llama : support batched embeddings (#5466)

* batched embedding: pool outputs by sequence id. updated embedding example

* bring back non-causal attention

* embd : minor improvements

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Douglas Hanley 2024-02-13 06:06:58 -06:00 committed by GitHub
parent ad014bba97
commit 03bf161eb6
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 163 additions and 54 deletions

View file

@ -254,6 +254,7 @@ enum llm_kv {
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
LLM_KV_EXPERT_USED_COUNT,
LLM_KV_POOLING_LAYER,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@ -311,6 +312,7 @@ static std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
{ LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
{ LLM_KV_POOLING_LAYER, "%s.pooling_layer" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -1539,6 +1541,7 @@ struct llama_hparams {
float f_max_alibi_bias;
bool causal_attn = true;
bool pooling_layer = false;
bool operator!=(const llama_hparams & other) const {
@ -1601,6 +1604,7 @@ struct llama_cparams {
bool mul_mat_q;
bool offload_kqv;
bool do_pooling;
ggml_backend_sched_eval_callback cb_eval;
void * cb_eval_user_data;
@ -1896,7 +1900,7 @@ struct llama_context {
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [n_ctx]
struct ggml_tensor * inp_sum; // F32 [1, n_batch]
struct ggml_tensor * inp_sum; // F32 [n_batch, n_batch]
#ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL;
@ -3053,6 +3057,7 @@ static void llm_load_hparams(
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
ml.get_key(LLM_KV_POOLING_LAYER, hparams.pooling_layer);
switch (hparams.n_layer) {
case 3:
@ -4859,7 +4864,7 @@ struct llm_build_context {
const int32_t n_orig_ctx;
const bool do_rope_shift;
const bool causal_attn;
const bool do_pooling;
const llm_build_cb & cb;
@ -4903,7 +4908,7 @@ struct llm_build_context {
kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
n_orig_ctx (cparams.n_yarn_orig_ctx),
do_rope_shift (worst_case || kv_self.has_shift),
causal_attn (hparams.causal_attn),
do_pooling (hparams.pooling_layer && cparams.do_pooling),
cb (cb),
buf_compute_meta (lctx.buf_compute_meta) {
// all initializations should be done in init()
@ -5752,17 +5757,18 @@ struct llm_build_context {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
// get input vectors with right size
const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type);
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
struct ggml_tensor * inp_sum = ggml_view_1d(ctx0, lctx.inp_sum, n_tokens, 0);
struct ggml_tensor * inp_sum = ggml_view_2d(ctx0, lctx.inp_sum, n_tokens, n_tokens, stride1, 0);
// construct input embeddings (token, type, position)
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
// token types are hardcoded to zero ("Sentence A")
struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
@ -5832,9 +5838,11 @@ struct llm_build_context {
// final output
cur = inpL;
// pooling
cur = ggml_mul_mat(ctx0, inp_sum, ggml_cont(ctx0, ggml_transpose(ctx0, cur)));
cb(cur, "result_embed", -1);
// pooling layer
if (do_pooling) {
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_sum);
}
cb(cur, "result_embd", -1);
ggml_build_forward_expand(gf, cur);
@ -7367,7 +7375,8 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
for (int i = 0; i < n_kv; ++i) {
float f;
if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
if (!lctx.kv_self.cells[i].has_seq_id(seq_id) ||
(hparams.causal_attn && lctx.kv_self.cells[i].pos > pos)) {
f = -INFINITY;
} else {
f = 0;
@ -7378,7 +7387,6 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
}
}
{
assert(ggml_backend_buffer_is_host(lctx.inp_sum->buffer));
float * data = (float *) lctx.inp_sum->data;
@ -7399,6 +7407,20 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
data[i] = lctx.kv_self.cells[i].delta;
}
}
if (hparams.pooling_layer && cparams.do_pooling) {
const int64_t n_tokens = batch.n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_sum->buffer));
float * data = (float *) lctx.inp_sum->data;
memset(lctx.inp_sum->data, 0, batch.n_tokens * batch.n_tokens * ggml_element_size(lctx.inp_sum));
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
data[seq_id*n_tokens + i] = 1.0f;
}
}
}
// decode a batch of tokens by evaluating the transformer
@ -7510,7 +7532,7 @@ static int llama_decode_internal(
embeddings = gf->nodes[gf->n_nodes - 3];
GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
}
} else if (strcmp(res->name, "result_embed") == 0) {
} else if (strcmp(res->name, "result_embd") == 0) {
embeddings = res;
res = nullptr;
} else {
@ -7630,11 +7652,12 @@ static int llama_decode_internal(
if (!lctx.embedding.empty()) {
auto & embedding_out = lctx.embedding;
const int64_t embed_pos = res ? n_embd * (n_tokens-1) : 0;
const int64_t embd_pos = res ? n_embd * (n_tokens-1) : 0;
const int64_t embd_size = res ? n_embd : n_embd * n_tokens;
embedding_out.resize(n_embd);
embedding_out.resize(embd_size);
ggml_backend_t embeddings_backend = ggml_backend_sched_get_node_backend(lctx.sched, embeddings);
ggml_backend_tensor_get_async(embeddings_backend, embeddings, embedding_out.data(), embed_pos*sizeof(float), n_embd*sizeof(float));
ggml_backend_tensor_get_async(embeddings_backend, embeddings, embedding_out.data(), embd_pos*sizeof(float), embd_size*sizeof(float));
ggml_backend_synchronize(embeddings_backend);
}
@ -10950,6 +10973,7 @@ struct llama_context_params llama_context_default_params() {
/*.logits_all =*/ false,
/*.embedding =*/ false,
/*.offload_kqv =*/ true,
/*.do_pooling =*/ true,
};
return result;
@ -11105,6 +11129,7 @@ struct llama_context * llama_new_context_with_model(
cparams.yarn_beta_slow = params.yarn_beta_slow;
cparams.mul_mat_q = params.mul_mat_q;
cparams.offload_kqv = params.offload_kqv;
cparams.do_pooling = params.do_pooling;
cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
@ -11252,7 +11277,7 @@ struct llama_context * llama_new_context_with_model(
// resized during inference, reserve maximum
ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
if (params.embedding){
if (params.embedding) {
ctx->embedding.resize(hparams.n_embd);
}
@ -11270,7 +11295,7 @@ struct llama_context * llama_new_context_with_model(
ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch);
ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx);
ctx->inp_sum = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, 1, cparams.n_batch);
ctx->inp_sum = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
ggml_set_name(ctx->inp_tokens, "inp_tokens");
ggml_set_name(ctx->inp_embd, "inp_embd");
@ -12128,6 +12153,10 @@ float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data();
}
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
return ctx->embedding.data() + i*ctx->model.hparams.n_embd;
}
const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
return model->vocab.id_to_token[token].text.c_str();
}