Improve cuBLAS performance by dequantizing on the GPU (#1065)

This commit is contained in:
slaren 2023-04-20 03:14:14 +02:00 committed by GitHub
parent 834695fe3a
commit 02d6988121
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 221 additions and 41 deletions

80
ggml.c
View file

@ -150,23 +150,25 @@ inline static void* ggml_aligned_malloc(size_t size) {
#elif defined(GGML_USE_CUBLAS)
#include <cublas_v2.h>
#include <cuda_runtime.h>
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
#include "ggml-cuda.h"
#define CUDA_CHECK(err) \
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
exit(1); \
} \
} while (0)
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
#define CUBLAS_CHECK(err) \
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
static cublasHandle_t cublasH = NULL;
@ -177,6 +179,7 @@ static void init_cublas(void) {
CUBLAS_CHECK(cublasCreate(&cublasH));
CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
// configure logging to stdout
@ -7311,7 +7314,6 @@ static void ggml_compute_forward_mul_mat_f32(
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
#else
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
@ -7323,6 +7325,7 @@ static void ggml_compute_forward_mul_mat_f32(
}
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
CUDA_CHECK(cudaFree(d_X));
CUDA_CHECK(cudaFree(d_Y));
CUDA_CHECK(cudaFree(d_D));
@ -7535,7 +7538,6 @@ static void ggml_compute_forward_mul_mat_f16_f32(
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
#else
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
@ -7553,6 +7555,7 @@ static void ggml_compute_forward_mul_mat_f16_f32(
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
CUDA_CHECK(cudaFree(d_X));
CUDA_CHECK(cudaFree(d_Y));
CUDA_CHECK(cudaFree(d_D));
@ -7722,13 +7725,11 @@ static void ggml_compute_forward_mul_mat_q_f32(
return;
}
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
#if defined(GGML_USE_CUBLAS)
float *d_X = NULL;
float *d_Y = NULL;
float *d_D = NULL;
float *d_Q = NULL;
const float alpha = 1.0f;
const float beta = 0.0f;
const int x_ne = ne01 * ne10;
@ -7738,10 +7739,41 @@ static void ggml_compute_forward_mul_mat_q_f32(
CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
CUDA_CHECK(cudaMalloc((void **)(&d_Q), GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type]));
void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
if (type == GGML_TYPE_Q4_0) {
dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
}
else if (type == GGML_TYPE_Q4_1) {
dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
}
else if (type == GGML_TYPE_Q4_2) {
dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
}
else {
GGML_ASSERT(false);
}
#else
float * const wdata = params->wdata;
dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
#endif
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy and dequantize on device
CUDA_CHECK(
cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, cudaStream));
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, cudaStream);
CUDA_CHECK(cudaGetLastError());
#else
{
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
@ -7749,15 +7781,12 @@ static void ggml_compute_forward_mul_mat_q_f32(
id += ne00;
}
}
const float * x = wdata;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
#endif
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy data to device
CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
// compute
@ -7770,7 +7799,6 @@ static void ggml_compute_forward_mul_mat_q_f32(
// copy data to host
CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
#else
// zT = y * xT
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
@ -7783,9 +7811,11 @@ static void ggml_compute_forward_mul_mat_q_f32(
}
#if defined(GGML_USE_CUBLAS)
CUDA_CHECK(cudaStreamSynchronize(cudaStream));
CUDA_CHECK(cudaFree(d_X));
CUDA_CHECK(cudaFree(d_Y));
CUDA_CHECK(cudaFree(d_D));
CUDA_CHECK(cudaFree(d_Q));
#endif
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);