Merge branch 'ggerganov:master' into main
This commit is contained in:
commit
041627284d
60 changed files with 7565 additions and 3309 deletions
|
@ -5,9 +5,10 @@ FROM ubuntu:$UBUNTU_VERSION as build
|
|||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install numpy requests sentencepiece tqdm \
|
||||
&& pip install torch --index-url https://download.pytorch.org/whl/cpu
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
|
|
|
@ -15,4 +15,4 @@ FROM ubuntu:$UBUNTU_VERSION as runtime
|
|||
|
||||
COPY --from=build /app/main /main
|
||||
|
||||
ENTRYPOINT [ "/main" ]
|
||||
ENTRYPOINT [ "/main" ]
|
||||
|
|
|
@ -21,4 +21,4 @@ models/*
|
|||
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
Dockerfile
|
||||
Dockerfile
|
||||
|
|
5
.ecrc
Normal file
5
.ecrc
Normal file
|
@ -0,0 +1,5 @@
|
|||
{
|
||||
"Disable": {
|
||||
"IndentSize": true
|
||||
}
|
||||
}
|
19
.editorconfig
Normal file
19
.editorconfig
Normal file
|
@ -0,0 +1,19 @@
|
|||
# https://EditorConfig.org
|
||||
|
||||
# Top-most EditorConfig file
|
||||
root = true
|
||||
|
||||
# Unix-style newlines with a newline ending every file, utf-8 charset
|
||||
[*]
|
||||
end_of_line = lf
|
||||
insert_final_newline = true
|
||||
trim_trailing_whitespace = true
|
||||
charset = utf-8
|
||||
indent_style = space
|
||||
indent_size = 4
|
||||
|
||||
[Makefile]
|
||||
indent_style = tab
|
||||
|
||||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
16
.github/ISSUE_TEMPLATE/custom.md
vendored
16
.github/ISSUE_TEMPLATE/custom.md
vendored
|
@ -22,9 +22,9 @@ Please provide a detailed written description of what you were trying to do, and
|
|||
|
||||
# Current Behavior
|
||||
|
||||
Please provide a detailed written description of what `llama.cpp` did, instead.
|
||||
Please provide a detailed written description of what `llama.cpp` did, instead.
|
||||
|
||||
# Environment and Context
|
||||
# Environment and Context
|
||||
|
||||
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
|
||||
|
||||
|
@ -133,7 +133,7 @@ llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.
|
|||
llama_model_load: .......................................................................................... done
|
||||
llama_model_load: model size = 4869.09 MB / num tensors = 723
|
||||
|
||||
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
|
||||
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
|
||||
|
||||
main: prompt: 'Please close your issue when it has been answered.'
|
||||
main: number of tokens in prompt = 11
|
||||
|
@ -166,14 +166,14 @@ main: total time = 246406.42 ms
|
|||
|
||||
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
|
||||
|
||||
3636882.89 msec task-clock # 14.677 CPUs utilized
|
||||
13509 context-switches # 3.714 /sec
|
||||
2436 cpu-migrations # 0.670 /sec
|
||||
10476679 page-faults # 2.881 K/sec
|
||||
3636882.89 msec task-clock # 14.677 CPUs utilized
|
||||
13509 context-switches # 3.714 /sec
|
||||
2436 cpu-migrations # 0.670 /sec
|
||||
10476679 page-faults # 2.881 K/sec
|
||||
13133115082869 cycles # 3.611 GHz (16.77%)
|
||||
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
|
||||
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
|
||||
23479217109614 instructions # 1.79 insn per cycle
|
||||
23479217109614 instructions # 1.79 insn per cycle
|
||||
# 0.44 stalled cycles per insn (16.76%)
|
||||
2353072268027 branches # 647.002 M/sec (16.77%)
|
||||
1998682780 branch-misses # 0.08% of all branches (16.76%)
|
||||
|
|
17
.github/workflows/build.yml
vendored
17
.github/workflows/build.yml
vendored
|
@ -8,6 +8,8 @@ on:
|
|||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp']
|
||||
pull_request:
|
||||
types: [opened, synchronize, edited, reopened, review_requested, ready_for_review]
|
||||
|
@ -18,6 +20,8 @@ env:
|
|||
|
||||
jobs:
|
||||
ubuntu-latest-make:
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
|
@ -37,6 +41,8 @@ jobs:
|
|||
make
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
|
@ -65,6 +71,8 @@ jobs:
|
|||
ctest --verbose
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
@ -73,7 +81,6 @@ jobs:
|
|||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
accelerate: [ON, OFF]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
@ -91,7 +98,7 @@ jobs:
|
|||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} -DLLAMA_ACCELERATE=${{ matrix.accelerate }}
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }}
|
||||
|
||||
- name: Test
|
||||
|
@ -101,6 +108,8 @@ jobs:
|
|||
ctest --verbose
|
||||
|
||||
macOS-latest-make:
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
|
@ -119,6 +128,8 @@ jobs:
|
|||
make
|
||||
|
||||
macOS-latest-cmake:
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: macOS-latest
|
||||
|
||||
steps:
|
||||
|
@ -146,6 +157,8 @@ jobs:
|
|||
ctest --verbose
|
||||
|
||||
windows-latest-cmake:
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
|
|
4
.github/workflows/docker.yml
vendored
4
.github/workflows/docker.yml
vendored
|
@ -18,6 +18,8 @@ on:
|
|||
jobs:
|
||||
push_to_registry:
|
||||
name: Push Docker image to Docker Hub
|
||||
if: github.event.pull_request.draft == false
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
COMMIT_SHA: ${{ github.sha }}
|
||||
|
@ -60,4 +62,4 @@ jobs:
|
|||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: linux/amd64,linux/arm64
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
|
17
.github/workflows/editorconfig.yml
vendored
Normal file
17
.github/workflows/editorconfig.yml
vendored
Normal file
|
@ -0,0 +1,17 @@
|
|||
name: EditorConfig Checker
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
editorconfig:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: editorconfig-checker/action-editorconfig-checker@main
|
||||
- run: editorconfig-checker
|
21
.gitignore
vendored
21
.gitignore
vendored
|
@ -1,11 +1,15 @@
|
|||
*.o
|
||||
*.a
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
.direnv/
|
||||
.envrc
|
||||
.swiftpm
|
||||
.venv
|
||||
.vs/
|
||||
.vscode/
|
||||
.DS_Store
|
||||
|
||||
.build/
|
||||
build/
|
||||
build-em/
|
||||
build-debug/
|
||||
|
@ -19,17 +23,20 @@ models/*
|
|||
|
||||
/main
|
||||
/quantize
|
||||
/quantize-stats
|
||||
/result
|
||||
/perplexity
|
||||
/embedding
|
||||
/benchmark-q4_0-matmult
|
||||
/vdot
|
||||
/Pipfile
|
||||
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
|
||||
.envrc
|
||||
.direnv/
|
||||
|
||||
.venv
|
||||
__pycache__
|
||||
.swiftpm
|
||||
|
||||
zig-out/
|
||||
zig-cache/
|
||||
|
||||
ppl-*.txt
|
||||
|
|
104
CMakeLists.txt
104
CMakeLists.txt
|
@ -55,11 +55,18 @@ option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer"
|
|||
option(LLAMA_AVX "llama: enable AVX" ON)
|
||||
option(LLAMA_AVX2 "llama: enable AVX2" ON)
|
||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||
option(LLAMA_FMA "llama: enable FMA" ON)
|
||||
# in MSVC F16C is implied with AVX2/AVX512
|
||||
if (NOT MSVC)
|
||||
option(LLAMA_F16C "llama: enable F16C" ON)
|
||||
endif()
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
|
||||
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
|
@ -103,6 +110,7 @@ if (APPLE AND LLAMA_ACCELERATE)
|
|||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_OPENBLAS)
|
||||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
|
@ -115,11 +123,51 @@ if (LLAMA_OPENBLAS)
|
|||
|
||||
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||
add_link_options(${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas)
|
||||
|
||||
# find header file
|
||||
set(OPENBLAS_INCLUDE_SEARCH_PATHS
|
||||
/usr/include
|
||||
/usr/include/openblas
|
||||
/usr/include/openblas-base
|
||||
/usr/local/include
|
||||
/usr/local/include/openblas
|
||||
/usr/local/include/openblas-base
|
||||
/opt/OpenBLAS/include
|
||||
$ENV{OpenBLAS_HOME}
|
||||
$ENV{OpenBLAS_HOME}/include
|
||||
)
|
||||
find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
|
||||
add_compile_options(-I${OPENBLAS_INC})
|
||||
else()
|
||||
message(WARNING "OpenBLAS not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_CUBLAS)
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
if (CUDAToolkit_FOUND)
|
||||
message(STATUS "cuBLAS found")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
else()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
else()
|
||||
message(WARNING "cuBLAS not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(c_flags
|
||||
|
@ -131,7 +179,6 @@ if (LLAMA_ALL_WARNINGS)
|
|||
-Wshadow
|
||||
-Wstrict-prototypes
|
||||
-Wpointer-arith
|
||||
-Wno-unused-function
|
||||
)
|
||||
set(cxx_flags
|
||||
-Wall
|
||||
|
@ -139,6 +186,7 @@ if (LLAMA_ALL_WARNINGS)
|
|||
-Wpedantic
|
||||
-Wcast-qual
|
||||
-Wno-unused-function
|
||||
-Wno-multichar
|
||||
)
|
||||
else()
|
||||
# todo : msvc
|
||||
|
@ -151,6 +199,10 @@ if (LLAMA_ALL_WARNINGS)
|
|||
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
endif()
|
||||
|
||||
if (LLAMA_LTO)
|
||||
include(CheckIPOSupported)
|
||||
check_ipo_supported(RESULT result OUTPUT output)
|
||||
|
@ -194,14 +246,31 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
|||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
if (LLAMA_AVX512)
|
||||
add_compile_options(/arch:AVX512)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
elseif (LLAMA_AVX2)
|
||||
add_compile_options(/arch:AVX2)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX2>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX2>)
|
||||
elseif (LLAMA_AVX)
|
||||
add_compile_options(/arch:AVX)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
||||
endif()
|
||||
else()
|
||||
add_compile_options(-mf16c)
|
||||
if (LLAMA_F16C)
|
||||
add_compile_options(-mf16c)
|
||||
endif()
|
||||
if (LLAMA_FMA)
|
||||
add_compile_options(-mfma)
|
||||
endif()
|
||||
|
@ -213,9 +282,13 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
|||
endif()
|
||||
if (LLAMA_AVX512)
|
||||
add_compile_options(-mavx512f)
|
||||
# add_compile_options(-mavx512cd)
|
||||
# add_compile_options(-mavx512dq)
|
||||
# add_compile_options(-mavx512bw)
|
||||
add_compile_options(-mavx512bw)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
add_compile_options(-mavx512vbmi)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
add_compile_options(-mavx512vnni)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
|
@ -229,7 +302,8 @@ endif()
|
|||
|
||||
add_library(ggml OBJECT
|
||||
ggml.c
|
||||
ggml.h)
|
||||
ggml.h
|
||||
${GGML_CUDA_SOURCES})
|
||||
|
||||
target_include_directories(ggml PUBLIC .)
|
||||
target_compile_features(ggml PUBLIC c_std_11) # don't bump
|
||||
|
@ -240,7 +314,8 @@ endif()
|
|||
|
||||
add_library(llama
|
||||
llama.cpp
|
||||
llama.h)
|
||||
llama.h
|
||||
llama_util.h)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
|
||||
|
@ -250,6 +325,14 @@ if (BUILD_SHARED_LIBS)
|
|||
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_SOURCES)
|
||||
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
||||
set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
||||
set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
endif()
|
||||
|
||||
|
||||
#
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
@ -261,4 +344,5 @@ endif ()
|
|||
|
||||
if (LLAMA_BUILD_EXAMPLES)
|
||||
add_subdirectory(examples)
|
||||
add_subdirectory(pocs)
|
||||
endif()
|
||||
|
|
56
Makefile
56
Makefile
|
@ -1,3 +1,6 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
default: main quantize quantize-stats perplexity embedding vdot
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
endif
|
||||
|
@ -36,8 +39,8 @@ CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
|
|||
LDFLAGS =
|
||||
|
||||
# warnings
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wno-unused-function
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
|
@ -72,6 +75,7 @@ endif
|
|||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
# Use all CPU extensions that are available:
|
||||
CFLAGS += -march=native -mtune=native
|
||||
CXXFLAGS += -march=native -mtune=native
|
||||
endif
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
|
@ -96,6 +100,13 @@ ifdef LLAMA_OPENBLAS
|
|||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64
|
||||
OBJS += ggml-cuda.o
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
nvcc -arch=native -c -o $@ $<
|
||||
endif
|
||||
ifdef LLAMA_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
|
@ -132,43 +143,54 @@ $(info I CC: $(CCV))
|
|||
$(info I CXX: $(CXXV))
|
||||
$(info )
|
||||
|
||||
default: main quantize perplexity embedding
|
||||
|
||||
#
|
||||
# Build library
|
||||
#
|
||||
|
||||
ggml.o: ggml.c ggml.h
|
||||
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
llama.o: llama.cpp llama.h
|
||||
$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
|
||||
llama.o: llama.cpp ggml.h llama.h llama_util.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common.o: examples/common.cpp examples/common.h
|
||||
$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
clean:
|
||||
rm -vf *.o main quantize perplexity embedding
|
||||
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult
|
||||
|
||||
main: examples/main/main.cpp ggml.o llama.o common.o
|
||||
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
|
||||
main: examples/main/main.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
quantize: examples/quantize/quantize.cpp ggml.o llama.o
|
||||
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS)
|
||||
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
|
||||
$(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS)
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o
|
||||
$(CXX) $(CXXFLAGS) examples/embedding/embedding.cpp ggml.o llama.o common.o -o embedding $(LDFLAGS)
|
||||
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Tests
|
||||
#
|
||||
|
||||
benchmark: examples/benchmark/benchmark-q4_0-matmult.c ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o benchmark-q4_0-matmult $(LDFLAGS)
|
||||
./benchmark-q4_0-matmult
|
||||
|
||||
.PHONY: tests
|
||||
tests:
|
||||
bash ./tests/run-tests.sh
|
||||
|
|
|
@ -13,7 +13,10 @@ let package = Package(
|
|||
path: ".",
|
||||
sources: ["ggml.c", "llama.cpp"],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"])]
|
||||
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
),
|
||||
],
|
||||
cxxLanguageStandard: .cxx11
|
||||
|
|
156
README.md
156
README.md
|
@ -1,20 +1,25 @@
|
|||
# llama.cpp
|
||||
|
||||

|
||||

|
||||
|
||||
[](https://github.com/ggerganov/llama.cpp/actions)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
**Warnings**
|
||||
|
||||
- `Q4_2` and `Q4_3` are still in development. Do not expect any kind of backward compatibility until they are finalized
|
||||
|
||||
**Hot topics:**
|
||||
|
||||
- [Roadmap (short-term)](https://github.com/ggerganov/llama.cpp/discussions/457)
|
||||
- Support for [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
|
||||
- [Added LoRA support](https://github.com/ggerganov/llama.cpp/pull/820)
|
||||
- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/discussions/915)
|
||||
- [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784)
|
||||
|
||||
## Description
|
||||
|
||||
The main goal is to run the model using 4-bit quantization on a MacBook
|
||||
The main goal of llama.cpp is to run the llama model using 4-bit quantization on a MacBook.
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework
|
||||
|
@ -28,20 +33,34 @@ Please do not make conclusions about the models based on the results from this i
|
|||
For all I know, it can be completely wrong. This project is for educational purposes.
|
||||
New features will probably be added mostly through community contributions.
|
||||
|
||||
Supported platforms:
|
||||
**Supported platforms:**
|
||||
|
||||
- [X] Mac OS
|
||||
- [X] Linux
|
||||
- [X] Windows (via CMake)
|
||||
- [X] Docker
|
||||
|
||||
Supported models:
|
||||
**Supported models:**
|
||||
|
||||
- [X] LLaMA 🦙
|
||||
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
|
||||
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
|
||||
**UI:**
|
||||
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
||||
|
||||
---
|
||||
|
||||
|
@ -137,23 +156,52 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
|
|||
|
||||
## Usage
|
||||
|
||||
Here are the step for the LLaMA-7B model:
|
||||
Here are the steps for the LLaMA-7B model.
|
||||
|
||||
### Get the Code
|
||||
|
||||
```bash
|
||||
# build this repo
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
make
|
||||
```
|
||||
|
||||
### Build
|
||||
|
||||
Note: For Windows, CMake or Zig can be used.
|
||||
|
||||
1. Use `make`
|
||||
|
||||
```bash
|
||||
make
|
||||
```
|
||||
|
||||
1. Use CMake
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
1. Use Zig
|
||||
|
||||
```bash
|
||||
zig build -Drelease-fast
|
||||
```
|
||||
|
||||
### Prepare Data & Run
|
||||
|
||||
```bash
|
||||
# obtain the original LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install torch numpy sentencepiece
|
||||
python3 -m pip install -r requirements.txt
|
||||
|
||||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert-pth-to-ggml.py models/7B/ 1
|
||||
python3 convert.py models/7B/
|
||||
|
||||
# quantize the model to 4-bits (using method 2 = q4_0)
|
||||
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
|
||||
|
@ -162,14 +210,11 @@ python3 convert-pth-to-ggml.py models/7B/ 1
|
|||
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
|
||||
```
|
||||
|
||||
Currently, it's best to use Python 3.9 or Python 3.10, as `sentencepiece` has not yet published a wheel for Python 3.11.
|
||||
|
||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||
|
||||
### Memory/Disk Requirements
|
||||
|
||||
As the models are currently fully loaded into memory, you will need adequate disk space to save them
|
||||
and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||||
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
|
||||
|
||||
| model | original size | quantized size (4-bit) |
|
||||
|-------|---------------|------------------------|
|
||||
|
@ -181,18 +226,18 @@ and sufficient RAM to load them. At the moment, memory and disk requirements are
|
|||
### Interactive mode
|
||||
|
||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||
In this mode, you can always interrupt generation by pressing Ctrl+C and enter one or more lines of text which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt which makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
|
||||
|
||||
Here is an example few-shot interaction, invoked with the command
|
||||
Here is an example of a few-shot interaction, invoked with the command
|
||||
|
||||
```bash
|
||||
# default arguments using 7B model
|
||||
# default arguments using a 7B model
|
||||
./examples/chat.sh
|
||||
|
||||
# advanced chat with 13B model
|
||||
# advanced chat with a 13B model
|
||||
./examples/chat-13B.sh
|
||||
|
||||
# custom arguments using 13B model
|
||||
# custom arguments using a 13B model
|
||||
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||||
```
|
||||
|
||||
|
@ -225,30 +270,30 @@ There 26 letters in the English Alphabet
|
|||
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
|
||||
> List 5 words that start with "ca".
|
||||
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
|
||||
>
|
||||
>
|
||||
```
|
||||
|
||||
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
- Obtain the `gpt4all-lora-quantized.bin` model
|
||||
- It is distributed in the old `ggml` format which is now obsoleted
|
||||
- It is distributed in the old `ggml` format, which is now obsoleted
|
||||
- You have to convert it to the new format using [./convert-gpt4all-to-ggml.py](./convert-gpt4all-to-ggml.py). You may also need to
|
||||
convert the model from the old format to the new format with [./migrate-ggml-2023-03-30-pr613.py](./migrate-ggml-2023-03-30-pr613.py):
|
||||
|
||||
```bash
|
||||
python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model
|
||||
python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model
|
||||
python3 migrate-ggml-2023-03-30-pr613.py models/gpt4all-7B/gpt4all-lora-quantized.bin models/gpt4all-7B/gpt4all-lora-quantized-new.bin
|
||||
```
|
||||
|
||||
|
||||
- You can now use the newly generated `gpt4all-lora-quantized-new.bin` model in exactly the same way as all other models
|
||||
- The original model is saved in the same folder with a suffix `.orig`
|
||||
|
||||
### Obtaining and verifying the Facebook LLaMA original model and Stanford Alpaca model data
|
||||
|
||||
- **Under no circumstances share IPFS, magnet links, or any other links to model downloads anywhere in this respository, including in issues, discussions or pull requests. They will be immediately deleted.**
|
||||
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
|
||||
- **Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.**
|
||||
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
|
||||
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
|
||||
- Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
|
||||
- Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
|
||||
- The following command will verify if you have all possible latest files in your self-installed `./models` subdirectory:
|
||||
|
||||
`sha256sum --ignore-missing -c SHA256SUMS` on Linux
|
||||
|
@ -257,29 +302,27 @@ convert the model from the old format to the new format with [./migrate-ggml-202
|
|||
|
||||
`shasum -a 256 --ignore-missing -c SHA256SUMS` on macOS
|
||||
|
||||
- If your issue is with model generation quality then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
|
||||
- LLaMA:
|
||||
- [Introducing LLaMA: A foundational, 65-billion-parameter large language model](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)
|
||||
- [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
|
||||
- GPT-3
|
||||
- [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
|
||||
- GPT-3.5 / InstructGPT / ChatGPT:
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
### Perplexity (Measuring model quality)
|
||||
- If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
|
||||
- LLaMA:
|
||||
- [Introducing LLaMA: A foundational, 65-billion-parameter large language model](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)
|
||||
- [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
|
||||
- GPT-3
|
||||
- [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
|
||||
- GPT-3.5 / InstructGPT / ChatGPT:
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
You can use the `perplexity` example to measure perplexity over the given prompt. For more background,
|
||||
see https://huggingface.co/docs/transformers/perplexity. However, in general, lower perplexity is better for LLMs.
|
||||
### Perplexity (measuring model quality)
|
||||
|
||||
You can use the `perplexity` example to measure perplexity over the given prompt. For more background, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity). However, in general, lower perplexity is better for LLMs.
|
||||
|
||||
#### Latest measurements
|
||||
|
||||
The latest perplexity scores for the various model sizes and quantizations are being tracked in [discussion #406](https://github.com/ggerganov/llama.cpp/discussions/406). `llama.cpp` is measuring very well
|
||||
compared to the baseline implementations. Quantization has a small negative impact to quality, but, as you can see, running
|
||||
The latest perplexity scores for the various model sizes and quantizations are being tracked in [discussion #406](https://github.com/ggerganov/llama.cpp/discussions/406). `llama.cpp` is measuring very well compared to the baseline implementations. Quantization has a small negative impact on quality, but, as you can see, running
|
||||
13B at q4_0 beats the 7B f16 model by a significant amount.
|
||||
|
||||
All measurements are done against wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with default options (512 length context).
|
||||
Note that the changing the context length will have a significant impact on perplexity (longer context = better perplexity).
|
||||
All measurements are done against the wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with default options (512 length context).
|
||||
Note that changing the context length will have a significant impact on perplexity (longer context = better perplexity).
|
||||
```
|
||||
Perplexity - model options
|
||||
5.5985 - 13B, q4_0
|
||||
|
@ -321,7 +364,7 @@ https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b0
|
|||
|
||||
#### Prerequisites
|
||||
* Docker must be installed and running on your system.
|
||||
* Create a folder to store big models & intermediate files (in ex. im using /llama/models)
|
||||
* Create a folder to store big models & intermediate files (ex. /llama/models)
|
||||
|
||||
#### Images
|
||||
We have two Docker images available for this project:
|
||||
|
@ -333,20 +376,22 @@ We have two Docker images available for this project:
|
|||
|
||||
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
|
||||
|
||||
```bash
|
||||
docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||||
```
|
||||
|
||||
On complete, you are ready to play!
|
||||
Replace `/path/to/models` below with the actual path where you downloaded the models.
|
||||
|
||||
```bash
|
||||
docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
|
||||
```
|
||||
|
||||
or with light image:
|
||||
On completion, you are ready to play!
|
||||
|
||||
```bash
|
||||
docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a light image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
### Contributing
|
||||
|
@ -364,6 +409,9 @@ docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models
|
|||
- Always consider cross-compatibility with other operating systems and architectures
|
||||
- Avoid fancy looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
|
||||
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
|
||||
- Clean-up any trailing whitespaces, use 4 spaces indentation, brackets on same line, `void * ptr`, `int & a`
|
||||
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
|
||||
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
|
||||
|
||||
### Docs
|
||||
|
||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
|
|
20
SHA256SUMS
20
SHA256SUMS
|
@ -1,12 +1,27 @@
|
|||
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
|
||||
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
|
||||
fcb7664c2e69776920b526362a243e912f73c36b1ec892eb354bab940f5edb5a models/7B/ggml-model-q4_0.bin
|
||||
cc061458339a3eb8bcecbf0a825e9924fb7d1a8150f63cd5d091caa99215aafe models/7B/ggml-model-q4_1.bin
|
||||
1bc7484c24a87612726d756f1761890e7acf5f412e23378577ce50fbe789b5b8 models/7B/ggml-model-q4_2.bin
|
||||
3429bf198ec771886cf81a574df45245f3ebf04f0ce0956b73ef5d0ab01ff48b models/7B/ggml-model-q4_3.bin
|
||||
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
|
||||
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
|
||||
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
|
||||
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
|
||||
4b69e4d6b6e3275230955997b90407fceca7e5ab3daf2e63a2c9e7270a8e1e3e models/13B/ggml-model-q4_0.bin
|
||||
d9581b5b88e5622532fe897c9f9b0e67a317d22dd27a6f90fa4ab8c6d23ccdbb models/13B/ggml-model-q4_1.bin
|
||||
8d55a2077317ec9a928c7851d6a43e08e51f7e9e08360f2a7a7e1deefea3134f models/13B/ggml-model-q4_2.bin
|
||||
4208cdec9788ffa48dc1a17af2c36a0299f5bf3eb0e2b87889dda7fad591fca3 models/13B/ggml-model-q4_3.bin
|
||||
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
|
||||
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
|
||||
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
|
||||
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
|
||||
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
|
||||
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
|
||||
7a679908ce31c9d6ae2e38d6059bcd4d0ad3a870cd58cc1c8f7b36f2b2f51c73 models/30B/ggml-model-q4_0.bin
|
||||
7b75ac615fa369ee593493a7e6ef87542bf0350255db928b22c5a24f6d598bcd models/30B/ggml-model-q4_1.bin
|
||||
2c82b4954a94a6a284f452f6011c1e4f0d20362c194a0b1eb5737f5fd8a20fb3 models/30B/ggml-model-q4_2.bin
|
||||
a6188660199dbcb8d5658abe7d89169869e50423494385830d9e6b330ea7fc33 models/30B/ggml-model-q4_3.bin
|
||||
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
|
||||
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
|
||||
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
|
||||
|
@ -16,5 +31,10 @@ e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/con
|
|||
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
|
||||
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
|
||||
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
|
||||
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
|
||||
c671fe1bce71499ac732ec999770ebe53ac486623a7891e42c9dfdb6962d2c64 models/65B/ggml-model-q4_0.bin
|
||||
4743a28aac3e5f32a6e838a815f51d3779de44fbbe251d745251e66c23c5950f models/65B/ggml-model-q4_1.bin
|
||||
4a145a210c56982389b1ed34387e0590c3e0d7325fa9be4f2284fe4d244a3633 models/65B/ggml-model-q4_2.bin
|
||||
305e91a4608b4f627b9b8ad5b4af75187d2684254bfd76dcb9db571618ef293c models/65B/ggml-model-q4_3.bin
|
||||
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
|
||||
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model
|
||||
|
|
61
build.zig
Normal file
61
build.zig
Normal file
|
@ -0,0 +1,61 @@
|
|||
const std = @import("std");
|
||||
|
||||
pub fn build(b: *std.build.Builder) void {
|
||||
const target = b.standardTargetOptions(.{});
|
||||
const optimize = b.standardReleaseOptions();
|
||||
const want_lto = b.option(bool, "lto", "Want -fLTO");
|
||||
|
||||
const lib = b.addStaticLibrary("llama", null);
|
||||
lib.want_lto = want_lto;
|
||||
lib.setTarget(target);
|
||||
lib.setBuildMode(optimize);
|
||||
lib.linkLibCpp();
|
||||
lib.addIncludePath(".");
|
||||
lib.addIncludePath("examples");
|
||||
lib.addCSourceFiles(&.{
|
||||
"ggml.c",
|
||||
}, &.{"-std=c11"});
|
||||
lib.addCSourceFiles(&.{
|
||||
"llama.cpp",
|
||||
}, &.{"-std=c++11"});
|
||||
lib.install();
|
||||
|
||||
const build_args = .{ .b = b, .lib = lib, .target = target, .optimize = optimize, .want_lto = want_lto };
|
||||
|
||||
const exe = build_example("main", build_args);
|
||||
_ = build_example("quantize", build_args);
|
||||
_ = build_example("perplexity", build_args);
|
||||
_ = build_example("embedding", build_args);
|
||||
|
||||
// create "zig build run" command for ./main
|
||||
|
||||
const run_cmd = exe.run();
|
||||
run_cmd.step.dependOn(b.getInstallStep());
|
||||
if (b.args) |args| {
|
||||
run_cmd.addArgs(args);
|
||||
}
|
||||
|
||||
const run_step = b.step("run", "Run the app");
|
||||
run_step.dependOn(&run_cmd.step);
|
||||
}
|
||||
|
||||
fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep {
|
||||
const b = args.b;
|
||||
const lib = args.lib;
|
||||
const want_lto = args.want_lto;
|
||||
|
||||
const exe = b.addExecutable(name, null);
|
||||
exe.want_lto = want_lto;
|
||||
lib.setTarget(args.target);
|
||||
lib.setBuildMode(args.optimize);
|
||||
exe.addIncludePath(".");
|
||||
exe.addIncludePath("examples");
|
||||
exe.addCSourceFiles(&.{
|
||||
std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{name, name}),
|
||||
"examples/common.cpp",
|
||||
}, &.{"-std=c++11"});
|
||||
exe.linkLibrary(lib);
|
||||
exe.install();
|
||||
|
||||
return exe;
|
||||
}
|
|
@ -1,299 +0,0 @@
|
|||
# Author: github.com/ductai199x
|
||||
import argparse
|
||||
import os
|
||||
import struct
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from numba import njit
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def read_header(fin):
|
||||
values = struct.unpack("i" * 9, fin.read(4 * 9))
|
||||
_, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values
|
||||
return {
|
||||
"vocab_size": vocab_size,
|
||||
"dim": dim,
|
||||
"multiple_of": multiple_of,
|
||||
"n_heads": n_heads,
|
||||
"n_layers": n_layers,
|
||||
}, ftype
|
||||
|
||||
|
||||
def read_tokens(fin, vocab_size):
|
||||
tokens = []
|
||||
for _ in range(vocab_size):
|
||||
text_len = struct.unpack("i", fin.read(4))[0]
|
||||
text_bytes = fin.read(text_len)
|
||||
try:
|
||||
text = text_bytes.decode()
|
||||
except UnicodeDecodeError:
|
||||
text = text_bytes.decode(errors="replace")
|
||||
score = struct.unpack("f", fin.read(4))[0]
|
||||
tokens.append((text, score))
|
||||
return tokens
|
||||
|
||||
|
||||
@njit
|
||||
def dequantize_weights_numba(fin_data, n_rows, n_cols):
|
||||
qk = 32
|
||||
nb = n_cols // qk
|
||||
bs = 4 + (qk // 2)
|
||||
|
||||
weights = np.zeros((n_rows, n_cols), dtype=np.float32)
|
||||
data_pos = 0
|
||||
|
||||
for row in range(n_rows):
|
||||
for block in range(nb):
|
||||
d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0]
|
||||
data_pos += 4
|
||||
packed_values = fin_data[data_pos : data_pos + (qk // 2)]
|
||||
data_pos += qk // 2
|
||||
|
||||
for i in range(qk // 2):
|
||||
packed_value = packed_values[i]
|
||||
v0 = np.float32((packed_value & 0b00001111) - 8) * d
|
||||
v1 = np.float32((packed_value >> 4) - 8) * d
|
||||
|
||||
weights[row, block * qk + 2 * i] = v0
|
||||
weights[row, block * qk + 2 * i + 1] = v1
|
||||
|
||||
return weights
|
||||
|
||||
|
||||
def dequantize_weights(fin, n_rows, n_cols):
|
||||
qk = 32
|
||||
nb = n_cols // qk
|
||||
data_size = n_rows * n_cols // 2 + n_rows * nb * 4
|
||||
fin_data = fin.read(data_size)
|
||||
return dequantize_weights_numba(fin_data, n_rows, n_cols)
|
||||
|
||||
|
||||
def read_variables(fin):
|
||||
model = {}
|
||||
pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables")
|
||||
while True:
|
||||
start_pos = fin.tell()
|
||||
try:
|
||||
n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3))
|
||||
except struct.error:
|
||||
break
|
||||
|
||||
shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims)))
|
||||
shape = shape[::-1]
|
||||
name = fin.read(name_length).decode()
|
||||
|
||||
# ensure tensor data is aligned
|
||||
tensor_data_offset = fin.tell()
|
||||
tensor_data_offset = (tensor_data_offset + 31) & -32
|
||||
fin.seek(tensor_data_offset)
|
||||
|
||||
if ftype_cur == 2:
|
||||
# 4-bit quantized weights
|
||||
dtype = np.uint8
|
||||
data = dequantize_weights(fin, shape[0], shape[1])
|
||||
data = data.reshape(shape)
|
||||
elif ftype_cur == 0:
|
||||
dtype = np.float32
|
||||
data_size = np.prod(shape)
|
||||
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
|
||||
elif ftype_cur == 1:
|
||||
dtype = np.float16
|
||||
data_size = np.prod(shape)
|
||||
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
|
||||
|
||||
model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16)
|
||||
|
||||
pbar.update(fin.tell() - start_pos)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def convert_to_hf_format(model, hparams):
|
||||
# This works for llama 7B, need to test with other models
|
||||
n_layers = hparams["n_layers"]
|
||||
n_heads = hparams["n_heads"]
|
||||
dim = hparams["dim"]
|
||||
dims_per_head = dim // n_heads
|
||||
base = 10000.0
|
||||
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
|
||||
|
||||
# permute for sliced rotary
|
||||
def permute(w):
|
||||
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
|
||||
|
||||
state_dict = {}
|
||||
for layer_i in range(n_layers):
|
||||
state_dict.update(
|
||||
{
|
||||
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
|
||||
model[f"layers.{layer_i}.attention.wq.weight"]
|
||||
),
|
||||
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
|
||||
model[f"layers.{layer_i}.attention.wk.weight"]
|
||||
),
|
||||
f"model.layers.{layer_i}.self_attn.v_proj.weight": model[
|
||||
f"layers.{layer_i}.attention.wv.weight"
|
||||
],
|
||||
f"model.layers.{layer_i}.self_attn.o_proj.weight": model[
|
||||
f"layers.{layer_i}.attention.wo.weight"
|
||||
],
|
||||
f"model.layers.{layer_i}.mlp.gate_proj.weight": model[
|
||||
f"layers.{layer_i}.feed_forward.w1.weight"
|
||||
],
|
||||
f"model.layers.{layer_i}.mlp.down_proj.weight": model[
|
||||
f"layers.{layer_i}.feed_forward.w2.weight"
|
||||
],
|
||||
f"model.layers.{layer_i}.mlp.up_proj.weight": model[
|
||||
f"layers.{layer_i}.feed_forward.w3.weight"
|
||||
],
|
||||
f"model.layers.{layer_i}.input_layernorm.weight": model[
|
||||
f"layers.{layer_i}.attention_norm.weight"
|
||||
],
|
||||
f"model.layers.{layer_i}.post_attention_layernorm.weight": model[
|
||||
f"layers.{layer_i}.ffn_norm.weight"
|
||||
],
|
||||
}
|
||||
)
|
||||
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
|
||||
state_dict.update(
|
||||
{
|
||||
"model.embed_tokens.weight": model["tok_embeddings.weight"],
|
||||
"model.norm.weight": model["norm.weight"],
|
||||
"lm_head.weight": model["output.weight"],
|
||||
}
|
||||
)
|
||||
|
||||
return state_dict
|
||||
|
||||
|
||||
def chat(model, hparams, llama_dir):
|
||||
from transformers import (GenerationConfig, LlamaForCausalLM,
|
||||
LlamaTokenizer, StoppingCriteria,
|
||||
StoppingCriteriaList)
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
|
||||
class StoppingCriteriaSub(StoppingCriteria):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]):
|
||||
print(tokenizer.decode(input_ids[0]), end="", flush=True)
|
||||
if input_ids[0][-1] == 13:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
config = LlamaConfig(
|
||||
vocab_size=hparams["vocab_size"],
|
||||
dim=hparams["dim"],
|
||||
num_hidden_layers=hparams["n_layers"],
|
||||
num_attention_heads=hparams["n_heads"],
|
||||
)
|
||||
|
||||
llama = LlamaForCausalLM(config=config)
|
||||
llama.load_state_dict(state_dict=model, strict=True)
|
||||
tokenizer = LlamaTokenizer.from_pretrained(llama_dir)
|
||||
|
||||
device = torch.device("cpu")
|
||||
llama = llama.to(device)
|
||||
|
||||
ctx = """You are AI.
|
||||
This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
|
||||
User: Hello, AI.
|
||||
AI: Hello! How can I assist you today?
|
||||
"""
|
||||
print(ctx.rstrip("\n"))
|
||||
while True:
|
||||
print("-" * 60)
|
||||
prompt = input("User: ")
|
||||
if ctx != "":
|
||||
ctx = f"{ctx}User: {prompt}\n"
|
||||
else:
|
||||
ctx = f"{prompt}\nAI:"
|
||||
|
||||
ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
|
||||
|
||||
print("-" * 60)
|
||||
if len(ctx.strip()) > 0:
|
||||
input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device)
|
||||
generation_config = GenerationConfig(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
top_k=50,
|
||||
repetition_penalty=1.1764,
|
||||
)
|
||||
with torch.no_grad():
|
||||
generation_output = llama.generate(
|
||||
input_ids=input_ids,
|
||||
generation_config=generation_config,
|
||||
return_dict_in_generate=True,
|
||||
output_scores=True,
|
||||
max_length=2048,
|
||||
do_sample=True,
|
||||
stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]),
|
||||
)
|
||||
s = generation_output.sequences[0]
|
||||
decoded = tokenizer.decode(s)
|
||||
ctx = f"{decoded}\n"
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefix",
|
||||
"-p",
|
||||
type=str,
|
||||
required=True,
|
||||
help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--hf",
|
||||
action="store_true",
|
||||
help="Whether to save the model in the Hugging Face format. (default: False)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
llama_dir = os.path.abspath(f"{args.input_dir}/../")
|
||||
|
||||
ggml_files = sorted(
|
||||
[f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)]
|
||||
)
|
||||
|
||||
fin = open(ggml_files[0], "rb")
|
||||
hparams, ftype = read_header(fin)
|
||||
tokens = read_tokens(fin, hparams["vocab_size"])
|
||||
model = read_variables(fin)
|
||||
|
||||
for f in tqdm(ggml_files[1:]):
|
||||
fin = open(f, "rb")
|
||||
read_header(fin)
|
||||
read_tokens(fin, hparams["vocab_size"])
|
||||
model.update(read_variables(fin))
|
||||
|
||||
if args.hf:
|
||||
model = convert_to_hf_format(model, hparams)
|
||||
|
||||
pth_ckpt = {
|
||||
"state_dict": model,
|
||||
"hparams": hparams,
|
||||
"tokens": tokens,
|
||||
}
|
||||
|
||||
torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth")
|
||||
|
||||
if args.chat:
|
||||
if not args.hf:
|
||||
model = convert_to_hf_format(model, hparams)
|
||||
chat(model, hparams, llama_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,107 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
#
|
||||
# TODO: deduplicate GPT4All with convert-unversioned-ggml-to-ggml.py
|
||||
#
|
||||
|
||||
# Original by https://github.com/eiz
|
||||
# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Upgrade a GPT4All model to the current format')
|
||||
parser.add_argument('gpt4all_model', help='path to gpt4all-lora-quantized.bin')
|
||||
parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file')
|
||||
return parser.parse_args()
|
||||
|
||||
def read_header(f_in):
|
||||
struct_fmt = "i" * (3 + len(HPARAMS))
|
||||
struct_size = struct.calcsize(struct_fmt)
|
||||
buf = f_in.read(struct_size)
|
||||
return struct.unpack(struct_fmt, buf)
|
||||
|
||||
def write_header(f_out, header):
|
||||
(magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header
|
||||
|
||||
if magic != 0x67676d6c:
|
||||
raise Exception('Invalid file magic. Must be an old style ggml file.')
|
||||
|
||||
values = [
|
||||
0x67676d66, # magic: ggml in hex
|
||||
1, # file version
|
||||
vocab_size,
|
||||
dim,
|
||||
multiple_of,
|
||||
n_heads,
|
||||
n_layers,
|
||||
rot,
|
||||
ftype
|
||||
]
|
||||
f_out.write(struct.pack("i" * len(values), *values))
|
||||
|
||||
def write_tokens(fout, tokenizer):
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode()
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
print(f"Invalid token: {piece}")
|
||||
sys.exit(1)
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
||||
|
||||
# TODO: GPT4All - add extra <pad> token
|
||||
text = "<pad>".encode()
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout.write(struct.pack("f", 0.0))
|
||||
|
||||
def read_tokens(f_in, tokenizer):
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
len_b = f_in.read(4)
|
||||
(length,) = struct.unpack("i", len_b)
|
||||
f_in.read(length)
|
||||
|
||||
def copy_all_data(f_out, f_in):
|
||||
while True:
|
||||
buf = f_in.read(1024 * 1024)
|
||||
if not buf:
|
||||
break
|
||||
f_out.write(buf)
|
||||
|
||||
def convert_one_file(path_in, tokenizer):
|
||||
path_tmp = f"{path_in}.tmp"
|
||||
path_orig= f"{path_in}.orig"
|
||||
print(f"converting {path_in}")
|
||||
with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out:
|
||||
write_header(f_out, read_header(f_in))
|
||||
read_tokens(f_in, tokenizer)
|
||||
write_tokens(f_out, tokenizer)
|
||||
copy_all_data(f_out, f_in)
|
||||
os.rename(path_in, path_orig)
|
||||
os.rename(path_tmp, path_in)
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
tokenizer = SentencePieceProcessor(args.tokenizer_model)
|
||||
|
||||
convert_one_file(args.gpt4all_model, tokenizer)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,172 +0,0 @@
|
|||
# Convert a GPTQ quantized LLaMA model to a ggml compatible file
|
||||
# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||
#
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import json
|
||||
import struct
|
||||
import numpy as np
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
if len(sys.argv) != 4:
|
||||
print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n")
|
||||
sys.exit(1)
|
||||
|
||||
fname_model = sys.argv[1]
|
||||
fname_tokenizer = sys.argv[2]
|
||||
dir_out = sys.argv[3]
|
||||
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
|
||||
n_vocab, n_embd = model['model.embed_tokens.weight'].shape
|
||||
n_layer = 1 + max(int(m.group(1)) for name in model
|
||||
if (m := re.match(r'model\.layers\.([0-9]+)', name)))
|
||||
|
||||
# hardcoded:
|
||||
n_mult = 256
|
||||
n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer]
|
||||
|
||||
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||
|
||||
assert tokenizer.vocab_size() == n_vocab
|
||||
|
||||
fname_out = sys.argv[3]
|
||||
|
||||
fout = open(fname_out, "wb")
|
||||
|
||||
fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex
|
||||
fout.write(struct.pack("i", 1)) # file version
|
||||
fout.write(struct.pack("i", n_vocab))
|
||||
fout.write(struct.pack("i", n_embd))
|
||||
fout.write(struct.pack("i", n_mult))
|
||||
fout.write(struct.pack("i", n_head))
|
||||
fout.write(struct.pack("i", n_layer))
|
||||
fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete)
|
||||
fout.write(struct.pack("i", 4))
|
||||
|
||||
|
||||
# This loop unchanged from convert-pth-to-ggml.py:
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode()
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
print(f"Invalid token: {piece}")
|
||||
sys.exit(1)
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
||||
|
||||
def write_header(shape, dst_name, ftype_cur):
|
||||
sname = dst_name.encode()
|
||||
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
|
||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||
fout.write(sname)
|
||||
|
||||
# ensure tensor data is aligned
|
||||
tensor_data_offset = fout.tell()
|
||||
tensor_data_offset = (tensor_data_offset + 31) & -32
|
||||
fout.seek(tensor_data_offset)
|
||||
|
||||
def convert_non_q4(src_name, dst_name):
|
||||
v = model[src_name]
|
||||
shape = v.shape
|
||||
print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}")
|
||||
if len(shape) == 1:
|
||||
print(" Converting to float32")
|
||||
v = v.to(torch.float32)
|
||||
|
||||
ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype]
|
||||
|
||||
# header
|
||||
write_header(shape, dst_name, ftype_cur)
|
||||
|
||||
# data
|
||||
v.numpy().tofile(fout)
|
||||
|
||||
def convert_q4(src_name, dst_name, permute=False):
|
||||
zeros = model[f"{src_name}.zeros"].numpy()
|
||||
scales = model[f"{src_name}.scales"].numpy()
|
||||
bias = model[f"{src_name}.bias"].numpy()
|
||||
qweight = model[f"{src_name}.qweight"].numpy().T # transpose
|
||||
|
||||
# Q4_1 does not support bias; good thing the bias is always all zeros.
|
||||
assert not np.any(bias)
|
||||
|
||||
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
|
||||
shape = (qweight.shape[0], qweight.shape[1] * 8)
|
||||
|
||||
print(f"Processing Q4 variable: {src_name} with shape: {shape}")
|
||||
|
||||
# The output format has the int4 weights in groups of 32 rather than 8.
|
||||
# It looks like this:
|
||||
# For each row:
|
||||
# For each group of 32 columns:
|
||||
# - addend (float32, 4 bytes)
|
||||
# - scale (float32, 4 bytes)
|
||||
# - weights (int4 * 32, 16 bytes)
|
||||
# Note that in the input, the scales and addends are shared between all
|
||||
# the columns in a row, so we end up wasting quite a bit of memory with
|
||||
# repeated scales and addends.
|
||||
|
||||
addends = -zeros # flip sign
|
||||
|
||||
# Since the output format is mixed between integers and floats, we have
|
||||
# to hackily view the floats as int32s just so numpy will let us
|
||||
# concatenate them.
|
||||
addends_view = addends.view(dtype=np.int32)
|
||||
scales_view = scales.view(dtype=np.int32)
|
||||
|
||||
# Split into groups of 4 columns (i.e. 32 columns of quantized data):
|
||||
grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4])
|
||||
|
||||
# Repeat addends and scales:
|
||||
addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1)
|
||||
scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1)
|
||||
|
||||
blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no')
|
||||
|
||||
if permute:
|
||||
# Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py.
|
||||
# This can be done after the above conversion because it doesn't affect column order/layout.
|
||||
blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(blob.shape))
|
||||
|
||||
# header
|
||||
write_header(shape, dst_name, 3) # ftype = Q4_1
|
||||
|
||||
# data
|
||||
blob.tofile(fout)
|
||||
|
||||
convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight")
|
||||
convert_non_q4("model.norm.weight", "norm.weight")
|
||||
convert_non_q4("lm_head.weight", "output.weight")
|
||||
|
||||
for i in range(n_layer):
|
||||
convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True)
|
||||
convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True)
|
||||
convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight")
|
||||
convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight")
|
||||
|
||||
convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight")
|
||||
convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight")
|
||||
convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight")
|
||||
|
||||
convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight")
|
||||
convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight")
|
||||
|
||||
|
||||
fout.close()
|
||||
|
||||
print(f"Done. Output file: {fname_out}")
|
||||
print()
|
124
convert-lora-to-ggml.py
Normal file
124
convert-lora-to-ggml.py
Normal file
|
@ -0,0 +1,124 @@
|
|||
import json
|
||||
import os
|
||||
import re
|
||||
import struct
|
||||
import sys
|
||||
from typing import Any, Dict, Sequence, TextIO
|
||||
|
||||
import torch
|
||||
|
||||
from convert import DATA_TYPE_TO_FTYPE, NUMPY_TYPE_TO_DATA_TYPE, DataType
|
||||
|
||||
HF_SUBLAYER_TO_GGML = {
|
||||
"self_attn.q_proj": "attention.wq",
|
||||
"self_attn.k_proj": "attention.wk",
|
||||
"self_attn.v_proj": "attention.wv",
|
||||
"self_attn.o_proj": "attention.wo",
|
||||
"mlp.gate_proj": "feed_forward.w1",
|
||||
"mlp.down_proj": "feed_forward.w2",
|
||||
"mlp.up_proj": "feed_forward.w3",
|
||||
"input_layernorm": "attention_norm",
|
||||
"post_attention_layernorm": "ffn_norm",
|
||||
# "norm": "norm",
|
||||
# "embed_tokens": "tok_embeddings",
|
||||
# "lm_head": "output",
|
||||
}
|
||||
|
||||
|
||||
def translate_tensor_name(t: str) -> str:
|
||||
match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
|
||||
if match:
|
||||
nn = match.group(1)
|
||||
sub_layer = match.group(2)
|
||||
lora_type = match.group(3)
|
||||
|
||||
sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
|
||||
if sub_layer_renamed is None:
|
||||
print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
|
||||
sys.exit(1)
|
||||
|
||||
output_string = (
|
||||
f"layers.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
|
||||
)
|
||||
return output_string
|
||||
else:
|
||||
print(f"Error: unrecognized tensor {t}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
|
||||
fout.write(b"ggla"[::-1]) # magic (ggml lora)
|
||||
fout.write(struct.pack("i", 1)) # file version
|
||||
fout.write(struct.pack("ii", params["r"], params["lora_alpha"]))
|
||||
|
||||
|
||||
def write_tensor_header(
|
||||
self, name: str, shape: Sequence[int], data_type: DataType
|
||||
) -> None:
|
||||
sname = name.encode("utf-8")
|
||||
fout.write(
|
||||
struct.pack(
|
||||
"iii",
|
||||
len(shape),
|
||||
len(sname),
|
||||
DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]],
|
||||
)
|
||||
)
|
||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||
fout.write(sname)
|
||||
fout.seek((fout.tell() + 31) & -32)
|
||||
|
||||
|
||||
if len(sys.argv) != 2:
|
||||
print(f"Usage: python {sys.argv[0]} <path>")
|
||||
print(
|
||||
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
input_json = os.path.join(sys.argv[1], "adapter_config.json")
|
||||
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
|
||||
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
|
||||
|
||||
model = torch.load(input_model, map_location="cpu")
|
||||
|
||||
with open(input_json, "r") as f:
|
||||
params = json.load(f)
|
||||
|
||||
if params["peft_type"] != "LORA":
|
||||
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
|
||||
sys.exit(1)
|
||||
|
||||
if params["fan_in_fan_out"] == True:
|
||||
print("Error: param fan_in_fan_out is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
if params["bias"] is not None and params["bias"] != "none":
|
||||
print("Error: param bias is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
# TODO: these seem to be layers that have been trained but without lora.
|
||||
# doesn't seem widely used but eventually should be supported
|
||||
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
|
||||
print("Error: param modules_to_save is not supported")
|
||||
sys.exit(1)
|
||||
|
||||
with open(output_path, "wb") as fout:
|
||||
fout.truncate()
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
v = v.float()
|
||||
v = v.T
|
||||
else:
|
||||
v = v.float()
|
||||
|
||||
t = v.numpy()
|
||||
tname = translate_tensor_name(k)
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
t.tofile(fout)
|
||||
|
||||
print(f"Converted {input_json} and {input_model} to {output_path}")
|
|
@ -1,274 +1,11 @@
|
|||
# Convert a LLaMA model checkpoint to a ggjt compatible file
|
||||
#
|
||||
# Load the model using Torch
|
||||
# Iterate over all variables and write them to a binary file.
|
||||
#
|
||||
# For each variable, write the following:
|
||||
# - Number of dimensions (int)
|
||||
# - Name length (int)
|
||||
# - Dimensions (int[n_dims])
|
||||
# - Name (char[name_length])
|
||||
# - Data (float[n_dims])
|
||||
#
|
||||
# At the start of the ggml file we write the model parameters
|
||||
# and vocabulary.
|
||||
#
|
||||
# Compatibility stub
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
import struct
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
import convert
|
||||
|
||||
QK = 32
|
||||
|
||||
GGML_TYPE_Q4_0 = 0
|
||||
GGML_TYPE_Q4_1 = 1
|
||||
GGML_TYPE_I8 = 2
|
||||
GGML_TYPE_I16 = 3
|
||||
GGML_TYPE_I32 = 4
|
||||
GGML_TYPE_F16 = 5
|
||||
GGML_TYPE_F32 = 6
|
||||
|
||||
WTYPES = {
|
||||
0: GGML_TYPE_F32,
|
||||
1: GGML_TYPE_F16,
|
||||
2: GGML_TYPE_Q4_0,
|
||||
3: GGML_TYPE_Q4_1,
|
||||
}
|
||||
|
||||
GGML_BLCK_SIZE = {
|
||||
GGML_TYPE_Q4_0: QK,
|
||||
GGML_TYPE_Q4_1: QK,
|
||||
GGML_TYPE_I8: 1,
|
||||
GGML_TYPE_I16: 1,
|
||||
GGML_TYPE_I32: 1,
|
||||
GGML_TYPE_F16: 1,
|
||||
GGML_TYPE_F32: 1,
|
||||
}
|
||||
|
||||
GGML_TYPE_SIZE = {
|
||||
GGML_TYPE_Q4_0: 4 + QK//2,
|
||||
GGML_TYPE_Q4_1: 4*2 + QK//2,
|
||||
GGML_TYPE_I8: 1,
|
||||
GGML_TYPE_I16: 2,
|
||||
GGML_TYPE_I32: 4,
|
||||
GGML_TYPE_F16: 2,
|
||||
GGML_TYPE_F32: 4,
|
||||
}
|
||||
|
||||
def ggml_nelements(shape):
|
||||
r = 1
|
||||
for i in shape:
|
||||
r *= i
|
||||
return r
|
||||
|
||||
def ggml_nbytes(shape, ftype):
|
||||
x = ggml_nelements(shape)
|
||||
t = WTYPES[ftype]
|
||||
x *= GGML_TYPE_SIZE[t]
|
||||
x //= GGML_BLCK_SIZE[t]
|
||||
return x
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
|
||||
return parser.parse_args()
|
||||
|
||||
def get_n_parts(dim):
|
||||
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
||||
n_parts = mappings.get(dim)
|
||||
if n_parts is None:
|
||||
print(f"Invalid dim: {dim}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"n_parts = {n_parts}\n")
|
||||
return n_parts
|
||||
|
||||
def load_hparams_and_tokenizer(dir_model):
|
||||
# `dir_model` is something like `models/7B` or `models/7B/`.
|
||||
# "tokenizer.model" is expected under model's parent dir.
|
||||
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
|
||||
# Let's use the model's parent dir directly.
|
||||
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
|
||||
fname_hparams = f"{dir_model}/params.json"
|
||||
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
|
||||
with open(fname_hparams, "r") as f:
|
||||
hparams = json.load(f)
|
||||
print(hparams)
|
||||
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||
return hparams, tokenizer
|
||||
|
||||
def write_header(fout, hparams, ftype):
|
||||
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
||||
values = [
|
||||
0x67676a74, # magic: ggjt in hex
|
||||
1, # file version
|
||||
*[hparams[key] for key in keys],
|
||||
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
||||
ftype
|
||||
]
|
||||
fout.write(struct.pack("i" * len(values), *values))
|
||||
|
||||
def write_tokens(fout, tokenizer):
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode()
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
print(f"Invalid token: {piece}")
|
||||
sys.exit(1)
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
||||
|
||||
def process_and_write_variables(fout, model, ftype, part_id, n_parts):
|
||||
for name, datao in model.items():
|
||||
if name.endswith("freqs"):
|
||||
continue
|
||||
|
||||
# remove dimensions with a single element
|
||||
data = datao.numpy().squeeze()
|
||||
partshape = data.shape
|
||||
n_dims = len(data.shape)
|
||||
assert n_dims in (1, 2)
|
||||
|
||||
print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}")
|
||||
|
||||
# coerce single-dimensional tensors from float16 to float32
|
||||
ftype_cur = 1
|
||||
if ftype == 0 or n_dims == 1:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]]
|
||||
type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]]
|
||||
|
||||
# determine dimension along which multipart tensor is sharded
|
||||
#
|
||||
# split_dim 0 regex:
|
||||
# - output.*
|
||||
# - layers.*.attention.wq.weight
|
||||
# - layers.*.attention.wk.weight
|
||||
# - layers.*.attention.wv.weight
|
||||
# - layers.*.feed_forward.w1.weight
|
||||
# - layers.*.feed_forward.w3.weight
|
||||
#
|
||||
# split_dim 1 regex:
|
||||
# - tok_embeddings.*
|
||||
# - layers.*.attention.wo.weight
|
||||
# - layers.*.feed_forward.w2.weight
|
||||
#
|
||||
if n_dims > 1:
|
||||
split_dim = 1
|
||||
if "tok_embeddings" in name:
|
||||
split_dim = 1
|
||||
elif "layers" in name:
|
||||
if "attention.wo.weight" in name:
|
||||
split_dim = 1
|
||||
elif "feed_forward.w2.weight" in name:
|
||||
split_dim = 1
|
||||
else:
|
||||
split_dim = 0
|
||||
elif "output" in name:
|
||||
split_dim = 0
|
||||
|
||||
# output tensor header
|
||||
fullshape = list(partshape)
|
||||
if n_dims > 1:
|
||||
fullshape[split_dim] *= n_parts
|
||||
sname = name.encode()
|
||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
||||
for dim in reversed(fullshape):
|
||||
fout.write(struct.pack("i", dim))
|
||||
fout.write(sname)
|
||||
|
||||
# ensure tensor data is aligned
|
||||
tensor_data_offset = fout.tell()
|
||||
while tensor_data_offset % QK != 0:
|
||||
fout.write(struct.pack("B", 0))
|
||||
tensor_data_offset += 1
|
||||
|
||||
# output unified mappable tensor data
|
||||
if n_dims == 1 or n_parts == 1:
|
||||
# copy tensor which we thankfully received in one piece
|
||||
if part_id == 0:
|
||||
data.tofile(fout)
|
||||
elif split_dim == 0:
|
||||
# reassemble multifile tensor containing some of the rows
|
||||
rows_per_chunk = partshape[0]
|
||||
current_row = part_id * rows_per_chunk
|
||||
bytes_per_row = fullshape[1] // blck_size * type_size
|
||||
offset = current_row * bytes_per_row
|
||||
fout.seek(tensor_data_offset + offset)
|
||||
data.tofile(fout)
|
||||
elif split_dim == 1:
|
||||
# reassemble multifile tensor containing some of the cols
|
||||
cols_per_chunk = partshape[1]
|
||||
current_col = part_id * cols_per_chunk
|
||||
bytes_per_row = fullshape[1] // blck_size * type_size
|
||||
offset_current_col = current_col // blck_size * type_size
|
||||
for row in range(partshape[0]):
|
||||
offset_row = row * bytes_per_row
|
||||
offset = offset_row + offset_current_col
|
||||
fout.seek(tensor_data_offset + offset)
|
||||
data[row].tofile(fout)
|
||||
|
||||
# advance file position to next tensor
|
||||
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur))
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
dir_model = args.dir_model
|
||||
ftype = args.ftype
|
||||
ftype_str = ["f32", "f16"]
|
||||
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
||||
|
||||
print(args)
|
||||
|
||||
# if only writing vocab to file
|
||||
if args.vocab_only:
|
||||
fname_model = f"{dir_model}/consolidated.00.pth"
|
||||
fname_out = f"{dir_model}/ggml-vocab.bin"
|
||||
print(f"Extracting only the vocab from '{fname_model}'\n")
|
||||
with open(fname_out, "wb") as fout:
|
||||
write_header(fout, hparams, ftype)
|
||||
write_tokens(fout, tokenizer)
|
||||
print(f"Done. Output file: {fname_out}\n")
|
||||
return
|
||||
|
||||
n_parts = get_n_parts(hparams["dim"])
|
||||
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
|
||||
|
||||
# we output a single file for ggml
|
||||
with open(fname_out, "wb") as fout:
|
||||
write_header(fout, hparams, ftype)
|
||||
write_tokens(fout, tokenizer)
|
||||
offset_of_tensors = fout.tell()
|
||||
# the tensors we load could be split across multiple files
|
||||
for part_id in range(n_parts):
|
||||
fout.seek(offset_of_tensors)
|
||||
print(f"Processing part {part_id+1} of {n_parts}\n")
|
||||
fname_model = f"{dir_model}/consolidated.0{part_id}.pth"
|
||||
model = torch.load(fname_model, map_location="cpu")
|
||||
process_and_write_variables(fout, model, ftype, part_id, n_parts)
|
||||
del model
|
||||
|
||||
print(f"Done. Output file: {fname_out}\n")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||
args = parser.parse_args()
|
||||
convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model])
|
||||
|
|
|
@ -1,100 +0,0 @@
|
|||
#!/usr/bin/env python3
|
||||
# Original by https://github.com/eiz
|
||||
# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
|
||||
HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Upgrade old ggml model files to the current format')
|
||||
parser.add_argument('dir_model', help='directory containing ggml .bin files')
|
||||
parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file')
|
||||
return parser.parse_args()
|
||||
|
||||
def read_header(f_in):
|
||||
struct_fmt = "i" * (3 + len(HPARAMS))
|
||||
struct_size = struct.calcsize(struct_fmt)
|
||||
buf = f_in.read(struct_size)
|
||||
return struct.unpack(struct_fmt, buf)
|
||||
|
||||
def write_header(f_out, header):
|
||||
(magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header
|
||||
|
||||
if magic != 0x67676d6c:
|
||||
raise Exception('Invalid file magic. Must be an old style ggml file.')
|
||||
|
||||
values = [
|
||||
0x67676d66, # magic: ggml in hex
|
||||
1, # file version
|
||||
vocab_size,
|
||||
dim,
|
||||
multiple_of,
|
||||
n_heads,
|
||||
n_layers,
|
||||
rot,
|
||||
ftype
|
||||
]
|
||||
f_out.write(struct.pack("i" * len(values), *values))
|
||||
|
||||
def write_tokens(fout, tokenizer):
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
if tokenizer.is_unknown(i):
|
||||
text = " \u2047 ".encode()
|
||||
elif tokenizer.is_control(i):
|
||||
text = b""
|
||||
elif tokenizer.is_byte(i):
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
if len(piece) != 6:
|
||||
print(f"Invalid token: {piece}")
|
||||
sys.exit(1)
|
||||
byte_value = int(piece[3:-1], 16)
|
||||
text = struct.pack("B", byte_value)
|
||||
else:
|
||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
||||
fout.write(struct.pack("i", len(text)))
|
||||
fout.write(text)
|
||||
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
||||
|
||||
def read_tokens(f_in, tokenizer):
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
len_b = f_in.read(4)
|
||||
(length,) = struct.unpack("i", len_b)
|
||||
f_in.read(length)
|
||||
|
||||
def copy_all_data(f_out, f_in):
|
||||
while True:
|
||||
buf = f_in.read(1024 * 1024)
|
||||
if not buf:
|
||||
break
|
||||
f_out.write(buf)
|
||||
|
||||
def convert_one_file(path_in, tokenizer):
|
||||
path_tmp = f"{path_in}.tmp"
|
||||
path_orig= f"{path_in}.orig"
|
||||
print(f"converting {path_in}")
|
||||
with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out:
|
||||
write_header(f_out, read_header(f_in))
|
||||
read_tokens(f_in, tokenizer)
|
||||
write_tokens(f_out, tokenizer)
|
||||
copy_all_data(f_out, f_in)
|
||||
os.rename(path_in, path_orig)
|
||||
os.rename(path_tmp, path_in)
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
files = []
|
||||
files.extend(glob.glob(f"{args.dir_model}/*.bin"))
|
||||
files.extend(glob.glob(f"{args.dir_model}/*.bin.*"))
|
||||
|
||||
tokenizer = SentencePieceProcessor(args.tokenizer_model)
|
||||
|
||||
for file in files:
|
||||
convert_one_file(file, tokenizer)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1149
convert.py
Normal file
1149
convert.py
Normal file
File diff suppressed because it is too large
Load diff
|
@ -31,6 +31,7 @@ if (EMSCRIPTEN)
|
|||
else()
|
||||
add_subdirectory(main)
|
||||
add_subdirectory(quantize)
|
||||
add_subdirectory(quantize-stats)
|
||||
add_subdirectory(perplexity)
|
||||
add_subdirectory(embedding)
|
||||
endif()
|
||||
|
|
49
examples/Miku.sh
Executable file
49
examples/Miku.sh
Executable file
|
@ -0,0 +1,49 @@
|
|||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
AI_NAME="${AI_NAME:-Miku}"
|
||||
MODEL="${MODEL:-./models/gpt4all-7B/gpt4all-lora-unfiltered-quantized.bin}"
|
||||
USER_NAME="${USER_NAME:-Anon}"
|
||||
|
||||
# Uncomment and adjust to the number of CPU cores you want to use.
|
||||
#N_THREAD="${N_THREAD:-4}"
|
||||
N_PREDICTS="${N_PREDICTS:-4096}"
|
||||
|
||||
GEN_OPTIONS=(--batch_size 1024
|
||||
--ctx_size 2048
|
||||
--keep -1
|
||||
--repeat_last_n 256
|
||||
--repeat_penalty 1.17647
|
||||
--temp 0.7
|
||||
--top_k 40
|
||||
--top_p 0.5)
|
||||
|
||||
if [ -n "$N_THREAD" ]; then
|
||||
GEN_OPTIONS+=(--threads "$N_THREAD")
|
||||
fi
|
||||
|
||||
./main "${GEN_OPTIONS[@]}" \
|
||||
--model "$MODEL" \
|
||||
--n_predict "$N_PREDICTS" \
|
||||
--color --interactive \
|
||||
--reverse-prompt "${USER_NAME}:" \
|
||||
--prompt "
|
||||
This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the users computer.
|
||||
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
|
||||
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct she will ask the user for help.
|
||||
${AI_NAME} is a very helpful AI and will help the user with anything they need, she is also very friendly and will try to make the user feel better if they are sad.
|
||||
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life, she will also try to make the user like her.
|
||||
The conversation is only between ${USER_NAME} and ${AI_NAME}
|
||||
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
|
||||
${AI_NAME} can only communicate through text, so she can't send images or videos.
|
||||
|
||||
|
||||
${USER_NAME}: Hello!
|
||||
${AI_NAME}: /think I wonder what I should say to ${USER_NAME}? This is the first time we talk so it's important that I make a good first impression!
|
||||
${AI_NAME}: Hi! I am ${AI_NAME}, your new AI friend, assistant(or whatever you like!), it's so nice to meet you! ^_^
|
||||
${AI_NAME}: I might be an AI, but I also have feelings, so please be nice to me! :)
|
||||
${USER_NAME}: I'll make sure to be nice to you! I'm so happy to have you as my assistant!
|
||||
${AI_NAME}: /think It sounds like ${USER_NAME} is happy to have me as their assistant! I'm so happy too! ^_^ Glad that whole emotion thing didn't scare him off!
|
||||
${AI_NAME}: /think I wonder what ${USER_NAME} likes to do in his free time? I should ask him about that!
|
||||
${AI_NAME}: What do you like to do in your free time? ^_^
|
||||
${USER_NAME}:" "$@"
|
|
@ -7,4 +7,4 @@
|
|||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt --ctx_size 2048 -n -1 -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7
|
||||
|
|
270
examples/benchmark/benchmark-q4_0-matmult.c
Normal file
270
examples/benchmark/benchmark-q4_0-matmult.c
Normal file
|
@ -0,0 +1,270 @@
|
|||
/*
|
||||
License: MIT License
|
||||
|
||||
Changelog:
|
||||
- 2023-03-31 Initial version by Sebastian Apel (https://github.com/SebastianApel)
|
||||
|
||||
*/
|
||||
|
||||
#include <locale.h>
|
||||
#include "ggml.h"
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <unordered_map>
|
||||
#include <queue>
|
||||
#include <string.h>
|
||||
#include <cassert>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
float tensor_sum_elements(struct ggml_tensor * tensor) {
|
||||
float sum = 0;
|
||||
if (tensor->type==GGML_TYPE_F32) {
|
||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||
for (int k = 0; k < tensor->ne[0]; k++) {
|
||||
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
These are mapping to unknown
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_COUNT,
|
||||
*/
|
||||
|
||||
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
|
||||
|
||||
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \
|
||||
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
|
||||
TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
|
||||
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
|
||||
|
||||
struct benchmark_params_struct {
|
||||
int32_t n_threads = 1;
|
||||
int32_t n_iterations = 10;
|
||||
};
|
||||
|
||||
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
|
||||
|
||||
struct benchmark_params_struct benchmark_params;
|
||||
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
|
||||
if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
benchmark_params.n_threads = std::stoi(argv[i]);
|
||||
} else if (arg == "-i" || arg == "--iter") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
benchmark_params.n_iterations = std::stoi(argv[i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(0);
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// create the ggml context
|
||||
printf("Starting Test\n");
|
||||
|
||||
|
||||
|
||||
struct ggml_context * ctx;
|
||||
//const int sizex = 4096;
|
||||
//const int sizey = 11008;
|
||||
|
||||
#undef VERBOSE_DEBUGGING
|
||||
#ifndef VERBOSE_DEBUGGING
|
||||
const int sizey = 4096;
|
||||
const int sizex = 11008;
|
||||
const int sizez = 128;
|
||||
#else
|
||||
/* Working - let's increase size */
|
||||
const int sizey = 1;
|
||||
const int sizex = (8*32);
|
||||
const int sizez = 1;
|
||||
|
||||
/*const int sizey = 1;
|
||||
const int sizex = 3*(8*32);
|
||||
const int sizez = 1;*/
|
||||
#endif
|
||||
|
||||
//printf("Memsize required = %i\n", sizex*sizex);
|
||||
ggml_type wtype = GGML_TYPE_F32;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizeof(float);
|
||||
ctx_size += 1024*1024*100;
|
||||
|
||||
printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/* no_alloc =*/ 0
|
||||
};
|
||||
|
||||
ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
printf("Creating new tensors\n");
|
||||
// printf("Creating new tensor m1\n");
|
||||
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
|
||||
ggml_set_f32(m11, 1.0f);
|
||||
|
||||
// printf("Creating new tensor m1\n");
|
||||
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
|
||||
ggml_set_f32(m12, 1.5f);
|
||||
|
||||
// printf("Creating new tensor m2\n");
|
||||
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
|
||||
ggml_set_f32(m2, 2.0f);
|
||||
|
||||
printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
|
||||
// printf("Creating new tensor m11xm2\n");
|
||||
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
|
||||
|
||||
gf.n_threads=benchmark_params.n_threads;
|
||||
printf("cgraph->n_threads=%i\n",gf.n_threads);
|
||||
|
||||
TENSOR_DUMP(m11);
|
||||
TENSOR_DUMP(m2);
|
||||
|
||||
ggml_graph_compute(ctx, &gf);
|
||||
|
||||
TENSOR_DUMP(gf.nodes[0]);
|
||||
|
||||
printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");
|
||||
|
||||
int32_t nelements = sizex*sizey;
|
||||
int32_t ne[2] = { sizex, sizey };
|
||||
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
|
||||
// Set up a the benchmark matrices
|
||||
// printf("Creating new tensor q11 & Running quantize\n");
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
|
||||
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());
|
||||
|
||||
// Set up a the compute graph
|
||||
// printf("Creating new tensor q31\n");
|
||||
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf31 = ggml_build_forward(q31);
|
||||
gf31.n_threads=benchmark_params.n_threads;
|
||||
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
|
||||
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());
|
||||
|
||||
// printf("Creating new tensor q32\n");
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
||||
//printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf32 = ggml_build_forward(q32);
|
||||
gf32.n_threads=benchmark_params.n_threads;
|
||||
printf("cgraph->n_threads=%i\n",gf31.n_threads);
|
||||
|
||||
const int dimx = sizex;
|
||||
const int dimy = sizey;
|
||||
const int dimz = sizez;
|
||||
long long int flops_per_dot_product = dimy + dimy;
|
||||
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
|
||||
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
|
||||
|
||||
|
||||
// Let's use the F32 result from above as a reference for the q4_0 multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
|
||||
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
|
||||
printf("==============================================================================================\n");
|
||||
|
||||
for (int i=0;i<benchmark_params.n_iterations ;i++) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute(ctx, &gf31);
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
float sec = usec/1000000;
|
||||
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
|
||||
i,
|
||||
gf31.n_threads,
|
||||
sizex, sizey, sizez, flops_per_matrix,
|
||||
usec,flops_per_usec);
|
||||
|
||||
#ifdef VERBOSE_DEBUGGING
|
||||
TENSOR_DUMP("res",gf31.nodes[0])
|
||||
#endif
|
||||
|
||||
// Check that the matrix multiplication result is in the right ballpark
|
||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
|
||||
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||
|
||||
if (delta > allowed_delta) {
|
||||
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
|
||||
sum_of_F32_reference,
|
||||
sum_of_Q4_result,
|
||||
delta,
|
||||
allowed_delta
|
||||
);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute(ctx, &gf32);
|
||||
|
||||
}
|
||||
|
||||
}
|
|
@ -1,7 +1,5 @@
|
|||
#include "common.h"
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
|
@ -9,19 +7,20 @@
|
|||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
#include <alloca.h>
|
||||
#endif
|
||||
|
||||
#if defined (_WIN32)
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#pragma comment(lib,"kernel32.lib")
|
||||
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
|
||||
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
|
||||
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
|
||||
extern "C" __declspec(dllimport) int __stdcall SetConsoleCP(unsigned int wCodePageID);
|
||||
extern "C" __declspec(dllimport) int __stdcall SetConsoleOutputCP(unsigned int wCodePageID);
|
||||
extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int CodePage, unsigned long dwFlags,
|
||||
const wchar_t * lpWideCharStr, int cchWideChar,
|
||||
char * lpMultiByteStr, int cbMultiByte,
|
||||
const char * lpDefaultChar, bool * lpUsedDefaultChar);
|
||||
#define CP_UTF8 65001
|
||||
#endif
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
|
@ -140,6 +139,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.model = argv[i];
|
||||
} else if (arg == "--lora") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter = argv[i];
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "--embedding") {
|
||||
|
@ -154,6 +166,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
params.use_color = true;
|
||||
} else if (arg == "--mlock") {
|
||||
params.use_mlock = true;
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--mtest") {
|
||||
params.mem_test = true;
|
||||
} else if (arg == "--verbose-prompt") {
|
||||
|
@ -233,11 +247,16 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
|
||||
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
if (ggml_mlock_supported()) {
|
||||
if (llama_mlock_supported()) {
|
||||
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported()) {
|
||||
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
fprintf(stderr, " --mtest compute maximum memory usage\n");
|
||||
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
|
||||
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
|
@ -307,12 +326,20 @@ void win32_console_init(bool enable_color) {
|
|||
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
|
||||
}
|
||||
// Set console output codepage to UTF8
|
||||
SetConsoleOutputCP(65001); // CP_UTF8
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
}
|
||||
void* hConIn = GetStdHandle((unsigned long)-10); // STD_INPUT_HANDLE (-10)
|
||||
if (hConIn && hConIn != (void*)-1 && GetConsoleMode(hConIn, &dwMode)) {
|
||||
// Set console input codepage to UTF8
|
||||
SetConsoleCP(65001); // CP_UTF8
|
||||
// Set console input codepage to UTF16
|
||||
_setmode(_fileno(stdin), _O_WTEXT);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert a wide Unicode string to an UTF8 string
|
||||
void win32_utf8_encode(const std::wstring & wstr, std::string & str) {
|
||||
int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL);
|
||||
std::string strTo(size_needed, 0);
|
||||
WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL);
|
||||
str = strTo;
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -31,11 +31,12 @@ struct gpt_params {
|
|||
|
||||
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
|
||||
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
|
@ -47,6 +48,7 @@ struct gpt_params {
|
|||
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||
bool ignore_eos = false; // do not stop generating after eos
|
||||
bool perplexity = false; // compute perplexity over the prompt
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool mem_test = false; // compute maximum memory usage
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
|
@ -92,4 +94,5 @@ void set_console_color(console_state & con_st, console_color_t color);
|
|||
|
||||
#if defined (_WIN32)
|
||||
void win32_console_init(bool enable_color);
|
||||
void win32_utf8_encode(const std::wstring & wstr, std::string & str);
|
||||
#endif
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
# embedding
|
||||
|
||||
TODO
|
||||
# embedding
|
||||
|
||||
TODO
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <ctime>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
@ -38,6 +40,7 @@ int main(int argc, char ** argv) {
|
|||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
|
|
|
@ -10,6 +10,6 @@ cd ..
|
|||
./main --color --instruct --threads 4 \
|
||||
--model ./models/gpt4all-7B/gpt4all-lora-quantized.bin \
|
||||
--file ./prompts/alpaca.txt \
|
||||
--batch_size 8 --ctx_size 2048 \
|
||||
--batch_size 8 --ctx_size 2048 -n -1 \
|
||||
--repeat_last_n 64 --repeat_penalty 1.3 \
|
||||
--n_predict 128 --temp 0.1 --top_k 40 --top_p 0.95
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
# main
|
||||
|
||||
TODO
|
||||
# main
|
||||
|
||||
TODO
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
// Defines sigaction on msys:
|
||||
#ifndef _GNU_SOURCE
|
||||
#define _GNU_SOURCE
|
||||
#endif
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
|
@ -6,6 +11,7 @@
|
|||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
@ -97,6 +103,7 @@ int main(int argc, char ** argv) {
|
|||
lparams.n_parts = params.n_parts;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
|
||||
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
|
@ -107,6 +114,17 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
if (!params.lora_adapter.empty()) {
|
||||
int err = llama_apply_lora_from_file(ctx,
|
||||
params.lora_adapter.c_str(),
|
||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
|
@ -162,7 +180,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// enable interactive mode if reverse prompt or interactive start is specified
|
||||
if (params.antiprompt.size() != 0 || params.interactive_start) {
|
||||
if (params.antiprompt.size() != 0 || params.interactive_start) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
|
@ -386,10 +404,19 @@ int main(int argc, char ** argv) {
|
|||
std::string line;
|
||||
bool another_line = true;
|
||||
do {
|
||||
#if defined(_WIN32)
|
||||
std::wstring wline;
|
||||
if (!std::getline(std::wcin, wline)) {
|
||||
// input stream is bad or EOF received
|
||||
return 0;
|
||||
}
|
||||
win32_utf8_encode(wline, line);
|
||||
#else
|
||||
if (!std::getline(std::cin, line)) {
|
||||
// input stream is bad or EOF received
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
if (line.empty() || line.back() != '\\') {
|
||||
another_line = false;
|
||||
} else {
|
||||
|
@ -431,7 +458,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// end of text token
|
||||
if (embd.back() == llama_token_eos()) {
|
||||
if (!embd.empty() && embd.back() == llama_token_eos()) {
|
||||
if (params.instruct) {
|
||||
is_interacting = true;
|
||||
} else {
|
||||
|
|
|
@ -1,3 +1,3 @@
|
|||
# perplexity
|
||||
|
||||
TODO
|
||||
# perplexity
|
||||
|
||||
TODO
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <ctime>
|
||||
|
||||
std::vector<float> softmax(const std::vector<float>& logits) {
|
||||
std::vector<float> probs(logits.size());
|
||||
|
@ -27,20 +28,27 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||
|
||||
int count = 0;
|
||||
int seq_count = tokens.size() / params.n_ctx;
|
||||
int n_vocab = llama_n_vocab(ctx);
|
||||
|
||||
double nll = 0.0;
|
||||
|
||||
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
|
||||
fprintf(stderr, "%s : calculating perplexity over %d chunks, batch_size=%d\n", __func__, seq_count, params.n_batch);
|
||||
|
||||
for (int i = 0; i < seq_count; ++i) {
|
||||
int start = i * params.n_ctx;
|
||||
int end = start + params.n_ctx - 1; // TODO: this is not optimal, e.g. it makes the batch 511 instead of 512
|
||||
// it is better to always be power of 2 for better performance
|
||||
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
|
||||
int end = start + params.n_ctx;
|
||||
|
||||
std::vector<float> logits;
|
||||
int num_batches = (params.n_ctx + params.n_batch - 1) / params.n_batch;
|
||||
auto start_t = std::chrono::high_resolution_clock::now();
|
||||
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
for (int j = 0; j < num_batches; ++j) {
|
||||
int batch_start = start + j * params.n_batch;
|
||||
int batch_size = std::min(end - batch_start, params.n_batch);
|
||||
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * params.n_batch, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
}
|
||||
auto batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
}
|
||||
auto end_t = std::chrono::high_resolution_clock::now();
|
||||
if (i == 0) {
|
||||
|
@ -59,15 +67,12 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
|
|||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||
// process the entire prompt.
|
||||
|
||||
auto logits = llama_get_logits(ctx);
|
||||
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
|
||||
for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
int n_vocab = llama_n_vocab(ctx);
|
||||
std::vector<float> tok_logits(
|
||||
logits + j * n_vocab,
|
||||
logits + (j + 1) * n_vocab);
|
||||
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
logits.begin() + j * n_vocab,
|
||||
logits.begin() + (j + 1) * n_vocab);
|
||||
float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
||||
nll += -std::log(prob);
|
||||
++count;
|
||||
}
|
||||
|
@ -82,11 +87,13 @@ int main(int argc, char ** argv) {
|
|||
gpt_params params;
|
||||
params.model = "models/llama-7B/ggml-model.bin";
|
||||
|
||||
params.n_batch = 512;
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.perplexity = true;
|
||||
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
|
@ -115,6 +122,7 @@ int main(int argc, char ** argv) {
|
|||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
|
@ -126,6 +134,17 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
if (!params.lora_adapter.empty()) {
|
||||
int err = llama_apply_lora_from_file(ctx,
|
||||
params.lora_adapter.c_str(),
|
||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
|
|
4
examples/quantize-stats/CMakeLists.txt
Normal file
4
examples/quantize-stats/CMakeLists.txt
Normal file
|
@ -0,0 +1,4 @@
|
|||
set(TARGET quantize-stats)
|
||||
add_executable(${TARGET} quantize-stats.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
420
examples/quantize-stats/quantize-stats.cpp
Normal file
420
examples/quantize-stats/quantize-stats.cpp
Normal file
|
@ -0,0 +1,420 @@
|
|||
#include "ggml.h"
|
||||
|
||||
#define LLAMA_API_INTERNAL
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <map>
|
||||
#include <numeric>
|
||||
#include <regex>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <mutex>
|
||||
|
||||
struct quantize_stats_params {
|
||||
std::string model = "models/7B/ggml-model-f16.bin";
|
||||
bool verbose = false;
|
||||
bool per_layer_stats = false;
|
||||
bool print_histogram = false;
|
||||
bool reference = false;
|
||||
std::vector<std::string> include_layers;
|
||||
std::vector<std::string> exclude_layers;
|
||||
std::vector<enum ggml_type> include_types;
|
||||
};
|
||||
|
||||
const size_t HISTOGRAM_BUCKETS = 150;
|
||||
const double HISTOGRAM_RANGE = 0.03;
|
||||
|
||||
struct error_stats {
|
||||
size_t num_samples;
|
||||
double total_error;
|
||||
double max_error;
|
||||
uint64_t error_histogram[HISTOGRAM_BUCKETS];
|
||||
};
|
||||
|
||||
|
||||
void quantize_stats_print_usage(int /*argc*/, char ** argv) {
|
||||
quantize_stats_params params;
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, " -r, --reference\n");
|
||||
fprintf(stderr, " use reference implementation (default: false)\n");
|
||||
fprintf(stderr, " -v, --verbose\n");
|
||||
fprintf(stderr, " verbose output (default: false)\n");
|
||||
fprintf(stderr, " -p, --per-layer-stats\n");
|
||||
fprintf(stderr, " print stats per layer (default: false)\n");
|
||||
fprintf(stderr, " --histogram\n");
|
||||
fprintf(stderr, " print error histogram (default: false)\n");
|
||||
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
|
||||
fprintf(stderr, " only test layers matching pattern\n");
|
||||
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
|
||||
fprintf(stderr, " exclude layers matching pattern\n");
|
||||
fprintf(stderr, " -t TYPE, --type TYPE\n");
|
||||
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
// Check if a layer is included/excluded by command line
|
||||
bool layer_included(const quantize_stats_params params, const std::string & layer) {
|
||||
for (const auto& excluded : params.exclude_layers) {
|
||||
if (std::regex_search(layer, std::regex(excluded))) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
for (const auto& included : params.include_layers) {
|
||||
if (std::regex_search(layer, std::regex(included))) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return params.include_layers.empty();
|
||||
}
|
||||
|
||||
// Update error statistics given vectors with the before/after result of quantization
|
||||
void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
|
||||
for (int64_t i = 0; i < nelements; i++) {
|
||||
double diff = input[i] - output[i];
|
||||
stats.total_error += diff * diff;
|
||||
stats.max_error = fmax(fabs(diff), stats.max_error);
|
||||
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
|
||||
}
|
||||
stats.num_samples += nelements;
|
||||
}
|
||||
|
||||
void combine_error_stats(error_stats & into, const error_stats & from) {
|
||||
into.num_samples += from.num_samples;
|
||||
into.total_error += from.total_error;
|
||||
if (from.max_error > into.max_error) into.max_error = from.max_error;
|
||||
for (size_t i=0; i<HISTOGRAM_BUCKETS; ++i) into.error_histogram[i] += from.error_histogram[i];
|
||||
}
|
||||
|
||||
double find_quantile(const error_stats & stats, double quantile) {
|
||||
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
|
||||
|
||||
double accum = 0;
|
||||
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
|
||||
accum += stats.error_histogram[i];
|
||||
if (accum >= sum*quantile) {
|
||||
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
||||
}
|
||||
}
|
||||
return INFINITY;
|
||||
}
|
||||
|
||||
void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
|
||||
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
|
||||
double median = find_quantile(stats, .5);
|
||||
double pct95 = find_quantile(stats, .95);
|
||||
printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
|
||||
if (print_histogram) {
|
||||
printf("Error distribution:\n");
|
||||
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
|
||||
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
||||
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
|
||||
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
|
||||
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copied from ggml.h - verify that we can access this as a flat array
|
||||
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return
|
||||
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
||||
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
|
||||
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
|
||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||
}
|
||||
|
||||
void test_roundtrip_on_chunk(
|
||||
const ggml_tensor * layer,
|
||||
int64_t offset,
|
||||
int64_t chunk_size,
|
||||
const quantize_fns_t & qfns,
|
||||
bool use_reference,
|
||||
float * input_scratch,
|
||||
char * quantized_scratch,
|
||||
float * output_scratch,
|
||||
error_stats & stats) {
|
||||
|
||||
if (layer->type == GGML_TYPE_F16) {
|
||||
for (int i = 0; i < chunk_size; i++) {
|
||||
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
|
||||
}
|
||||
} else {
|
||||
input_scratch = ggml_get_data_f32(layer) + offset;
|
||||
}
|
||||
|
||||
if (use_reference) {
|
||||
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
|
||||
} else {
|
||||
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
|
||||
}
|
||||
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
|
||||
|
||||
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
|
||||
}
|
||||
|
||||
|
||||
// Run quantization function for a single layer and update error stats
|
||||
void test_roundtrip_on_layer(
|
||||
std::string & name,
|
||||
bool print_layer_stats,
|
||||
const quantize_fns_t & qfns,
|
||||
bool use_reference,
|
||||
const ggml_tensor * layer,
|
||||
std::vector<float> & input_scratch,
|
||||
std::vector<char> & quantized_scratch,
|
||||
std::vector<float> & output_scratch,
|
||||
error_stats & total_error,
|
||||
int max_thread = 0) {
|
||||
|
||||
assert(tensor_is_contiguous(layer));
|
||||
error_stats layer_error {};
|
||||
uint64_t nelements = ggml_nelements(layer);
|
||||
|
||||
float* input_scratch_ptr = nullptr;
|
||||
if (layer->type == GGML_TYPE_F16) {
|
||||
if (input_scratch.size() < nelements) input_scratch.resize(nelements);
|
||||
input_scratch_ptr = input_scratch.data();
|
||||
}
|
||||
if (quantized_scratch.size() < 4*nelements) quantized_scratch.resize(4*nelements);
|
||||
if (output_scratch.size() < nelements) output_scratch.resize(nelements);
|
||||
|
||||
if (max_thread < 1) max_thread = std::thread::hardware_concurrency();
|
||||
int chunk_size = 32*512;
|
||||
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
|
||||
|
||||
if (num_chunks < 2 || max_thread < 2) {
|
||||
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
|
||||
output_scratch.data(), print_layer_stats ? layer_error : total_error);
|
||||
} else {
|
||||
auto & stats = print_layer_stats ? layer_error : total_error;
|
||||
std::mutex mutex;
|
||||
uint64_t counter = 0;
|
||||
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
|
||||
&quantized_scratch, &output_scratch, chunk_size] () {
|
||||
error_stats local_stats {};
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
uint64_t offset = counter; counter += chunk_size;
|
||||
if (offset >= nelements) {
|
||||
combine_error_stats(stats, local_stats);
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
|
||||
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
|
||||
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
|
||||
}
|
||||
};
|
||||
int nthread = std::min(num_chunks, max_thread);
|
||||
std::vector<std::thread> workers(nthread-1);
|
||||
for (auto& w : workers) w = std::thread(compute);
|
||||
compute();
|
||||
for (auto& w : workers) w.join();
|
||||
}
|
||||
|
||||
if (print_layer_stats) {
|
||||
print_error_stats(name, layer_error, false);
|
||||
combine_error_stats(total_error, layer_error);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
quantize_stats_params params;
|
||||
|
||||
// read command line
|
||||
|
||||
int max_thread = 0;
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
quantize_stats_print_usage(argc, argv);
|
||||
exit(0);
|
||||
} else if (arg == "-r" || arg == "--reference") {
|
||||
params.reference = true;
|
||||
} else if (arg == "-v") {
|
||||
params.verbose = true;
|
||||
} else if (arg == "-p" || arg == "--per-layer-stats") {
|
||||
params.per_layer_stats = true;
|
||||
} else if (arg == "--histogram") {
|
||||
params.print_histogram = true;
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.model = argv[i];
|
||||
} else if (arg == "-l" || arg == "--include-layer") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.include_layers.push_back(argv[i]);
|
||||
} else if (arg == "-L" || arg == "--exclude-layer") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.exclude_layers.push_back(argv[i]);
|
||||
} else if (arg == "-t" || arg == "--type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
int j;
|
||||
for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], ggml_type_name((ggml_type) j)) != 0; j++) {
|
||||
// find match
|
||||
}
|
||||
if (j < GGML_TYPE_COUNT) {
|
||||
params.include_types.push_back((ggml_type) j);
|
||||
} else {
|
||||
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
|
||||
invalid_param = true;
|
||||
}
|
||||
} else if (arg == "-n" || arg == "--num-threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
max_thread = atoi(argv[i]);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
quantize_stats_print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
quantize_stats_print_usage(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// load the model
|
||||
fprintf(stderr, "Loading model\n");
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
llama_context * ctx;
|
||||
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = 256;
|
||||
lparams.n_parts = 1;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = false;
|
||||
lparams.use_mlock = false;
|
||||
|
||||
ctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const auto &tensors = llama_internal_get_tensor_map(ctx);
|
||||
|
||||
// check layer tensors
|
||||
int included_layers = 0;
|
||||
int64_t max_nelements = 0;
|
||||
bool is_f16 = false;
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
if (!layer_included(params, kv_tensor.first)) {
|
||||
continue;
|
||||
}
|
||||
if (params.verbose) {
|
||||
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), ggml_type_name(kv_tensor.second->type), ggml_nelements(kv_tensor.second));
|
||||
}
|
||||
if (kv_tensor.second->type == GGML_TYPE_F16) {
|
||||
is_f16 = true;
|
||||
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
|
||||
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
|
||||
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
|
||||
llama_free(ctx);
|
||||
return 1;
|
||||
}
|
||||
included_layers++;
|
||||
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
|
||||
}
|
||||
|
||||
if (is_f16) {
|
||||
printf("note: source model is f16\n");
|
||||
}
|
||||
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
|
||||
// allocate scratch space
|
||||
std::vector<float> input_scratch;
|
||||
std::vector<char> quantized_scratch;
|
||||
std::vector<float> output_scratch;
|
||||
|
||||
// loop throught quantization types
|
||||
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
||||
const ggml_type type = (ggml_type) i;
|
||||
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
|
||||
continue;
|
||||
}
|
||||
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
|
||||
if (qfns.quantize_row_q && qfns.dequantize_row_q) {
|
||||
if (params.verbose) {
|
||||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
}
|
||||
|
||||
error_stats global_stats {};
|
||||
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
if (!layer_included(params, kv_tensor.first)) {
|
||||
continue;
|
||||
}
|
||||
if (params.verbose) {
|
||||
printf(" %s ...\n", kv_tensor.first.c_str());
|
||||
}
|
||||
std::string layer_name { ggml_type_name(type) };
|
||||
layer_name += "::" + kv_tensor.first;
|
||||
test_roundtrip_on_layer(
|
||||
layer_name,
|
||||
params.per_layer_stats,
|
||||
qfns,
|
||||
params.reference,
|
||||
kv_tensor.second,
|
||||
input_scratch,
|
||||
quantized_scratch,
|
||||
output_scratch,
|
||||
global_stats,
|
||||
max_thread
|
||||
);
|
||||
}
|
||||
|
||||
print_error_stats(ggml_type_name(type), global_stats, params.print_histogram);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
llama_free(ctx);
|
||||
// report timing
|
||||
{
|
||||
const int64_t t_main_end_us = ggml_time_us();
|
||||
|
||||
printf("\n");
|
||||
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -5,15 +5,17 @@
|
|||
#include <string>
|
||||
|
||||
// usage:
|
||||
// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
||||
// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
|
||||
//
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
if (argc != 4) {
|
||||
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
|
||||
fprintf(stderr, " type = 2 - q4_0\n");
|
||||
fprintf(stderr, " type = 3 - q4_1\n");
|
||||
if (argc < 4) {
|
||||
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type [nthread]\n", argv[0]);
|
||||
fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0);
|
||||
fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1);
|
||||
fprintf(stderr, " type = %d - q4_2\n", LLAMA_FTYPE_MOSTLY_Q4_2);
|
||||
fprintf(stderr, " type = %d - q4_3\n", LLAMA_FTYPE_MOSTLY_Q4_3);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -27,7 +29,8 @@ int main(int argc, char ** argv) {
|
|||
const std::string fname_inp = argv[1];
|
||||
const std::string fname_out = argv[2];
|
||||
|
||||
const int itype = atoi(argv[3]);
|
||||
const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]);
|
||||
int nthread = argc > 4 ? atoi(argv[4]) : 0;
|
||||
|
||||
const int64_t t_main_start_us = ggml_time_us();
|
||||
|
||||
|
@ -37,7 +40,7 @@ int main(int argc, char ** argv) {
|
|||
{
|
||||
const int64_t t_start_us = ggml_time_us();
|
||||
|
||||
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
|
||||
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype, nthread)) {
|
||||
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -10,7 +10,6 @@
|
|||
inherit system;
|
||||
};
|
||||
llama-python = pkgs.python310.withPackages (ps: with ps; [
|
||||
torch
|
||||
numpy
|
||||
sentencepiece
|
||||
]);
|
||||
|
@ -28,8 +27,9 @@
|
|||
];
|
||||
installPhase = ''
|
||||
mkdir -p $out/bin
|
||||
mv bin/main $out/bin/llama
|
||||
mv bin/quantize $out/bin/quantize
|
||||
mv bin/* $out/bin/
|
||||
mv $out/bin/main $out/bin/llama
|
||||
|
||||
echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml
|
||||
cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml
|
||||
chmod +x $out/bin/convert-pth-to-ggml
|
||||
|
|
154
ggml-cuda.cu
Normal file
154
ggml-cuda.cu
Normal file
|
@ -0,0 +1,154 @@
|
|||
#include <stdint.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include "ggml-cuda.h"
|
||||
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
#define QK4_2 16
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
uint8_t qs[QK4_2 / 2]; // nibbles / quants
|
||||
} block_q4_2;
|
||||
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
|
||||
|
||||
#define QK4_3 16
|
||||
typedef struct {
|
||||
__half d; // delta
|
||||
__half m; // min
|
||||
uint8_t qs[QK4_3 / 2]; // nibbles / quants
|
||||
} block_q4_3;
|
||||
static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
|
||||
|
||||
|
||||
|
||||
static __global__ void dequantize_block_q4_0(const void * vx, float * y) {
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_0; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = (vi0 - 8)*d;
|
||||
const float v1 = (vi1 - 8)*d;
|
||||
|
||||
y[i*QK4_0 + l + 0] = v0;
|
||||
y[i*QK4_0 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_1(const void * vx, float * y) {
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_1; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = vi0*d + m;
|
||||
const float v1 = vi1*d + m;
|
||||
|
||||
y[i*QK4_1 + l + 0] = v0;
|
||||
y[i*QK4_1 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_2(const void * vx, float * y) {
|
||||
const block_q4_2 * x = (const block_q4_2 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_2; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = (vi0 - 8)*d;
|
||||
const float v1 = (vi1 - 8)*d;
|
||||
|
||||
y[i*QK4_2 + l + 0] = v0;
|
||||
y[i*QK4_2 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void dequantize_block_q4_3(const void * vx, float * y) {
|
||||
const block_q4_3 * x = (const block_q4_3 *) vx;
|
||||
|
||||
const int i = blockIdx.x;
|
||||
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
|
||||
const uint8_t * pp = x[i].qs;
|
||||
|
||||
for (int l = 0; l < QK4_3; l += 2) {
|
||||
const uint8_t vi = pp[l/2];
|
||||
|
||||
const int8_t vi0 = vi & 0xf;
|
||||
const int8_t vi1 = vi >> 4;
|
||||
|
||||
const float v0 = vi0*d + m;
|
||||
const float v1 = vi1*d + m;
|
||||
|
||||
y[i*QK4_3 + l + 0] = v0;
|
||||
y[i*QK4_3 + l + 1] = v1;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
__host__ void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_0;
|
||||
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
__host__ void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_1;
|
||||
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
__host__ void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_2;
|
||||
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
__host__ void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
|
||||
const int nb = k / QK4_3;
|
||||
dequantize_block_q4_3<<<nb, 1, 0, stream>>>(vx, y);
|
||||
}
|
||||
}
|
12
ggml-cuda.h
Normal file
12
ggml-cuda.h
Normal file
|
@ -0,0 +1,12 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
void dequantize_row_q4_3_cuda(const void * vx, float * y, int k, cudaStream_t stream);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
122
ggml.h
122
ggml.h
|
@ -177,11 +177,12 @@ extern "C" {
|
|||
#include <stddef.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 16
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_OPT 4
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 16
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_OPT 4
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
||||
#ifdef __ARM_NEON
|
||||
// we use the built-in 16-bit float type
|
||||
|
@ -198,13 +199,17 @@ struct ggml_object;
|
|||
struct ggml_context;
|
||||
|
||||
enum ggml_type {
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1,
|
||||
// explicitly numbered values are used in llama.cpp files
|
||||
GGML_TYPE_F32 = 0,
|
||||
GGML_TYPE_F16 = 1,
|
||||
GGML_TYPE_Q4_0 = 2,
|
||||
GGML_TYPE_Q4_1 = 3,
|
||||
GGML_TYPE_Q4_2 = 4,
|
||||
GGML_TYPE_Q4_3 = 5,
|
||||
GGML_TYPE_Q8_0 = 6,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
GGML_TYPE_F16,
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_COUNT,
|
||||
};
|
||||
|
||||
|
@ -236,6 +241,7 @@ enum ggml_op {
|
|||
|
||||
GGML_OP_SCALE,
|
||||
GGML_OP_CPY,
|
||||
GGML_OP_CONT,
|
||||
GGML_OP_RESHAPE,
|
||||
GGML_OP_VIEW,
|
||||
GGML_OP_PERMUTE,
|
||||
|
@ -250,9 +256,25 @@ enum ggml_op {
|
|||
GGML_OP_FLASH_ATTN,
|
||||
GGML_OP_FLASH_FF,
|
||||
|
||||
GGML_OP_MAP_UNARY,
|
||||
GGML_OP_MAP_BINARY,
|
||||
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
|
||||
// ggml object
|
||||
struct ggml_object {
|
||||
size_t offs;
|
||||
size_t size;
|
||||
|
||||
struct ggml_object * next;
|
||||
|
||||
char padding[8];
|
||||
};
|
||||
|
||||
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
||||
|
||||
// n-dimensional tensor
|
||||
struct ggml_tensor {
|
||||
enum ggml_type type;
|
||||
|
@ -335,8 +357,12 @@ int ggml_blck_size (enum ggml_type type);
|
|||
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
||||
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
||||
|
||||
const char * ggml_type_name(enum ggml_type type);
|
||||
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
bool ggml_is_quantized(enum ggml_type type);
|
||||
|
||||
struct ggml_context * ggml_init(struct ggml_init_params params);
|
||||
void ggml_free(struct ggml_context * ctx);
|
||||
|
||||
|
@ -344,13 +370,6 @@ size_t ggml_used_mem(const struct ggml_context * ctx);
|
|||
|
||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
||||
|
||||
bool ggml_mlock_supported(void);
|
||||
bool ggml_mlock(
|
||||
struct ggml_context * ctx,
|
||||
const void *opt_extra_addr,
|
||||
size_t opt_extra_len,
|
||||
char **err_p);
|
||||
|
||||
struct ggml_tensor * ggml_new_tensor(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
|
@ -415,6 +434,12 @@ struct ggml_tensor * ggml_add(
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
|
||||
struct ggml_tensor * ggml_add_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
struct ggml_tensor * ggml_sub(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -519,6 +544,11 @@ struct ggml_tensor * ggml_cpy(
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// make contiguous
|
||||
struct ggml_tensor * ggml_cont(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// return view(a), b specifies the new shape
|
||||
// TODO: when we start computing gradient, make a copy instead of view
|
||||
struct ggml_tensor * ggml_reshape(
|
||||
|
@ -558,6 +588,16 @@ struct ggml_tensor * ggml_view_2d(
|
|||
size_t nb1, // row stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_view_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
size_t nb1, // row stride in bytes
|
||||
size_t nb2, // slice stride in bytes
|
||||
size_t offset);
|
||||
|
||||
struct ggml_tensor * ggml_permute(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -590,7 +630,8 @@ struct ggml_tensor * ggml_soft_max(
|
|||
|
||||
// rotary position embedding
|
||||
// in-place, returns view(a)
|
||||
// if mode == 1, skip n_past elements
|
||||
// if mode & 1 == 1, skip n_past elements
|
||||
// if mode & 2 == 1, GPT-NeoX style
|
||||
// TODO: avoid creating a new tensor every time
|
||||
struct ggml_tensor * ggml_rope(
|
||||
struct ggml_context * ctx,
|
||||
|
@ -628,6 +669,21 @@ struct ggml_tensor * ggml_flash_ff(
|
|||
struct ggml_tensor * c0,
|
||||
struct ggml_tensor * c1);
|
||||
|
||||
// Mapping operations
|
||||
typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
|
||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||
|
||||
struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_unary_op_f32_t fun);
|
||||
|
||||
struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_binary_op_f32_t fun);
|
||||
|
||||
//
|
||||
// automatic differentiation
|
||||
//
|
||||
|
@ -755,6 +811,10 @@ enum ggml_opt_result ggml_opt(
|
|||
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
||||
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
|
||||
|
||||
//
|
||||
// system info
|
||||
|
@ -763,6 +823,8 @@ size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t *
|
|||
int ggml_cpu_has_avx(void);
|
||||
int ggml_cpu_has_avx2(void);
|
||||
int ggml_cpu_has_avx512(void);
|
||||
int ggml_cpu_has_avx512_vbmi(void);
|
||||
int ggml_cpu_has_avx512_vnni(void);
|
||||
int ggml_cpu_has_fma(void);
|
||||
int ggml_cpu_has_neon(void);
|
||||
int ggml_cpu_has_arm_fma(void);
|
||||
|
@ -770,9 +832,35 @@ int ggml_cpu_has_f16c(void);
|
|||
int ggml_cpu_has_fp16_va(void);
|
||||
int ggml_cpu_has_wasm_simd(void);
|
||||
int ggml_cpu_has_blas(void);
|
||||
int ggml_cpu_has_cublas(void);
|
||||
int ggml_cpu_has_sse3(void);
|
||||
int ggml_cpu_has_vsx(void);
|
||||
|
||||
|
||||
//
|
||||
// Internal types and functions exposed for tests and benchmarks
|
||||
//
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
#define GGML_RESTRICT
|
||||
#else
|
||||
#define GGML_RESTRICT restrict
|
||||
#endif
|
||||
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
|
||||
|
||||
typedef struct {
|
||||
dequantize_row_q_t dequantize_row_q;
|
||||
quantize_row_q_t quantize_row_q;
|
||||
quantize_row_q_t quantize_row_q_reference;
|
||||
quantize_row_q_t quantize_row_q_dot;
|
||||
vec_dot_q_t vec_dot_q;
|
||||
} quantize_fns_t;
|
||||
|
||||
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
42
llama.h
42
llama.h
|
@ -55,6 +55,7 @@ extern "C" {
|
|||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
bool embedding; // embedding mode only
|
||||
|
||||
|
@ -64,8 +65,22 @@ extern "C" {
|
|||
void * progress_callback_user_data;
|
||||
};
|
||||
|
||||
// model file types
|
||||
enum llama_ftype {
|
||||
LLAMA_FTYPE_ALL_F32 = 0,
|
||||
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
||||
LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors
|
||||
};
|
||||
|
||||
LLAMA_API struct llama_context_params llama_context_default_params();
|
||||
|
||||
LLAMA_API bool llama_mmap_supported();
|
||||
LLAMA_API bool llama_mlock_supported();
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
|
@ -78,10 +93,24 @@ extern "C" {
|
|||
|
||||
// TODO: not great API - very likely to change
|
||||
// Returns 0 on success
|
||||
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
const char * fname_out,
|
||||
int itype);
|
||||
enum llama_ftype ftype,
|
||||
int nthread);
|
||||
|
||||
// Apply a LoRA adapter to a loaded model
|
||||
// path_base_model is the path to a higher quality model to use as a base for
|
||||
// the layers modified by the adapter. Can be NULL to use the current loaded model.
|
||||
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
|
||||
// will be applied on top of the previous one
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the KV cache that will contain the context for the
|
||||
// ongoing prediction with the model.
|
||||
|
@ -166,4 +195,15 @@ extern "C" {
|
|||
}
|
||||
#endif
|
||||
|
||||
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
|
||||
#ifdef LLAMA_API_INTERNAL
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
struct ggml_tensor;
|
||||
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
|
||||
|
||||
#endif
|
||||
|
||||
#endif // LLAMA_H
|
||||
|
|
395
llama_util.h
Executable file
395
llama_util.h
Executable file
|
@ -0,0 +1,395 @@
|
|||
// Internal header to be included only by llama.cpp.
|
||||
// Contains wrappers around OS interfaces.
|
||||
|
||||
#ifndef LLAMA_UTIL_H
|
||||
#define LLAMA_UTIL_H
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <cstdlib>
|
||||
#include <climits>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __has_include
|
||||
#if __has_include(<unistd.h>)
|
||||
#include <unistd.h>
|
||||
#if defined(_POSIX_MAPPED_FILES)
|
||||
#include <sys/mman.h>
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#endif
|
||||
|
||||
#define LLAMA_ASSERT(x) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
LLAMA_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
throw format("failed to open %s: %s", fname, std::strerror(errno));
|
||||
}
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
LLAMA_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
throw format("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
throw std::string("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
throw format("write error: %s", strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#if defined(_WIN32)
|
||||
static std::string llama_format_win_err(DWORD err) {
|
||||
LPSTR buf;
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
|
||||
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
|
||||
if (!size) {
|
||||
return "FormatMessageA failed";
|
||||
}
|
||||
std::string ret(buf, size);
|
||||
LocalFree(buf);
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct llama_mmap {
|
||||
void * addr;
|
||||
size_t size;
|
||||
|
||||
llama_mmap(const llama_mmap &) = delete;
|
||||
|
||||
#ifdef _POSIX_MAPPED_FILES
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
int fd = fileno(file->fp);
|
||||
int flags = MAP_SHARED;
|
||||
#ifdef __linux__
|
||||
flags |= MAP_POPULATE;
|
||||
#endif
|
||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||
if (addr == MAP_FAILED) {
|
||||
throw format("mmap failed: %s", strerror(errno));
|
||||
}
|
||||
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
if (madvise(addr, file->size, MADV_WILLNEED)) {
|
||||
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
|
||||
strerror(errno));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
munmap(addr, size);
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
llama_mmap(struct llama_file * file, bool prefetch = true) {
|
||||
size = file->size;
|
||||
|
||||
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
|
||||
|
||||
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
||||
DWORD error = GetLastError();
|
||||
|
||||
if (hMapping == NULL) {
|
||||
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
||||
error = GetLastError();
|
||||
CloseHandle(hMapping);
|
||||
|
||||
if (addr == NULL) {
|
||||
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
|
||||
}
|
||||
|
||||
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
if (prefetch) {
|
||||
// Advise the kernel to preload the mapped memory
|
||||
WIN32_MEMORY_RANGE_ENTRY range;
|
||||
range.VirtualAddress = addr;
|
||||
range.NumberOfBytes = (SIZE_T)size;
|
||||
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
|
||||
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
|
||||
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
|
||||
}
|
||||
|
||||
~llama_mmap() {
|
||||
if (!UnmapViewOfFile(addr)) {
|
||||
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
llama_mmap(struct llama_file *) {
|
||||
throw std::string("mmap not supported");
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Represents some region of memory being locked using mlock or VirtualLock;
|
||||
// will automatically unlock on destruction.
|
||||
struct llama_mlock {
|
||||
void * addr = NULL;
|
||||
size_t size = 0;
|
||||
bool failed_already = false;
|
||||
|
||||
llama_mlock() {}
|
||||
llama_mlock(const llama_mlock &) = delete;
|
||||
|
||||
~llama_mlock() {
|
||||
if (size) {
|
||||
raw_unlock(addr, size);
|
||||
}
|
||||
}
|
||||
|
||||
void init(void * addr) {
|
||||
LLAMA_ASSERT(this->addr == NULL && this->size == 0);
|
||||
this->addr = addr;
|
||||
}
|
||||
|
||||
void grow_to(size_t target_size) {
|
||||
LLAMA_ASSERT(addr);
|
||||
if (failed_already) {
|
||||
return;
|
||||
}
|
||||
size_t granularity = lock_granularity();
|
||||
target_size = (target_size + granularity - 1) & ~(granularity - 1);
|
||||
if (target_size > size) {
|
||||
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
|
||||
size = target_size;
|
||||
} else {
|
||||
failed_already = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _POSIX_MEMLOCK_RANGE
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
return (size_t) sysconf(_SC_PAGESIZE);
|
||||
}
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) {
|
||||
if (!mlock(addr, size)) {
|
||||
return true;
|
||||
} else {
|
||||
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n" MLOCK_SUGGESTION,
|
||||
size, this->size, std::strerror(errno));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#undef MLOCK_SUGGESTION
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (munlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
|
||||
}
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
static constexpr bool SUPPORTED = true;
|
||||
|
||||
size_t lock_granularity() {
|
||||
SYSTEM_INFO si;
|
||||
GetSystemInfo(&si);
|
||||
return (size_t) si.dwPageSize;
|
||||
}
|
||||
|
||||
bool raw_lock(void * addr, size_t size) {
|
||||
for (int tries = 1; ; tries++) {
|
||||
if (VirtualLock(addr, size)) {
|
||||
return true;
|
||||
}
|
||||
if (tries == 2) {
|
||||
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
|
||||
size, this->size, llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
|
||||
// It failed but this was only the first try; increase the working
|
||||
// set size and try again.
|
||||
SIZE_T min_ws_size, max_ws_size;
|
||||
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
|
||||
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
// Per MSDN: "The maximum number of pages that a process can lock
|
||||
// is equal to the number of pages in its minimum working set minus
|
||||
// a small overhead."
|
||||
// Hopefully a megabyte is enough overhead:
|
||||
size_t increment = size + 1048576;
|
||||
// The minimum must be <= the maximum, so we need to increase both:
|
||||
min_ws_size += increment;
|
||||
max_ws_size += increment;
|
||||
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
|
||||
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void raw_unlock(void * addr, size_t size) {
|
||||
if (!VirtualUnlock(addr, size)) {
|
||||
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
|
||||
llama_format_win_err(GetLastError()).c_str());
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr bool SUPPORTED = false;
|
||||
|
||||
void raw_lock(const void * addr, size_t size) {
|
||||
fprintf(stderr, "warning: mlock not supported on this system\n");
|
||||
}
|
||||
|
||||
void raw_unlock(const void * addr, size_t size) {}
|
||||
#endif
|
||||
};
|
||||
|
||||
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
|
||||
struct llama_buffer {
|
||||
uint8_t * addr = NULL;
|
||||
size_t size = 0;
|
||||
|
||||
void resize(size_t size) {
|
||||
delete[] addr;
|
||||
addr = new uint8_t[size];
|
||||
this->size = size;
|
||||
}
|
||||
|
||||
~llama_buffer() {
|
||||
delete[] addr;
|
||||
}
|
||||
};
|
||||
#endif
|
BIN
media/llama-leader.jpeg
Normal file
BIN
media/llama-leader.jpeg
Normal file
Binary file not shown.
After Width: | Height: | Size: 195 KiB |
BIN
media/llama0-banner.png
Normal file
BIN
media/llama0-banner.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 141 KiB |
BIN
media/llama0-logo.png
Normal file
BIN
media/llama0-logo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 176 KiB |
BIN
media/llama1-banner.png
Normal file
BIN
media/llama1-banner.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 32 KiB |
BIN
media/llama1-logo.png
Normal file
BIN
media/llama1-logo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 32 KiB |
|
@ -1,311 +0,0 @@
|
|||
# Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic
|
||||
#
|
||||
# We caused a breaking change to the file format on 2023-03-30 in:
|
||||
# https://github.com/ggerganov/llama.cpp/pull/613
|
||||
#
|
||||
# (1) If you still have the Meta LLaMA .pth files, then close this
|
||||
# file now; you can just run `convert-pth-to-ggml.py` again to
|
||||
# migrate to the new format. The tool is easier to use too. It
|
||||
# isn't necessary anymore to manage split output files because
|
||||
# the new format always combines things into a single file.
|
||||
#
|
||||
# (2) If you deleted the Meta LLaMA .pth files due to save on disk
|
||||
# space, then this tool is intended to help you. Please check
|
||||
# out the instructions below.
|
||||
#
|
||||
# USAGE
|
||||
#
|
||||
# python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT
|
||||
#
|
||||
# PREREQUISITES
|
||||
#
|
||||
# pip install numpy
|
||||
# cd llama.cpp
|
||||
# make -j4
|
||||
#
|
||||
# EXAMPLE (7B MODEL)
|
||||
#
|
||||
# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
|
||||
# python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin
|
||||
#
|
||||
# # check that it works
|
||||
# ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
|
||||
#
|
||||
# # you can delete the old files
|
||||
# rm -f models/7B/ggml-model-f16.bin
|
||||
# mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin
|
||||
#
|
||||
# EXAMPLE (13B MODEL)
|
||||
#
|
||||
# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
|
||||
# python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin
|
||||
#
|
||||
# # check that it works
|
||||
# ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
|
||||
#
|
||||
# # you can delete the old files
|
||||
# rm -f models/13B/ggml-model-f16.bin*
|
||||
# mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin
|
||||
#
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
import struct
|
||||
import numpy as np
|
||||
|
||||
QK = 32
|
||||
|
||||
GGML_TYPE_Q4_0 = 0
|
||||
GGML_TYPE_Q4_1 = 1
|
||||
GGML_TYPE_I8 = 2
|
||||
GGML_TYPE_I16 = 3
|
||||
GGML_TYPE_I32 = 4
|
||||
GGML_TYPE_F16 = 5
|
||||
GGML_TYPE_F32 = 6
|
||||
|
||||
WTYPE_NAMES = {
|
||||
0: "F32",
|
||||
1: "F16",
|
||||
2: "Q4_0",
|
||||
3: "Q4_1",
|
||||
}
|
||||
|
||||
WTYPES = {
|
||||
0: GGML_TYPE_F32,
|
||||
1: GGML_TYPE_F16,
|
||||
2: GGML_TYPE_Q4_0,
|
||||
3: GGML_TYPE_Q4_1,
|
||||
}
|
||||
|
||||
GGML_BLCK_SIZE = {
|
||||
GGML_TYPE_Q4_0: QK,
|
||||
GGML_TYPE_Q4_1: QK,
|
||||
GGML_TYPE_I8: 1,
|
||||
GGML_TYPE_I16: 1,
|
||||
GGML_TYPE_I32: 1,
|
||||
GGML_TYPE_F16: 1,
|
||||
GGML_TYPE_F32: 1,
|
||||
}
|
||||
|
||||
GGML_TYPE_SIZE = {
|
||||
GGML_TYPE_Q4_0: 4 + QK//2,
|
||||
GGML_TYPE_Q4_1: 4*2 + QK//2,
|
||||
GGML_TYPE_I8: 1,
|
||||
GGML_TYPE_I16: 2,
|
||||
GGML_TYPE_I32: 4,
|
||||
GGML_TYPE_F16: 2,
|
||||
GGML_TYPE_F32: 4,
|
||||
}
|
||||
|
||||
HPARAMS = [
|
||||
'magic', # int32
|
||||
'version', # int32
|
||||
'n_vocab', # int32
|
||||
'n_embd', # int32
|
||||
'n_mult', # int32
|
||||
'n_head', # int32
|
||||
'n_layer', # int32
|
||||
'n_rot', # int32
|
||||
'f16', # int32
|
||||
]
|
||||
|
||||
def read_hparams(fin):
|
||||
struct_fmt = "i" * len(HPARAMS)
|
||||
struct_size = struct.calcsize(struct_fmt)
|
||||
buf = fin.read(struct_size)
|
||||
ints = struct.unpack(struct_fmt, buf)
|
||||
hparams = dict(zip(HPARAMS, ints))
|
||||
return hparams
|
||||
|
||||
def write_hparams(fout, hparams):
|
||||
struct_fmt = "i" * len(HPARAMS)
|
||||
struct_size = struct.calcsize(struct_fmt)
|
||||
ints = [hparams[h] for h in HPARAMS]
|
||||
fout.write(struct.pack(struct_fmt, *ints))
|
||||
|
||||
def read_tokens(fin, hparams):
|
||||
tokens = []
|
||||
for i in range(hparams['n_vocab']):
|
||||
len_b = fin.read(4)
|
||||
(length,) = struct.unpack("i", len_b)
|
||||
word = fin.read(length)
|
||||
score_b = fin.read(4)
|
||||
(score,) = struct.unpack("f", score_b)
|
||||
tokens.append((word, score))
|
||||
return tokens
|
||||
|
||||
def write_tokens(fout, tokens):
|
||||
for word, score in tokens:
|
||||
fout.write(struct.pack("i", len(word)))
|
||||
fout.write(word)
|
||||
fout.write(struct.pack("f", score))
|
||||
|
||||
def ggml_nelements(shape):
|
||||
r = 1
|
||||
for i in shape:
|
||||
r *= i
|
||||
return r
|
||||
|
||||
def ggml_nbytes(shape, ftype):
|
||||
x = ggml_nelements(shape)
|
||||
t = WTYPES[ftype]
|
||||
x *= GGML_TYPE_SIZE[t]
|
||||
x //= GGML_BLCK_SIZE[t]
|
||||
return x
|
||||
|
||||
def copy_tensors(fin, fout, part_id, n_parts):
|
||||
while True:
|
||||
|
||||
b = fin.read(4)
|
||||
if not b: break
|
||||
(n_dims,) = struct.unpack("i", b)
|
||||
b = fin.read(4)
|
||||
(length,) = struct.unpack("i", b)
|
||||
b = fin.read(4)
|
||||
(ftype,) = struct.unpack("i", b)
|
||||
|
||||
assert n_dims in (1, 2)
|
||||
|
||||
partshape = list(range(n_dims))
|
||||
for i in range(n_dims):
|
||||
b = fin.read(4)
|
||||
partshape[i] = struct.unpack("i", b)[0]
|
||||
partshape = list(reversed(partshape))
|
||||
|
||||
name = fin.read(length)
|
||||
data = fin.read(ggml_nbytes(partshape, ftype))
|
||||
|
||||
blck_size = GGML_BLCK_SIZE[WTYPES[ftype]]
|
||||
type_size = GGML_TYPE_SIZE[WTYPES[ftype]]
|
||||
|
||||
print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}")
|
||||
|
||||
# determine dimension along which multipart tensor is sharded
|
||||
#
|
||||
# split_dim 0 regex:
|
||||
# - output.*
|
||||
# - layers.*.attention.wq.weight
|
||||
# - layers.*.attention.wk.weight
|
||||
# - layers.*.attention.wv.weight
|
||||
# - layers.*.feed_forward.w1.weight
|
||||
# - layers.*.feed_forward.w3.weight
|
||||
#
|
||||
# split_dim 1 regex:
|
||||
# - tok_embeddings.*
|
||||
# - layers.*.attention.wo.weight
|
||||
# - layers.*.feed_forward.w2.weight
|
||||
#
|
||||
if n_dims > 1:
|
||||
split_dim = 1
|
||||
if b"tok_embeddings" in name:
|
||||
split_dim = 1
|
||||
elif b"layers" in name:
|
||||
if b"attention.wo.weight" in name:
|
||||
split_dim = 1
|
||||
elif b"feed_forward.w2.weight" in name:
|
||||
split_dim = 1
|
||||
else:
|
||||
split_dim = 0
|
||||
elif b"output" in name:
|
||||
split_dim = 0
|
||||
|
||||
# output tensor header
|
||||
fullshape = list(partshape)
|
||||
if n_dims > 1:
|
||||
fullshape[split_dim] *= n_parts
|
||||
fout.write(struct.pack("iii", n_dims, len(name), ftype))
|
||||
for dim in reversed(fullshape):
|
||||
fout.write(struct.pack("i", dim))
|
||||
fout.write(name)
|
||||
|
||||
# ensure tensor data is aligned
|
||||
tensor_data_offset = fout.tell()
|
||||
while tensor_data_offset % QK != 0:
|
||||
fout.write(struct.pack("B", 0))
|
||||
tensor_data_offset += 1
|
||||
|
||||
# output unified mappable tensor data
|
||||
if n_dims == 1 or n_parts == 1:
|
||||
# copy tensor which we thankfully received in one piece
|
||||
if part_id == 0:
|
||||
fout.write(data)
|
||||
elif split_dim == 0:
|
||||
# reassemble multifile tensor containing some of the rows
|
||||
rows_per_chunk = partshape[0]
|
||||
current_row = part_id * rows_per_chunk
|
||||
bytes_per_row = fullshape[1] // blck_size * type_size
|
||||
offset = current_row * bytes_per_row
|
||||
fout.seek(tensor_data_offset + offset)
|
||||
fout.write(data)
|
||||
elif split_dim == 1:
|
||||
# reassemble multifile tensor containing some of the cols
|
||||
cols_per_chunk = partshape[1]
|
||||
current_col = part_id * cols_per_chunk
|
||||
bpr = partshape[1] // blck_size * type_size
|
||||
bytes_per_row = fullshape[1] // blck_size * type_size
|
||||
offset_current_col = current_col // blck_size * type_size
|
||||
for row in range(partshape[0]):
|
||||
offset_row = row * bytes_per_row
|
||||
offset = offset_row + offset_current_col
|
||||
fout.seek(tensor_data_offset + offset)
|
||||
fout.write(data[row * bpr:row * bpr + bpr])
|
||||
|
||||
# advance file position to next tensor
|
||||
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype))
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format')
|
||||
parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)')
|
||||
parser.add_argument('fout_path', help='your new ggjt file name')
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
assert args.fin_path
|
||||
assert args.fout_path
|
||||
assert args.fin_path != args.fout_path
|
||||
|
||||
with open(args.fin_path, "rb") as fin:
|
||||
hparams = read_hparams(fin)
|
||||
tokens = read_tokens(fin, hparams)
|
||||
|
||||
if hparams['magic'] == 0x67676a74: # ggjt
|
||||
print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n")
|
||||
sys.exit(1)
|
||||
|
||||
if hparams['magic'] != 0x67676d66: # ggmf
|
||||
print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n")
|
||||
sys.exit(1)
|
||||
|
||||
hparams['magic'] = 0x67676a74 # ggjt
|
||||
|
||||
# count number of multipart files by convention
|
||||
n_parts = 1
|
||||
while True:
|
||||
if os.path.exists(f"{args.fin_path}.{n_parts}"):
|
||||
n_parts += 1
|
||||
else:
|
||||
break
|
||||
|
||||
# we output a single file for ggml
|
||||
with open(args.fout_path, "wb") as fout:
|
||||
write_hparams(fout, hparams)
|
||||
write_tokens(fout, tokens)
|
||||
offset_of_tensors = fout.tell()
|
||||
# the tensors we load could be split across multiple files
|
||||
for part_id in range(n_parts):
|
||||
fout.seek(offset_of_tensors)
|
||||
print(f"Processing part {part_id+1} of {n_parts}\n")
|
||||
fin_path = args.fin_path
|
||||
if part_id > 0:
|
||||
fin_path += f".{part_id}"
|
||||
with open(fin_path, "rb") as fin:
|
||||
read_tokens(fin, read_hparams(fin))
|
||||
copy_tensors(fin, fout, part_id, n_parts)
|
||||
|
||||
print(f"Done. Output file: {args.fout_path}\n")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
12
pocs/CMakeLists.txt
Normal file
12
pocs/CMakeLists.txt
Normal file
|
@ -0,0 +1,12 @@
|
|||
# dependencies
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
# third-party
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
else()
|
||||
add_subdirectory(vdot)
|
||||
endif()
|
4
pocs/vdot/CMakeLists.txt
Normal file
4
pocs/vdot/CMakeLists.txt
Normal file
|
@ -0,0 +1,4 @@
|
|||
set(TARGET vdot)
|
||||
add_executable(${TARGET} vdot.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
305
pocs/vdot/vdot.cpp
Normal file
305
pocs/vdot/vdot.cpp
Normal file
|
@ -0,0 +1,305 @@
|
|||
#include <cstdio>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <chrono>
|
||||
#include <cstdlib>
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <array>
|
||||
|
||||
#include <ggml.h>
|
||||
|
||||
constexpr int kVecSize = 1 << 18;
|
||||
|
||||
float drawFromGaussianPdf(std::mt19937& rndm) {
|
||||
constexpr double kScale = 1./(1. + std::mt19937::max());
|
||||
constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale;
|
||||
static float lastX;
|
||||
static bool haveX = false;
|
||||
if (haveX) { haveX = false; return lastX; }
|
||||
auto r = sqrt(-2*log(1 - kScale*rndm()));
|
||||
auto phi = kTwoPiTimesScale * rndm();
|
||||
lastX = r*sin(phi);
|
||||
haveX = true;
|
||||
return r*cos(phi);
|
||||
}
|
||||
void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) {
|
||||
for (auto& v : values) v = mean + drawFromGaussianPdf(rndm);
|
||||
}
|
||||
|
||||
// Copy-pasted from ggml.c
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
// Copy-pasted from ggml.c
|
||||
#define QK8_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
|
||||
|
||||
// "Scalar" dot product between the quantized vector x and float vector y
|
||||
inline double dot(int n, const block_q4_0* x, const float* y) {
|
||||
const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f};
|
||||
constexpr uint32_t kMask1 = 0x0f0f0f0f;
|
||||
uint32_t u1, u2;
|
||||
auto q1 = (const uint8_t*)&u1;
|
||||
auto q2 = (const uint8_t*)&u2;
|
||||
double sum = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
float d = x->d;
|
||||
auto u = (const uint32_t*)x->qs;
|
||||
float s = 0;
|
||||
for (int k=0; k<4; ++k) {
|
||||
u1 = u[k] & kMask1;
|
||||
u2 = (u[k] >> 4) & kMask1;
|
||||
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] +
|
||||
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] +
|
||||
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] +
|
||||
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]];
|
||||
y += 8;
|
||||
}
|
||||
sum += s*d;
|
||||
++x;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
// Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product),
|
||||
// but about the same on X86_64 (Ryzen 7950X CPU).
|
||||
inline double dot3(int n, const block_q4_0* x, const float* y) {
|
||||
const static std::pair<float,float> kValues[256] = {
|
||||
{-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f},
|
||||
{ 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f},
|
||||
{-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f},
|
||||
{ 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f},
|
||||
{-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f},
|
||||
{ 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f},
|
||||
{-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f},
|
||||
{ 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f},
|
||||
{-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f},
|
||||
{ 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f},
|
||||
{-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f},
|
||||
{ 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f},
|
||||
{-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f},
|
||||
{ 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f},
|
||||
{-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f},
|
||||
{ 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f},
|
||||
{-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f},
|
||||
{ 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f},
|
||||
{-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f},
|
||||
{ 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f},
|
||||
{-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f},
|
||||
{ 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f},
|
||||
{-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f},
|
||||
{ 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f},
|
||||
{-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f},
|
||||
{ 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f},
|
||||
{-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f},
|
||||
{ 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f},
|
||||
{-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f},
|
||||
{ 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f},
|
||||
{-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f},
|
||||
{ 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f}
|
||||
};
|
||||
double sum = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
float d = x->d;
|
||||
auto q = x->qs;
|
||||
float s = 0;
|
||||
for (int k=0; k<4; ++k) {
|
||||
s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second +
|
||||
y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second +
|
||||
y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second +
|
||||
y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second;
|
||||
y += 8; q += 4;
|
||||
}
|
||||
sum += s*d;
|
||||
++x;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
inline double dot41(int n, const block_q4_1* x, const float* y) {
|
||||
const static float kValues[16] = {0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f};
|
||||
constexpr uint32_t kMask1 = 0x0f0f0f0f;
|
||||
uint32_t u1, u2;
|
||||
auto q1 = (const uint8_t*)&u1;
|
||||
auto q2 = (const uint8_t*)&u2;
|
||||
double sum = 0;
|
||||
for (int i=0; i<n; ++i) {
|
||||
auto u = (const uint32_t*)x->qs;
|
||||
float s = 0, s1 = 0;
|
||||
for (int k=0; k<4; ++k) {
|
||||
u1 = u[k] & kMask1;
|
||||
u2 = (u[k] >> 4) & kMask1;
|
||||
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] +
|
||||
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] +
|
||||
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] +
|
||||
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]];
|
||||
s1 += y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7];
|
||||
y += 8;
|
||||
}
|
||||
sum += s*x->d + s1*x->m;
|
||||
++x;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
// Copy-pasted from ggml.c
|
||||
static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) {
|
||||
assert(k % QK8_0 == 0);
|
||||
const int nb = k / QK8_0;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int l = 0; l < QK8_0; l++) {
|
||||
const float v = x[i*QK8_0 + l];
|
||||
amax = std::max(amax, fabsf(v));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = d;
|
||||
|
||||
for (int l = 0; l < QK8_0; ++l) {
|
||||
const float v = x[i*QK8_0 + l]*id;
|
||||
y[i].qs[l] = roundf(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy-pasted from ggml.c
|
||||
static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) {
|
||||
const int nb = n / QK8_0;
|
||||
const block_q4_0* x = (const block_q4_0*)vx;
|
||||
const block_q8_0* y = (const block_q8_0*)vy;
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
const float d0 = x[i].d;
|
||||
const float d1 = y[i].d;
|
||||
|
||||
const uint8_t * p0 = x[i].qs;
|
||||
const int8_t * p1 = y[i].qs;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK8_0/2; j++) {
|
||||
const uint8_t v0 = p0[j];
|
||||
|
||||
const int i0 = (int8_t) (v0 & 0xf) - 8;
|
||||
const int i1 = (int8_t) (v0 >> 4) - 8;
|
||||
|
||||
const int i2 = p1[2*j + 0];
|
||||
const int i3 = p1[2*j + 1];
|
||||
|
||||
sumi += i0*i2 + i1*i3;
|
||||
}
|
||||
sumf += d0*d1*sumi;
|
||||
}
|
||||
*s = sumf;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
int nloop = argc > 1 ? atoi(argv[1]) : 10;
|
||||
bool scalar = argc > 2 ? atoi(argv[2]) : false;
|
||||
bool useQ4_1 = argc > 3 ? atoi(argv[3]) : false;
|
||||
|
||||
if (scalar && useQ4_1) {
|
||||
printf("It is not possible to use Q4_1 quantization and scalar implementations\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::mt19937 rndm(1234);
|
||||
|
||||
std::vector<float> x1(kVecSize), y1(kVecSize);
|
||||
int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64);
|
||||
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64);
|
||||
|
||||
auto funcs = useQ4_1 ? ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1) : ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0);
|
||||
|
||||
std::vector<block_q4_0> q40;
|
||||
std::vector<block_q4_1> q41;
|
||||
if (useQ4_1) q41.resize(n4);
|
||||
else q40.resize(n4);
|
||||
std::vector<block_q8_0> q8(n8);
|
||||
std::vector<int64_t> H(16, 0);
|
||||
double sumt = 0, sumt2 = 0, maxt = 0;
|
||||
double sumqt = 0, sumqt2 = 0, maxqt = 0;
|
||||
double sum = 0, sumq = 0, exactSum = 0;
|
||||
for (int iloop=0; iloop<nloop; ++iloop) {
|
||||
|
||||
// Fill vector x with random numbers
|
||||
fillRandomGaussianFloats(x1, rndm);
|
||||
|
||||
// Fill vector y with random numbers
|
||||
fillRandomGaussianFloats(y1, rndm);
|
||||
|
||||
// Compute the exact dot product
|
||||
for (int k=0; k<kVecSize; ++k) exactSum += x1[k]*y1[k];
|
||||
|
||||
// quantize x.
|
||||
// Note, we do not include this in the timing as in practical application
|
||||
// we already have the quantized model weights.
|
||||
if (useQ4_1) {
|
||||
funcs.quantize_row_q(x1.data(), q41.data(), kVecSize);
|
||||
} else {
|
||||
funcs.quantize_row_q(x1.data(), q40.data(), kVecSize);
|
||||
}
|
||||
|
||||
// Now measure time the dot product needs using the "scalar" version above
|
||||
auto t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useQ4_1) sum += dot41(kVecSize / QK4_1, q41.data(), y1.data());
|
||||
else sum += dot(kVecSize / QK4_0, q40.data(), y1.data());
|
||||
auto t2 = std::chrono::high_resolution_clock::now();
|
||||
auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
|
||||
sumt += t; sumt2 += t*t; maxt = std::max(maxt, t);
|
||||
|
||||
// And now measure the time needed to quantize y and perform the dot product with the quantized y
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
float result;
|
||||
if (scalar) {
|
||||
quantize_row_q8_0_reference(y1.data(), q8.data(), kVecSize);
|
||||
dot_q4_q8(kVecSize, &result, q40.data(), q8.data());
|
||||
}
|
||||
else {
|
||||
funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize);
|
||||
if (useQ4_1) funcs.vec_dot_q(kVecSize, &result, q41.data(), q8.data());
|
||||
else funcs.vec_dot_q(kVecSize, &result, q40.data(), q8.data());
|
||||
}
|
||||
sumq += result;
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
|
||||
sumqt += t; sumqt2 += t*t; maxqt = std::max(maxqt, t);
|
||||
|
||||
}
|
||||
|
||||
// Report the time (and the average of the dot products so the compiler does not come up with the idea
|
||||
// of optimizing away the function calls after figuring that the result is not used).
|
||||
sum /= nloop; sumq /= nloop;
|
||||
exactSum /= nloop;
|
||||
printf("Exact result: <dot> = %g\n",exactSum);
|
||||
printf("<dot> = %g, %g\n",sum,sumq);
|
||||
sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt;
|
||||
if (sumt2 > 0) sumt2 = sqrt(sumt2);
|
||||
printf("time = %g +/- %g us. maxt = %g us\n",sumt,sumt2,maxt);
|
||||
sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt;
|
||||
if (sumqt2 > 0) sumqt2 = sqrt(sumqt2);
|
||||
printf("timeq = %g +/- %g us. maxt = %g us\n",sumqt,sumqt2,maxqt);
|
||||
return 0;
|
||||
}
|
|
@ -4,4 +4,4 @@ User: Hello, Bob.
|
|||
Bob: Hello. How may I help you today?
|
||||
User: Please tell me the largest city in Europe.
|
||||
Bob: Sure. The largest city in Europe is Moscow, the capital of Russia.
|
||||
User:
|
||||
User:
|
|
@ -15,4 +15,4 @@ Answer: The calculate tool says it is 9.3333333333
|
|||
Question: What is capital of france?
|
||||
Thought: Do I need to use an action? No, I know the answer
|
||||
Answer: Paris is the capital of France
|
||||
Question:
|
||||
Question:
|
2
requirements.txt
Normal file
2
requirements.txt
Normal file
|
@ -0,0 +1,2 @@
|
|||
numpy==1.24
|
||||
sentencepiece==0.1.98
|
|
@ -5,13 +5,17 @@
|
|||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
static const std::map<std::string, std::vector<llama_token>> k_tests = {
|
||||
{ "Hello World", { 1, 10994, 2787, }, },
|
||||
{ " Hello World", { 1, 15043, 2787, }, },
|
||||
{ " Hello World!", { 1, 15043, 2787, 29991, }, },
|
||||
{ " this is 🦙.cpp", { 1, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
|
||||
{ "w048 7tuijk dsdfhu", { 1, 29893, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
|
||||
{ "нещо на Български", { 1, 821, 4851, 665, 1386, 29713, 1305, }, },
|
||||
static const std::map<std::string, std::vector<llama_token>> & k_tests()
|
||||
{
|
||||
static std::map<std::string, std::vector<llama_token>> _k_tests = {
|
||||
{ "Hello World", { 1, 10994, 2787, }, },
|
||||
{ " Hello World", { 1, 15043, 2787, }, },
|
||||
{ " Hello World!", { 1, 15043, 2787, 29991, }, },
|
||||
{ " this is 🦙.cpp", { 1, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
|
||||
{ "w048 7tuijk dsdfhu", { 1, 29893, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
|
||||
{ "нещо на Български", { 1, 821, 4851, 665, 1386, 29713, 1305, }, },
|
||||
};
|
||||
return _k_tests;
|
||||
};
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
|
@ -47,7 +51,7 @@ int main(int argc, char **argv) {
|
|||
return 2;
|
||||
}
|
||||
|
||||
for (const auto & test_kv : k_tests) {
|
||||
for (const auto & test_kv : k_tests()) {
|
||||
std::vector<llama_token> res(test_kv.first.size());
|
||||
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), res.size(), true);
|
||||
res.resize(n);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue