +506,12 @@ struct llama_server_context
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
LOG_INFO("slot self-extend", {
{"slot_id", slot.id},
{"ga_n", ga_n},
{"ga_w", ga_w}
});
}
slot.ga_i = 0;
@ -729,10 +805,16 @@ struct llama_server_context
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
LOG_ERROR("failed to load image", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
return false;
}
LOG_TEE("slot %i - loaded image\n", slot->id);
LOG_VERBOSE("image loaded", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
@ -792,7 +874,10 @@ struct llama_server_context
all_slots_are_idle = false;
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
LOG_INFO("slot is processing task", {
{"slot_id", slot->id},
{"task_id", slot->task_id},
});
return true;
}
@ -817,11 +902,25 @@ struct llama_server_context
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0)
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
{
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
@ -1355,7 +1454,7 @@ struct llama_server_context
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later
LOG_VERBOSE("no slot is available", {});
LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
queue_tasks.defer(task);
break;
}
@ -1404,7 +1503,7 @@ struct llama_server_context
case TASK_TYPE_NEXT_RESPONSE: {
// do nothing
} break;
case TASK_TYPE_SLOTS_DATA: {
case TASK_TYPE_METRICS: {
json slots_data = json::array();
int n_idle_slots = 0;
int n_processing_slots = 0;
@ -1431,7 +1530,17 @@ struct llama_server_context
}
slots_data.push_back(slot_data);
}
LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots);
LOG_INFO("slot data", {
{"task_id", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots}
});
LOG_VERBOSE("slot data", {
{"task_id", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots},
{"slots", slots_data}
});
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
@ -1440,8 +1549,22 @@ struct llama_server_context
res.result_json = {
{ "idle", n_idle_slots },
{ "processing", n_processing_slots },
{ "slots", slots_data }
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
{ "t_prompt_processing", metrics.t_prompt_processing},
{ "n_tokens_predicted", metrics.n_tokens_predicted},
{ "t_tokens_generation", metrics.t_tokens_generation},
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
{ "slots", slots_data },
};
metrics.reset_bucket();
queue_results.send(res);
} break;
}
@ -1469,7 +1592,7 @@ struct llama_server_context
bool update_slots() {
if (system_need_update)
{
LOG_TEE("updating system prompt\n");
LOG_INFO("updating system prompt", {});
update_system_prompt();
}
@ -1479,12 +1602,13 @@ struct llama_server_context
{
if (system_prompt.empty() && clean_kv_cache)
{
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
kv_cache_clear();
}
return true;
}
LOG_VERBOSE("posting NEXT_RESPONSE", {});
task_server task;
task.type = TASK_TYPE_NEXT_RESPONSE;
task.target_id = -1;
@ -1498,12 +1622,22 @@ struct llama_server_context
{
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = system_tokens.size() + slot.n_past - n_keep;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = n_left / 2;
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, n_keep, n_left, n_discard);
LOG_INFO("slot context shift", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
{"n_keep", n_keep},
{"n_left", n_left},
{"n_discard", n_discard},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()}
});
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_shift(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
{
@ -1515,17 +1649,12 @@ struct llama_server_context
slot.n_past -= n_discard;
slot.truncated = true;
LOG_VERBOSE("context shift", {
{ "n_ctx", n_ctx },
{ "n_keep", n_keep },
{ "n_left", n_left },
});
}
}
}
// decode any currently ongoing sequences
LOG_VERBOSE("decoding ongoing sequences", {});
for (auto & slot : slots)
{
// release the slot
@ -1535,7 +1664,15 @@ struct llama_server_context
slot.command = NONE;
slot.t_last_used = ggml_time_us();
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
LOG_INFO("slot released", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()},
{"truncated", slot.truncated}
});
queue_tasks.notify_slot_changed();
continue;
@ -1662,6 +1799,14 @@ struct llama_server_context
}
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
// the last token of the cache is not in the KV cache until the next call to llama_decode
// (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
{
slot.n_past -= 1;
}
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
if (slot.ga_n != 1)
@ -1683,7 +1828,12 @@ struct llama_server_context
slot.ga_i = ga_i;
}
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
LOG_INFO("slot progression", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "n_past", slot.n_past },
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
});
}
slot.cache_tokens = prompt_tokens;
@ -1691,7 +1841,10 @@ struct llama_server_context
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
{
// we have to evaluate at least 1 token to generate logits.
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id }
});
slot.n_past--;
if (slot.ga_i > 0)
{
@ -1699,9 +1852,13 @@ struct llama_server_context
}
}
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
int p0 = (int) system_tokens.size() + slot.n_past;
LOG_INFO("kv cache rm [p0, end)", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "p0", p0 }
});
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
@ -1736,7 +1893,13 @@ struct llama_server_context
if (has_images && !ingest_images(slot, n_batch))
{
LOG_TEE("failed processing images\n");
LOG_ERROR("failed processing images", {
"slot_id", slot.id,
"task_id", slot.task_id,
});
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
return false;
}
@ -1778,9 +1941,9 @@ struct llama_server_context
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
slot.n_past_se -= bd;
@ -1836,7 +1999,7 @@ struct llama_server_context
send_embedding(slot);
slot.release();
slot.i_batch = -1;
return true;
continue;
}
completion_token_output result;
@ -1849,6 +2012,7 @@ struct llama_server_context
{
slot.t_start_genereration = ggml_time_us();
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
metrics.on_prompt_eval(slot);
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
@ -1871,11 +2035,14 @@ struct llama_server_context
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
}
slot.i_batch = -1;
}
}
LOG_VERBOSE("slots updated", {});
return true;
}
@ -1953,8 +2120,10 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: f16)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-format log output format: json or text (default: json)\n");
printf(" --log-disable disables logging to a file.\n");
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
printf("\n");
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n");
@ -2086,9 +2255,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
}
else if (arg == "--rope-freq-base")
@ -2212,15 +2381,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
std::string arg_next = argv[i];
if (arg_next == "none")
{
params.split_mode = LLAMA_SPLIT_NONE;
params.split_mode = LLAMA_SPLIT_MODE_NONE;
}
else if (arg_next == "layer")
{
params.split_mode = LLAMA_SPLIT_LAYER;
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
}
else if (arg_next == "row")
{
params.split_mode = LLAMA_SPLIT_ROW;
params.split_mode = LLAMA_SPLIT_MODE_ROW;
}
else {
invalid_param = true;
@ -2405,6 +2574,27 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.mmproj = argv[i];
}
else if (arg == "--log-format")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
if (std::strcmp(argv[i], "json") == 0)
{
server_log_json = true;
}
else if (std::strcmp(argv[i], "text") == 0)
{
server_log_json = false;
}
else
{
invalid_param = true;
break;
}
}
else if (arg == "--log-disable")
{
log_set_target(stdout);
@ -2414,6 +2604,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
{
sparams.slots_endpoint = false;
}
else if (arg == "--metrics")
{
sparams.metrics_endpoint = true;
}
else if (arg == "--chat-template")
{
if (++i >= argc)
@ -2447,15 +2641,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_INT;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.int_value = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.float_value = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.bool_value = true;
} else if (std::strcmp(sep, "false") == 0) {
@ -2515,18 +2709,26 @@ static json format_partial_response(
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{
return json {
{"tokens", tokens}};
{"tokens", tokens}
};
}
static json format_detokenized_response(std::string content)
{
return json {
{"content", content}};
{"content", content}
};
}
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
{
// skip GH copilot requests when using default port
if (req.path == "/v1/health" || req.path == "/v1/completions")
{
return;
}
LOG_INFO("request", {
{"remote_addr", req.remote_addr},
{"remote_port", req.remote_port},
@ -2621,7 +2823,7 @@ int main(int argc, char **argv)
// request slots data using task queue
task_server task;
task.id = llama.queue_tasks.get_new_id();
task.type = TASK_TYPE_SLOTS_DATA;
task.type = TASK_TYPE_METRICS;
task.target_id = -1;
llama.queue_results.add_waiting_task_id(task.id);
@ -2668,7 +2870,7 @@ int main(int argc, char **argv)
// request slots data using task queue
task_server task;
task.id = llama.queue_tasks.get_new_id();
task.type = TASK_TYPE_SLOTS_DATA;
task.type = TASK_TYPE_METRICS;
task.target_id = -1;
llama.queue_results.add_waiting_task_id(task.id);
@ -2683,6 +2885,87 @@ int main(int argc, char **argv)
});
}
if (sparams.metrics_endpoint) {
svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
// request slots data using task queue
task_server task;
task.id = llama.queue_tasks.get_new_id();
task.type = TASK_TYPE_METRICS;
task.target_id = -1;
llama.queue_results.add_waiting_task_id(task.id);
llama.queue_tasks.post(task);
// get the result
task_result result = llama.queue_results.recv(task.id);
llama.queue_results.remove_waiting_task_id(task.id);
json data = result.result_json;
uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
uint64_t t_prompt_processing = data["t_prompt_processing"];
uint64_t n_tokens_predicted = data["n_tokens_predicted"];
uint64_t t_tokens_generation = data["t_tokens_generation"];
int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{"counter", {{
{"name", "prompt_tokens_total"},
{"help", "Number of prompt tokens processed."},
{"value", data["n_prompt_tokens_processed_total"]}
}, {
{"name", "tokens_predicted_total"},
{"help", "Number of generation tokens processed."},
{"value", data["n_tokens_predicted_total"]}
}}},
{"gauge", {{
{"name", "prompt_tokens_seconds"},
{"help", "Average prompt throughput in tokens/s."},
{"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
},{
{"name", "predicted_tokens_seconds"},
{"help", "Average generation throughput in tokens/s."},
{"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
},{
{"name", "kv_cache_usage_ratio"},
{"help", "KV-cache usage. 1 means 100 percent usage."},
{"value", 1. * kv_cache_used_cells / params.n_ctx}
},{
{"name", "kv_cache_tokens"},
{"help", "KV-cache tokens."},
{"value", data["kv_cache_tokens_count"]}
},{
{"name", "requests_processing"},
{"help", "Number of request processing."},
{"value", data["processing"]}
},{
{"name", "requests_deferred"},
{"help", "Number of request deferred."},
{"value", data["deferred"]}
}}}
};
std::stringstream prometheus;
for (const auto& el : all_metrics_def.items()) {
const auto& type = el.key();
const auto& metrics_def = el.value();
for (const auto& metric_def : metrics_def) {
std::string name = metric_def["name"];
std::string help = metric_def["help"];
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
<< "# TYPE llamacpp:" << name << " " << type << "\n"
<< "llamacpp:" << name << " " << metric_def["value"] << "\n";
}
}
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
res.status = 200; // HTTP OK
});
}
svr.set_logger(log_server_request);
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
@ -2735,9 +3018,6 @@ int main(int argc, char **argv)
// Set the base directory for serving static files
svr.set_base_dir(sparams.public_path);
// to make it ctrl+clickable:
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = sparams.hostname;
log_data["port"] = std::to_string(sparams.port);

View file

@ -32,6 +32,7 @@ It's possible to override some scenario steps values with environment variables:
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
### Run @bug, @wip or @wrong_usage annotated scenario

View file

@ -16,6 +16,8 @@ def before_scenario(context, scenario):
def after_scenario(context, scenario):
if context.server_process is None:
return
if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ:
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")

View file

@ -1,36 +1,4 @@
# List of ongoing issues
@bug
Feature: Issues
# Issue #5655
Scenario: Multi users embeddings
Given a server listening on localhost:8080
And a model file stories260K.gguf
And a model alias tinyllama-2
And 42 as server seed
And 64 KV cache size
And 2 slots
And continuous batching
And embeddings extraction
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
# No confirmed issue at the moment

View file

@ -8,6 +8,7 @@ Feature: Parallel
And 42 as server seed
And 64 KV cache size
And 2 slots
And embeddings extraction
And continuous batching
Then the server is starting
Then the server is healthy
@ -97,3 +98,48 @@ Feature: Parallel
Then the server is busy
Then the server is idle
Then all prompts are predicted
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model tinyllama-2
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated

View file

@ -13,6 +13,7 @@ Feature: llama.cpp server
And 1 slots
And embeddings extraction
And 32 server max tokens to predict
And prometheus compatible metrics exposed
Then the server is starting
Then the server is healthy
@ -25,11 +26,12 @@ Feature: llama.cpp server
And <n_predict> max tokens to predict
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And prometheus metrics are exposed
Examples: Prompts
| prompt | n_predict | re_content | n_predicted |
| I believe the meaning of life is | 8 | read | 8 |
| Write a joke about AI | 64 | (park<or>friends<or>scared)+ | 32 |
| I believe the meaning of life is | 8 | (read<or>going)+ | 8 |
| Write a joke about AI | 64 | (park<or>friends<or>scared<or>always)+ | 32 |
Scenario Outline: OAI Compatibility
Given a model <model>
@ -60,6 +62,19 @@ Feature: llama.cpp server
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model tinyllama-2
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Tokenize / Detokenize
When tokenizing:

View file

@ -1,4 +1,5 @@
import asyncio
import collections
import json
import os
import re
@ -12,6 +13,7 @@ import aiohttp
import openai
from behave import step
from behave.api.async_step import async_run_until_complete
from prometheus_client import parser
@step(u"a server listening on {server_fqdn}:{server_port}")
@ -33,6 +35,8 @@ def step_server_config(context, server_fqdn, server_port):
context.server_api_key = None
context.server_continuous_batching = False
context.server_embeddings = False
context.server_metrics = False
context.server_process = None
context.server_seed = None
context.user_api_key = None
@ -81,6 +85,11 @@ def step_server_embeddings(context):
context.server_embeddings = True
@step(u'prometheus compatible metrics exposed')
def step_server_metrics(context):
context.server_metrics = True
@step(u"the server is starting")
def step_start_server(context):
start_server_background(context)
@ -262,7 +271,7 @@ def step_a_prompt_prompt(context, prompt):
@step(u'concurrent completion requests')
@async_run_until_complete()
async def step_concurrent_completion_requests(context):
await concurrent_completion_requests(context,
await concurrent_requests(context,
request_completion,
# prompt is inserted automatically
context.base_url,
@ -276,11 +285,10 @@ async def step_concurrent_completion_requests(context):
@step(u'concurrent OAI completions requests')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_completion_requests(context, oai_chat_completions,
await concurrent_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
'/v1/chat/completions',
True, # async_client
model=context.model
if hasattr(context, 'model') else None,
@ -297,7 +305,7 @@ async def step_oai_chat_completions(context):
@step(u'concurrent OAI completions requests no v1')
@async_run_until_complete
async def step_oai_chat_completions(context):
await concurrent_completion_requests(context, oai_chat_completions,
await concurrent_requests(context, oai_chat_completions,
# user_prompt is inserted automatically
context.system_prompt,
context.base_url,
@ -339,36 +347,58 @@ async def all_prompts_are_predicted(context, expected_predicted_n=None):
@step(u'embeddings are computed for')
@async_run_until_complete
async def step_compute_embedding(context):
content = context.text
base_url = context.base_url
context.embeddings = await request_embedding(content, base_url)
context.embeddings = await request_embedding(context.text, base_url=context.base_url)
@step(u'embeddings are generated')
def step_assert_embeddings(context):
if len(context.prompts) == 0:
assert_embeddings(context.embeddings)
else:
assert len(context.embeddings) == len(context.prompts), (f"unexpected response:\n"
f"context.prompts={context.prompts}\n"
f"context.embeddings={context.embeddings}")
for embedding in context.embeddings:
context.prompts.pop()
assert_embeddings(embedding)
@step(u'an OAI compatible embeddings computation request for')
def step_oai_compute_embedding(context):
openai.api_key = 'nope' # openai client always expects an api_keu
if context.user_api_key is not None:
openai.api_key = context.user_api_key
openai.api_base = f'{context.base_url}/v1'
embeddings = openai.Embedding.create(
model=context.model,
input=context.text,
)
context.embeddings = embeddings
@async_run_until_complete
async def step_oai_compute_embeddings(context):
context.embeddings = await request_oai_embeddings(context.text,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
@step(u'an OAI compatible embeddings computation request for multiple inputs')
@async_run_until_complete
async def step_oai_compute_embeddings_multiple_inputs(context):
context.embeddings = await request_oai_embeddings(context.prompts,
base_url=context.base_url,
user_api_key=context.user_api_key,
model=context.model)
@step(u'concurrent embedding requests')
@async_run_until_complete()
async def step_concurrent_embedding_requests(context):
await concurrent_completion_requests(context,
await concurrent_requests(context,
request_embedding,
# prompt is inserted automatically
context.base_url)
base_url=context.base_url)
@step(u'concurrent OAI embedding requests')
@async_run_until_complete()
async def step_concurrent_oai_embedding_requests(context):
await concurrent_requests(context,
request_oai_embeddings,
# prompt is inserted automatically
base_url=context.base_url,
async_client=True,
model=context.model)
@step(u'all embeddings are generated')
@ -424,7 +454,24 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
assert context.options_response.headers[cors_header] == cors_header_value
async def concurrent_completion_requests(context, f_completion, *args, **kwargs):
@step(u'prometheus metrics are exposed')
@async_run_until_complete
async def step_prometheus_metrics_exported(context):
async with aiohttp.ClientSession() as session:
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
assert metrics_response.status == 200
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
metrics_raw = await metrics_response.text()
metric_exported = False
for metric in parser.text_string_to_metric_families(metrics_raw):
match metric.name:
case "llamacpp:kv_cache_usage_ratio":
assert len(metric.samples) > 0
metric_exported = True
assert metric_exported, "No metrics exported"
async def concurrent_requests(context, f_completion, *args, **kwargs):
n_prompts = len(context.prompts)
if context.debug:
print(f"starting {n_prompts} concurrent completion requests...")
@ -589,7 +636,7 @@ async def oai_chat_completions(user_prompt,
return completion_response
async def request_embedding(content, base_url):
async def request_embedding(content, base_url=None):
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/embedding',
json={
@ -600,6 +647,46 @@ async def request_embedding(content, base_url):
return response_json['embedding']
async def request_oai_embeddings(input,
base_url=None, user_api_key=None,
model=None, async_client=False):
# openai client always expects an api_key
user_api_key = user_api_key if user_api_key is not None else 'nope'
if async_client:
origin = 'llama.cpp'
if user_api_key is not None:
headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
async with aiohttp.ClientSession() as session:
async with session.post(f'{base_url}/v1/embeddings',
json={
"input": input,
"model": model,
},
headers=headers) as response:
assert response.status == 200, f"received status code not expected: {response.status}"
assert response.headers['Access-Control-Allow-Origin'] == origin
assert response.headers['Content-Type'] == "application/json; charset=utf-8"
response_json = await response.json()
assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
assert response_json['object'] == 'list'
return response_json['data']
else:
openai.api_key = user_api_key
openai.api_base = f'{base_url}/v1'
oai_embeddings = openai.Embedding.create(
model=model,
input=input,
)
if isinstance(input, collections.abc.Sequence):
embeddings = []
for an_oai_embeddings in oai_embeddings.data:
embeddings.append(an_oai_embeddings.embedding)
else:
embeddings = oai_embeddings.data.embedding
return embeddings
def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
content = completion_response['content']
n_predicted = completion_response['timings']['predicted_n']
@ -635,6 +722,8 @@ async def wait_for_health_status(context,
if context.debug:
print(f"Starting checking for health for expected_health_status={expected_health_status}")
timeout = 3 # seconds
if expected_health_status == 'ok':
timeout = 10 # CI slow inference
interval = 0.5
counter = 0
async with aiohttp.ClientSession() as session:
@ -672,7 +761,7 @@ async def wait_for_health_status(context,
if n_completions > 0:
return
assert False, 'timeout exceeded'
assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
def assert_embeddings(embeddings):
@ -714,6 +803,8 @@ def start_server_background(context):
server_args.append('--cont-batching')
if context.server_embeddings:
server_args.append('--embedding')
if context.server_metrics:
server_args.append('--metrics')
if context.model_alias is not None:
server_args.extend(['--alias', context.model_alias])
if context.n_ctx is not None:
@ -726,6 +817,8 @@ def start_server_background(context):
server_args.extend(['--api-key', context.server_api_key])
if context.debug:
server_args.append('--verbose')
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
server_args.extend(['--log-format', "text"])
print(f"starting server with: {context.server_path}", *server_args)
context.server_process = subprocess.Popen(
[str(arg) for arg in [context.server_path, *server_args]],

View file

@ -1,3 +1,4 @@
aiohttp~=3.9.3
behave~=1.2.6
openai~=0.25.0
prometheus-client~=0.20.0

View file

@ -14,6 +14,7 @@
using json = nlohmann::json;
extern bool server_verbose;
extern bool server_log_json;
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
@ -27,13 +28,13 @@ extern bool server_verbose;
{ \
if (server_verbose) \
{ \
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
//
@ -50,7 +51,7 @@ enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE,
TASK_TYPE_SLOTS_DATA
TASK_TYPE_METRICS
};
struct task_server {
@ -133,27 +134,49 @@ struct completion_token_output
std::string text_to_send;
};
static inline void server_log(const char *level, const char *function, int line,
const char *message, const nlohmann::ordered_json &extra)
{
nlohmann::ordered_json log
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra)
{
std::stringstream ss_tid;
ss_tid << std::this_thread::get_id();
json log = nlohmann::ordered_json{
{"tid", ss_tid.str()},
{"timestamp", time(nullptr)},
};
if (server_log_json) {
log.merge_patch(
{
{"level", level},
{"function", function},
{"line", line},
{"message", message},
};
if (!extra.empty())
{
{"msg", message},
});
if (!extra.empty()) {
log.merge_patch(extra);
}
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
} else {
char buf[1024];
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
if (!extra.empty()) {
log.merge_patch(extra);
}
std::stringstream ss;
ss << buf << " |";
for (const auto& el : log.items())
{
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
snprintf(buf, 1024, " %s=%s", el.key().c_str(), value.c_str());
ss << buf;
}
const std::string str = ss.str();
printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
}
//
// server utils
@ -234,6 +257,7 @@ struct llama_server_queue {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
@ -249,7 +273,9 @@ struct llama_server_queue {
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return id++;
int new_id = id++;
LOG_VERBOSE("new task id", {{"new_id", new_id}});
return new_id;
}
// Register function to process a new task
@ -290,8 +316,7 @@ struct llama_server_queue {
void start_loop() {
running = true;
while (true) {
// new task arrived
LOG_VERBOSE("have new task", {});
LOG_VERBOSE("new task may arrive", {});
{
while (true)
{
@ -303,7 +328,7 @@ struct llama_server_queue {
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {});
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
callback_new_task(task);
}
LOG_VERBOSE("callback_all_task_finished", {});
@ -384,11 +409,13 @@ struct llama_server_response {
std::condition_variable condition_results;
void add_waiting_task_id(int task_id) {
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
void remove_waiting_task_id(int task_id) {
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
@ -401,7 +428,6 @@ struct llama_server_response {
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
LOG_VERBOSE("condition_results unblock", {});
for (int i = 0; i < (int) queue_results.size(); i++)
{
@ -426,22 +452,22 @@ struct llama_server_response {
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {});
LOG_VERBOSE("send new result", {{"task_id", result.id}});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {});
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {});
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
queue_results.push_back(result);
condition_results.notify_one();
condition_results.notify_all();
return;
}
}

View file

@ -960,7 +960,7 @@ int main(int argc, char ** argv) {
struct ggml_opt_context * opt = train->opt;
// set opt params from command line
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
opt->params.print_forward_graph = false;
opt->params.print_backward_graph = false;
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;

6
flake.lock generated
View file

@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1708118438,
"narHash": "sha256-kk9/0nuVgA220FcqH/D2xaN6uGyHp/zoxPNUmPCMmEE=",
"lastModified": 1708655239,
"narHash": "sha256-ZrP/yACUvDB+zbqYJsln4iwotbH6CTZiTkANJ0AgDv4=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "5863c27340ba4de8f83e7e3c023b9599c3cb3c80",
"rev": "cbc4211f0afffe6dfd2478a62615dd5175a13f9a",
"type": "github"
},
"original": {

View file

@ -6369,11 +6369,11 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
swap(dst_row[col], dst_row[ixj]);
}
} else {
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
swap(dst_row[col], dst_row[ixj]);
}
}
@ -7927,10 +7927,10 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
const dim3 block_dims(ncols, 1, 1);
const dim3 block_nums(1, nrows, 1);
if (order == GGML_SORT_ASC) {
k_argsort_f32_i32<GGML_SORT_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
} else if (order == GGML_SORT_DESC) {
k_argsort_f32_i32<GGML_SORT_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
if (order == GGML_SORT_ORDER_ASC) {
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
} else if (order == GGML_SORT_ORDER_DESC) {
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
} else {
GGML_ASSERT(false);
}
@ -8362,11 +8362,11 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
cudaMemcpyKind kind;
char * src_ptr;
if (src->backend == GGML_BACKEND_CPU) {
if (src->backend == GGML_BACKEND_TYPE_CPU) {
kind = cudaMemcpyHostToDevice;
src_ptr = (char *) src->data;
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
kind = cudaMemcpyDeviceToDevice;
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
int id;
@ -8771,7 +8771,7 @@ static void ggml_cuda_op_mul_mat_q(
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
switch (src0->type) {
case GGML_TYPE_Q4_0:
@ -8920,7 +8920,7 @@ static void ggml_cuda_op_mul_mat_vec_q(
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
switch (src0->type) {
case GGML_TYPE_Q4_0:
@ -9096,7 +9096,7 @@ static void ggml_cuda_op_mul_mat_cublas(
// the main device has a larger memory buffer to hold the results from all GPUs
// ldc == nrows of the matrix that cuBLAS writes into
int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
const int compute_capability = g_device_caps[id].cc;
@ -9444,7 +9444,7 @@ static void ggml_cuda_op_soft_max(
const bool use_src2 = src2 != nullptr;
if (use_src2) {
const bool src2_on_device = src2->backend == GGML_BACKEND_GPU;
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
if (src2_on_device) {
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
@ -9502,16 +9502,16 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
// dd = data device
float * src0_ddf = nullptr;
@ -9555,7 +9555,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaDeviceSynchronize());
}
}
@ -9636,8 +9636,8 @@ static void ggml_cuda_op_mul_mat(
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
@ -9653,20 +9653,20 @@ static void ggml_cuda_op_mul_mat(
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool src0_is_contiguous = ggml_is_contiguous(src0);
const bool src1_is_contiguous = ggml_is_contiguous(src1);
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
GGML_ASSERT(!(split && ne02 > 1));
GGML_ASSERT(!(split && ne03 > 1));
GGML_ASSERT(!(split && ne02 < ne12));
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
if (split) {
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_GPU_SPLIT check
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
// GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
tensor_split = buft_ctx->tensor_split;
@ -9724,8 +9724,8 @@ static void ggml_cuda_op_mul_mat(
used_devices++;
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
ggml_cuda_set_device(id);
cudaStream_t stream = g_cudaStreams[id][0];
@ -9776,8 +9776,8 @@ static void ggml_cuda_op_mul_mat(
continue;
}
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
ggml_cuda_set_device(id);
@ -9802,12 +9802,12 @@ static void ggml_cuda_op_mul_mat(
// the main device memory buffer can be on VRAM scratch, with space for all partial results
// in that case an offset on dst_ddf_i is needed
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
}
// copy src0, src1 to device if necessary
if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
if (id != g_main_device) {
if (convert_src1_to_q8_1) {
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
@ -9820,14 +9820,14 @@ static void ggml_cuda_op_mul_mat(
src1_ncols*ne10*sizeof(float), stream));
}
}
} else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else {
GGML_ASSERT(false);
}
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
CUDA_CHECK(cudaGetLastError());
}
@ -9845,10 +9845,10 @@ static void ggml_cuda_op_mul_mat(
if (!dst_on_device) {
void * dst_off_device;
cudaMemcpyKind kind;
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
dst_off_device = dst->data;
kind = cudaMemcpyDeviceToHost;
} else if (dst->backend == GGML_BACKEND_GPU) {
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
dst_off_device = dst_extra->data_device[g_main_device];
kind = cudaMemcpyDeviceToDevice;
} else {
@ -9913,7 +9913,7 @@ static void ggml_cuda_op_mul_mat(
}
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
ggml_cuda_set_device(g_main_device);
CUDA_CHECK(cudaDeviceSynchronize());
}
@ -10019,7 +10019,7 @@ GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const stru
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
GGML_ASSERT(src0->type == GGML_TYPE_F16);
@ -10050,7 +10050,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -10109,7 +10109,7 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_TENSOR_BINARY_OP_LOCALS
@ -10255,11 +10255,11 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device =
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_GPU) &&
( dst->backend == GGML_BACKEND_GPU);
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
( dst->backend == GGML_BACKEND_TYPE_GPU);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX;
@ -10409,7 +10409,7 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src00));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
@ -10553,7 +10553,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
cudaStream_t stream = g_cudaStreams[g_main_device][0];
if (ids->backend == GGML_BACKEND_GPU) {
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
CUDA_CHECK(cudaStreamSynchronize(stream));
@ -10570,20 +10570,20 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
src1_row.backend = GGML_BACKEND_GPU;
dst_row.backend = GGML_BACKEND_GPU;
src1_row.backend = GGML_BACKEND_TYPE_GPU;
dst_row.backend = GGML_BACKEND_TYPE_GPU;
src1_row.extra = &src1_row_extra;
dst_row.extra = &dst_row_extra;
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
if (src1->ne[1] == 1) {
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
@ -10611,9 +10611,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ?
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ?
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ?
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
@ -10668,7 +10668,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
}
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CUDA_CHECK(cudaStreamSynchronize(stream));
}
}
@ -10685,8 +10685,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
@ -10817,9 +10817,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
if (!g_cublas_loaded) return false;
ggml_cuda_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
return false;
@ -10966,14 +10966,14 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
return false;
}
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
}
if (params->ith != 0) {
return true;
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return true;
}
func(tensor->src[0], tensor->src[1], tensor);
@ -11072,7 +11072,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
extra->data_device[ctx->device] = tensor->data;
tensor->backend = GGML_BACKEND_GPU;
tensor->backend = GGML_BACKEND_TYPE_GPU;
tensor->extra = extra;
if (ggml_is_quantized(tensor->type)) {
@ -11087,7 +11087,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
}
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
@ -11098,7 +11098,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t
}
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
@ -11333,7 +11333,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
}
}
tensor->backend = GGML_BACKEND_GPU_SPLIT;
tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
tensor->extra = extra;
}
@ -11605,7 +11605,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
}
@ -11614,7 +11614,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
}
@ -11644,7 +11644,7 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
ggml_cuda_set_main_device(cuda_ctx->device);
ggml_compute_params params = {};
params.type = GGML_TASK_COMPUTE;
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -11654,13 +11654,13 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
}
#ifndef NDEBUG
assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT);
assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
assert(node->extra != nullptr);
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT);
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
assert(node->src[j]->extra != nullptr);
}

View file

@ -2262,8 +2262,8 @@ static bool ggml_metal_graph_compute(
id<MTLComputePipelineState> pipeline = nil;
switch (order) {
case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
default: GGML_ASSERT(false);
};

View file

@ -1354,7 +1354,7 @@ static void ggml_cl_pool_free(cl_mem mem, size_t size) {
}
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
if (tensor->backend != GGML_BACKEND_GPU) {
if (tensor->backend != GGML_BACKEND_TYPE_GPU) {
return;
}
@ -1412,7 +1412,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
}
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
@ -1476,7 +1476,7 @@ void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src
}
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
@ -1566,13 +1566,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
size_t y_size;
size_t d_size;
cl_mem d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
d_X = (cl_mem) src0->extra;
} else {
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
}
cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
size_t x_offset = 0;
@ -1580,7 +1580,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
// TODO: copy src0 here when r3>1
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
if (src0->backend == GGML_BACKEND_GPU) {
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne;
} else {
// copy src0 to device
@ -1589,7 +1589,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
// copy src1 to device
if (src1->backend == GGML_BACKEND_CPU) {
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
}
@ -1612,7 +1612,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
}
// copy dst to host
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
}
@ -1621,13 +1621,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
}
}
if (src0->backend != GGML_BACKEND_GPU) {
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
ggml_cl_pool_free(d_X, x_size);
}
if (src1->backend != GGML_BACKEND_GPU) {
if (src1->backend != GGML_BACKEND_TYPE_GPU) {
ggml_cl_pool_free(d_Y, y_size);
}
if (dst->backend != GGML_BACKEND_GPU) {
if (dst->backend != GGML_BACKEND_TYPE_GPU) {
ggml_cl_pool_free(d_D, d_size);
}
}
@ -1670,7 +1670,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
size_t y_size;
size_t d_size;
cl_mem d_X;
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
d_X = (cl_mem) src0->extra;
} else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
@ -1687,7 +1687,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
// TODO: copy src0 here when r3>1
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
if (src0->backend == GGML_BACKEND_GPU) {
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
x_offset = (i03 * ne02 + i02) * x_ne;
} else {
// copy src0 to device
@ -1741,7 +1741,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
}
// copy dst to host, then convert to float
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_fp16_to_fp32_row(tmp, d, d_ne);
@ -1753,7 +1753,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
}
}
if (src0->backend != GGML_BACKEND_GPU) {
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
ggml_cl_pool_free(d_X, x_size);
}
ggml_cl_pool_free(d_Y, y_size);
@ -1798,7 +1798,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
cl_mem d_Q;
if (src0->backend == GGML_BACKEND_CPU) {
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
}
@ -1817,10 +1817,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_GPU) {
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
d_Q = (cl_mem) src0->extra;
} else {
GGML_ASSERT(false);
@ -1829,7 +1829,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
if (!mul_mat_vec) {
// convert src0 to fp32 on device
const size_t global = x_ne / global_denom;
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
@ -1843,7 +1843,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// compute
const size_t global = ne01 * local;
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
const cl_int ncols = ne00;
events.emplace_back();
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
@ -1895,7 +1895,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
}
ggml_cl_pool_free(d_Y, y_size);
ggml_cl_pool_free(d_D, d_size);
if (src0->backend == GGML_BACKEND_CPU) {
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
ggml_cl_pool_free(d_Q, q_size);
}
}
@ -1911,7 +1911,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 &&
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) {
return true;
}
@ -1993,7 +1993,7 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
CL_CHECK(clFinish(queue));
tensor->extra = dst;
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
}
// ggml-backend
@ -2045,7 +2045,7 @@ static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer,
ctx->sub_buffers.push_back(sub_buffer);
tensor->extra = sub_buffer;
}
tensor->backend = GGML_BACKEND_GPU;
tensor->backend = GGML_BACKEND_TYPE_GPU;
}
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {

View file

@ -462,6 +462,30 @@ inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
return res;
}
// NOTE: not tested
inline static int8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
int8x16_t res;
res[ 0] = a[b[ 0]];
res[ 1] = a[b[ 1]];
res[ 2] = a[b[ 2]];
res[ 3] = a[b[ 3]];
res[ 4] = a[b[ 4]];
res[ 5] = a[b[ 5]];
res[ 6] = a[b[ 6]];
res[ 7] = a[b[ 7]];
res[ 8] = a[b[ 8]];
res[ 9] = a[b[ 9]];
res[10] = a[b[10]];
res[11] = a[b[11]];
res[12] = a[b[12]];
res[13] = a[b[13]];
res[14] = a[b[14]];
res[15] = a[b[15]];
return res;
}
#else
#define ggml_int16x8x2_t int16x8x2_t
@ -476,6 +500,7 @@ inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
#define ggml_vld1q_s8_x2 vld1q_s8_x2
#define ggml_vld1q_s8_x4 vld1q_s8_x4
#define ggml_vqtbl1q_s8 vqtbl1q_s8
#define ggml_vqtbl1q_u8 vqtbl1q_u8
#endif
@ -9488,8 +9513,8 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
qs += 16;
vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
vs.val[1] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
vs.val[0] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
vs.val[0] = vceqq_u8(vs.val[0], mask2);
vs.val[1] = vceqq_u8(vs.val[1], mask2);
@ -9497,8 +9522,8 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const v
q3s.val[1] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_1))), vreinterpretq_s8_u8(vs.val[1]));
vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
vs.val[1] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
vs.val[0] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
vs.val[0] = vceqq_u8(vs.val[0], mask2);
vs.val[1] = vceqq_u8(vs.val[1], mask2);

View file

@ -3338,7 +3338,7 @@ void print_ggml_tensor(const char*name, struct ggml_tensor *src){
size_t total_elements = ggml_nelements(src);
const bool src_on_device = src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT;
const bool src_on_device = src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
float *src_data =NULL;
if(src_on_device) {
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
@ -8086,11 +8086,11 @@ static void k_argsort_f32_i32(const float * x, int * dst, const int ncols,
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
swap(dst_row[col], dst_row[ixj]);
}
} else {
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
swap(dst_row[col], dst_row[ixj]);
}
}
@ -10825,7 +10825,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
const sycl::range<3> block_dims(1, 1, ncols);
const sycl::range<3> block_nums(1, nrows, 1);
if (order == GGML_SORT_ASC) {
if (order == GGML_SORT_ORDER_ASC) {
/*
DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
@ -10834,9 +10834,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_argsort_f32_i32<GGML_SORT_ASC>(x, dst, ncols, item_ct1);
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(x, dst, ncols, item_ct1);
});
} else if (order == GGML_SORT_DESC) {
} else if (order == GGML_SORT_ORDER_DESC) {
/*
DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
the limit. To get the device limit, query
@ -10845,7 +10845,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_argsort_f32_i32<GGML_SORT_DESC>(x, dst, ncols, item_ct1);
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(x, dst, ncols, item_ct1);
});
} else {
GGML_ASSERT(false);
@ -11407,12 +11407,12 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
dpct::memcpy_direction kind;
char * src_ptr;
if (src->backend == GGML_BACKEND_CPU) {
if (src->backend == GGML_BACKEND_TYPE_CPU) {
kind = dpct::host_to_device;
src_ptr = (char *) src->data;
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_CPU src_ptr %p\n", src_ptr);
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
kind = dpct::device_to_device;
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
int id;
@ -11846,7 +11846,7 @@ inline void ggml_sycl_op_mul_mat_q(
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
switch (src0->type) {
case GGML_TYPE_Q4_0:
@ -12119,7 +12119,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
// the main device has a larger memory buffer to hold the results from all GPUs
// ldc == nrows of the matrix that cuBLAS writes into
int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
#ifdef GGML_SYCL_F16
bool use_fp16 = true; // TODO(Yu) SYCL capability check
@ -12501,16 +12501,16 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0,
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
// dd = data device
float * src0_ddf = nullptr;
@ -12565,7 +12565,7 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0,
main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
SYCL_CHECK(CHECK_TRY_ERROR(
dpct::get_current_device().queues_wait_and_throw()));
}
@ -12640,8 +12640,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
const int nb2 = dst->nb[2];
const int nb3 = dst->nb[3];
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
@ -12656,13 +12656,13 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
const bool src0_is_contiguous = ggml_is_contiguous(src0);
const bool src1_is_contiguous = ggml_is_contiguous(src1);
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
GGML_ASSERT(!(split && ne02 > 1));
GGML_ASSERT(!(split && ne03 > 1));
GGML_ASSERT(!(split && ne02 < ne12));
@ -12717,8 +12717,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
used_devices++;
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
ggml_sycl_set_device(get_device_id_by_index(id));
const dpct::queue_ptr stream = g_syclStreams[id][0];
@ -12782,8 +12782,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
continue;
}
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
const int64_t row_diff = row_high[id] - row_low[id];
ggml_sycl_set_device(get_device_id_by_index(id));
@ -12809,12 +12809,12 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
// the main device memory buffer can be on VRAM scratch, with space for all partial results
// in that case an offset on dst_ddf_i is needed
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device_index) {
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index) {
dst_dd_i += row_low[id]; // offset is 0 if no tensor split
}
// copy src0, src1 to device if necessary
if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
if (id != g_main_device_index) {
if (convert_src1_to_q8_1) {
char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
@ -12830,14 +12830,14 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
src1_ncols * ne10 * sizeof(float))));
}
}
} else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
} else {
GGML_ASSERT(false);
}
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
/*
DPCT1010:92: SYCL uses exceptions to report errors and does
@ -12867,10 +12867,10 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
if (!dst_on_device) {
void * dst_off_device;
dpct::memcpy_direction kind;
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
dst_off_device = dst->data;
kind = dpct::device_to_host;
} else if (dst->backend == GGML_BACKEND_GPU) {
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
dst_off_device = dst_extra->data_device[g_main_device_index];
kind = dpct::device_to_device;
} else {
@ -12954,7 +12954,7 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
}
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
SYCL_CHECK(CHECK_TRY_ERROR(
dpct::get_current_device().queues_wait_and_throw()));
@ -13091,7 +13091,7 @@ static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst) try {
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
GGML_ASSERT(src0->type == GGML_TYPE_F16);
@ -13129,7 +13129,7 @@ static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -13196,7 +13196,7 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -13372,11 +13372,11 @@ catch (sycl::exception const &exc) {
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device =
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_GPU) &&
( dst->backend == GGML_BACKEND_GPU);
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
( dst->backend == GGML_BACKEND_TYPE_GPU);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX;
for (int64_t id = 0; id < g_device_count; ++id) {
@ -13505,7 +13505,7 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
GGML_ASSERT(!ggml_is_transposed(src00));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
@ -13643,7 +13643,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
if (ids->backend == GGML_BACKEND_GPU) {
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
SYCL_CHECK(CHECK_TRY_ERROR(
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
@ -13661,20 +13661,20 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
src1_row.backend = GGML_BACKEND_GPU;
dst_row.backend = GGML_BACKEND_GPU;
src1_row.backend = GGML_BACKEND_TYPE_GPU;
dst_row.backend = GGML_BACKEND_TYPE_GPU;
src1_row.extra = &src1_row_extra;
dst_row.extra = &dst_row_extra;
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
(char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
(char *) dst->data : (char *) dst_extra->data_device[g_main_device_index];
if (src1->ne[1] == 1) {
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
//int32_t row_id;
@ -13756,7 +13756,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
}
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
}
}
@ -13779,8 +13779,8 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
@ -13887,17 +13887,17 @@ void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
memset(extra, 0, sizeof(*extra));
for (int64_t id = 0; id < g_device_count; ++id) {
if (backend == GGML_BACKEND_GPU && id != g_main_device_index) {
if (backend == GGML_BACKEND_TYPE_GPU && id != g_main_device_index) {
continue;
}
ggml_sycl_set_device(get_device_id_by_index(id));
const dpct::queue_ptr stream = g_syclStreams[id][0];
int64_t row_low, row_high;
if (backend == GGML_BACKEND_GPU) {
if (backend == GGML_BACKEND_TYPE_GPU) {
row_low = 0;
row_high = nrows;
} else if (backend == GGML_BACKEND_GPU_SPLIT) {
} else if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
const int64_t rounding = get_row_rounding(tensor->type);
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
@ -13946,7 +13946,7 @@ void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
extra->data_device[id] = buf;
if (backend == GGML_BACKEND_GPU_SPLIT) {
if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
for (int64_t is = 0; is < MAX_STREAMS; ++is) {
SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
new sycl::event()));
@ -13963,7 +13963,7 @@ catch (sycl::exception const &exc) {
}
void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_TYPE_GPU && tensor->backend != GGML_BACKEND_TYPE_GPU_SPLIT) ) {
return;
}
@ -14016,15 +14016,15 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
return;
}
tensor->backend = GGML_BACKEND_GPU;
tensor->backend = GGML_BACKEND_TYPE_GPU;
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU) {
const ggml_op src0_op = tensor->src[0]->op;
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
}
}
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU) {
ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
}
@ -14042,7 +14042,7 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
size_t offset = 0;
@ -14111,7 +14111,7 @@ void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor,
const bool inplace = tensor->view_src != nullptr;
if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
if (inplace && (tensor->view_src->backend == GGML_BACKEND_TYPE_GPU || tensor->view_src->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
size_t view_offset = 0;
@ -14132,7 +14132,7 @@ catch (sycl::exception const &exc) {
}
void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(ggml_is_contiguous(tensor));
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
@ -14219,9 +14219,9 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
if (!g_sycl_loaded) return false;
ggml_sycl_func_t func;
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
return false;
@ -14359,14 +14359,14 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
return false;
}
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
}
if (params->ith != 0) {
return true;
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return true;
}
func(tensor->src[0], tensor->src[1], tensor);
@ -14517,7 +14517,7 @@ static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
extra->data_device[ctx->device] = tensor->data;
tensor->backend = GGML_BACKEND_GPU;
tensor->backend = GGML_BACKEND_TYPE_GPU;
tensor->extra = extra;
if (ggml_is_quantized(tensor->type)) {
@ -14548,7 +14548,7 @@ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor *tensor,
const void *data, size_t offset,
size_t size) try {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
@ -14573,7 +14573,7 @@ static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor *tensor,
void *data, size_t offset,
size_t size) try {
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
@ -14809,7 +14809,7 @@ static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
(char *)tensor->data + offset, data, size)));
@ -14827,7 +14827,7 @@ static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
data, (const char *)tensor->data + offset, size)));
@ -14880,7 +14880,7 @@ static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph
ggml_sycl_set_main_device(sycl_ctx->device);
ggml_compute_params params = {};
params.type = GGML_TASK_COMPUTE;
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -14888,13 +14888,13 @@ static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
continue;
assert(node->backend == GGML_BACKEND_GPU);
assert(node->backend == GGML_BACKEND_TYPE_GPU);
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
assert(node->extra != nullptr);
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->backend == GGML_BACKEND_GPU);
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU);
assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
assert(node->src[j]->extra != nullptr);
}

View file

@ -2320,8 +2320,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
src1_uma = d_Qy != nullptr;
}
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
@ -2453,7 +2453,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
// compute
ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
// copy dst to host
float * d = (float *) ((char *) dst->data);
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
@ -2506,8 +2506,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
src1_uma = d_Qy != nullptr;
}
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
@ -2630,7 +2630,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
// copy dst to host
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
ggml_vk_sync_buffers(subctx);
@ -2647,7 +2647,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
#endif
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
GGML_ASSERT(src0->type == GGML_TYPE_F16);
@ -2679,7 +2679,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
src1_uma = d_Qy != nullptr;
}
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
const uint64_t x_ne = ne00 * ne01 * ne02;
const uint64_t y_ne = ne10 * ne11 * ne12;
@ -2721,7 +2721,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
// copy dst to host
float * d = (float *) dst->data;
ggml_vk_sync_buffers(subctx);
@ -2738,7 +2738,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
GGML_ASSERT(!ggml_is_transposed(src0));
GGML_ASSERT(!ggml_is_transposed(src1));
GGML_ASSERT(!ggml_is_permuted(src0));
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
@ -2771,7 +2771,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
src1_uma = d_Qy != nullptr;
}
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
const uint64_t d_ne = ne01 * ne11 * ne12;
@ -2814,7 +2814,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
// copy dst to host
float * d = (float *) dst->data;
ggml_vk_sync_buffers(subctx);
@ -2832,7 +2832,7 @@ static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * sr
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
dst->type == GGML_TYPE_F32 &&
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU);
}
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
@ -2880,8 +2880,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
@ -3110,8 +3110,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
}
}
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
const bool transfer_src0 = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0;
@ -3120,7 +3120,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
vk_buffer d_D = extra->buffer_gpu.lock();
// Workaround for tiny tensor inputs on ROPE
if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) {
if (use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU && y_sz > d_D->size) {
y_sz = VK_WHOLE_SIZE;
}
@ -3209,9 +3209,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
}
if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
if (dst->backend == GGML_BACKEND_TYPE_CPU && op == GGML_OP_CPY) {
ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
} else if(dst->backend == GGML_BACKEND_CPU) {
} else if(dst->backend == GGML_BACKEND_TYPE_CPU) {
// copy dst to host
float * d = (float *) dst->data;
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
@ -3253,7 +3253,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
}
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
// copy dst to host
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
}
@ -3359,7 +3359,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
// If backend is CPU, data from src0 has to be copied off the device
if (dst->backend == GGML_BACKEND_CPU) {
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
vk_buffer d_D = extra_src0->buffer_gpu.lock();
ggml_vk_sync_buffers(subctx);
@ -3994,9 +3994,9 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm
#ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
#endif
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_TYPE_GPU));
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
return;
@ -4215,9 +4215,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
}
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_TYPE_GPU);
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
return;
@ -4371,7 +4371,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
last_node = true;
#endif
if (node->backend == GGML_BACKEND_CPU || last_node) {
if (node->backend == GGML_BACKEND_TYPE_CPU || last_node) {
ggml_vk_ctx_end(ctx->compute_ctx);
ctx->compute_ctx->exit_tensor = node;
ctx->compute_ctx = nullptr;
@ -4379,9 +4379,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
}
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
return false;
@ -4442,7 +4442,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
if (params->ith != 0) {
return true;
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return true;
}
@ -4745,7 +4745,7 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
}
tensor->backend = GGML_BACKEND_GPU;
tensor->backend = GGML_BACKEND_TYPE_GPU;
tensor->extra = extra;
}
@ -4753,7 +4753,7 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu
#ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
#endif
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
@ -4768,7 +4768,7 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu
#ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
#endif
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
@ -4999,7 +4999,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
#endif
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
@ -5020,7 +5020,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
#endif
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
@ -5097,7 +5097,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
int last_node = cgraph->n_nodes - 1;
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) {
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_TYPE_GPU) {
last_node -= 1;
}
@ -5106,7 +5106,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
}
ggml_compute_params params = {};
params.type = GGML_TASK_COMPUTE;
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@ -5410,7 +5410,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
void * tensor_data = tensor->data;
if (tensor->backend == GGML_BACKEND_GPU) {
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
const size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
@ -5436,14 +5436,14 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
if (tensor->backend == GGML_BACKEND_GPU) {
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
free(tensor_data);
}
}
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
return;
GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
return;
}
@ -5481,7 +5481,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
return;
}
@ -5518,10 +5518,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src0_buffer = malloc(src0_size);
src0_clone->data = src0_buffer;
if (src0->backend == GGML_BACKEND_CPU) {
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
memcpy(src0_clone->data, src0->data, src0_size);
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (src0->backend == GGML_BACKEND_GPU) {
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
uint64_t offset = extra->offset;
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
@ -5561,10 +5561,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src1_buffer = malloc(src1_size);
src1_clone->data = src1_buffer;
if (src1->backend == GGML_BACKEND_CPU) {
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
memcpy(src1_clone->data, src1->data, src1_size);
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (src1->backend == GGML_BACKEND_GPU) {
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
uint64_t offset = extra->offset;
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
@ -5723,7 +5723,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
return;
}
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
@ -5735,7 +5735,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
void * tensor_data = tensor->data;
if (tensor->backend == GGML_BACKEND_GPU) {
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
@ -5868,7 +5868,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
comp_result = nullptr;
comp_size = 0;
if (tensor->backend == GGML_BACKEND_GPU) {
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
free(tensor_data);
}
}

350
ggml.c

File diff suppressed because it is too large Load diff

38
ggml.h
View file

@ -364,9 +364,9 @@ extern "C" {
};
enum ggml_backend_type {
GGML_BACKEND_CPU = 0,
GGML_BACKEND_GPU = 10,
GGML_BACKEND_GPU_SPLIT = 20,
GGML_BACKEND_TYPE_CPU = 0,
GGML_BACKEND_TYPE_GPU = 10,
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
};
// model file types
@ -498,9 +498,9 @@ extern "C" {
};
enum ggml_object_type {
GGML_OBJECT_TENSOR,
GGML_OBJECT_GRAPH,
GGML_OBJECT_WORK_BUFFER
GGML_OBJECT_TYPE_TENSOR,
GGML_OBJECT_TYPE_GRAPH,
GGML_OBJECT_TYPE_WORK_BUFFER
};
enum ggml_log_level {
@ -642,9 +642,9 @@ extern "C" {
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
enum ggml_task_type {
GGML_TASK_INIT = 0,
GGML_TASK_COMPUTE,
GGML_TASK_FINALIZE,
GGML_TASK_TYPE_INIT = 0,
GGML_TASK_TYPE_COMPUTE,
GGML_TASK_TYPE_FINALIZE,
};
struct ggml_compute_params {
@ -1649,8 +1649,8 @@ extern "C" {
// sort rows
enum ggml_sort_order {
GGML_SORT_ASC,
GGML_SORT_DESC,
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
GGML_API struct ggml_tensor * ggml_argsort(
@ -1943,8 +1943,8 @@ extern "C" {
// optimization methods
enum ggml_opt_type {
GGML_OPT_ADAM,
GGML_OPT_LBFGS,
GGML_OPT_TYPE_ADAM,
GGML_OPT_TYPE_LBFGS,
};
// linesearch methods
@ -1958,12 +1958,12 @@ extern "C" {
// optimization return values
enum ggml_opt_result {
GGML_OPT_OK = 0,
GGML_OPT_DID_NOT_CONVERGE,
GGML_OPT_NO_CONTEXT,
GGML_OPT_INVALID_WOLFE,
GGML_OPT_FAIL,
GGML_OPT_CANCEL,
GGML_OPT_RESULT_OK = 0,
GGML_OPT_RESULT_DID_NOT_CONVERGE,
GGML_OPT_RESULT_NO_CONTEXT,
GGML_OPT_RESULT_INVALID_WOLFE,
GGML_OPT_RESULT_FAIL,
GGML_OPT_RESULT_CANCEL,
GGML_LINESEARCH_FAIL = -128,
GGML_LINESEARCH_MINIMUM_STEP,

893
llama.cpp

File diff suppressed because it is too large Load diff

62
llama.h
View file

@ -64,6 +64,15 @@ extern "C" {
LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
};
// note: these values should be synchronized with ggml_rope
// TODO: maybe move this enum to ggml.h (ggml_rope_type)
enum llama_rope_type {
LLAMA_ROPE_TYPE_NONE = -1,
LLAMA_ROPE_TYPE_NORM = 0,
LLAMA_ROPE_TYPE_NEOX = 2,
LLAMA_ROPE_TYPE_GLM = 4,
};
enum llama_token_type {
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
LLAMA_TOKEN_TYPE_NORMAL = 1,
@ -109,23 +118,23 @@ extern "C" {
};
enum llama_rope_scaling_type {
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_NONE = 0,
LLAMA_ROPE_SCALING_LINEAR = 1,
LLAMA_ROPE_SCALING_YARN = 2,
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
};
enum llama_pooling_type {
LLAMA_POOLING_NONE = 0,
LLAMA_POOLING_MEAN = 1,
LLAMA_POOLING_CLS = 2,
LLAMA_POOLING_TYPE_NONE = 0,
LLAMA_POOLING_TYPE_MEAN = 1,
LLAMA_POOLING_TYPE_CLS = 2,
};
enum llama_split_mode {
LLAMA_SPLIT_NONE = 0, // single GPU
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
};
typedef struct llama_token_data {
@ -173,9 +182,9 @@ extern "C" {
} llama_batch;
enum llama_model_kv_override_type {
LLAMA_KV_OVERRIDE_INT,
LLAMA_KV_OVERRIDE_FLOAT,
LLAMA_KV_OVERRIDE_BOOL,
LLAMA_KV_OVERRIDE_TYPE_INT,
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
LLAMA_KV_OVERRIDE_TYPE_BOOL,
};
struct llama_model_kv_override {
@ -360,6 +369,7 @@ extern "C" {
LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
@ -514,10 +524,12 @@ extern "C" {
llama_seq_id seq_id);
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
// If the KV cache is RoPEd, the KV data is updated accordingly
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_shift(
LLAMA_API void llama_kv_cache_seq_add(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
@ -525,7 +537,9 @@ extern "C" {
llama_pos delta);
// Integer division of the positions by factor of `d > 1`
// If the KV cache is RoPEd, the KV data is updated accordingly
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_div(
@ -535,6 +549,20 @@ extern "C" {
llama_pos p1,
int d);
// Returns the largest position present in the KV cache for the specified sequence
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
struct llama_context * ctx,
llama_seq_id seq_id);
// Defragment the KV cache
// This will be applied:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
//
// State / sessions
//

View file

@ -1264,7 +1264,7 @@ struct test_argsort : public test_case {
test_argsort(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {16, 10, 10, 10},
ggml_sort_order order = GGML_SORT_ASC)
ggml_sort_order order = GGML_SORT_ORDER_ASC)
: type(type), ne(ne), order(order) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
@ -2116,7 +2116,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
}

View file

@ -118,7 +118,7 @@ int main(void) {
const float fe = ggml_get_f32_1d(e, 0);
printf("%s: e = %.4f\n", __func__, fe);
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
ggml_opt(ctx, opt_params, e);