diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 834391a66..f25fc287d 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -293,7 +293,7 @@ class Model: return False - def prepare_tensors_for_writing(self): + def prepare_tensors(self): max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,") for name, data_torch in self.get_tensors(): @@ -398,7 +398,7 @@ class Model: self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION) def write(self): - self.prepare_tensors_for_writing() + self.prepare_tensors() self.prepare_key_value_store() self.gguf_writer.write_header_to_file() self.gguf_writer.write_kv_data_to_file() @@ -411,7 +411,7 @@ class Model: if self.metadata.uuid is None: # Required tensor data least for uuid generation if in vocab_only mode - self.prepare_tensors_for_writing() + self.prepare_tensors() self.prepare_key_value_store() self.gguf_writer.write_header_to_file() @@ -1441,8 +1441,8 @@ class StableLMModel(Model): return [(new_name, data_torch)] - def prepare_tensors_for_writing(self): - super().prepare_tensors_for_writing() + def prepare_tensors(self): + super().prepare_tensors() if self._q_norms is not None or self._k_norms is not None: # flatten two `list[dict[str, Tensor]]` into a single `list[str]` @@ -1558,8 +1558,8 @@ class LlamaModel(Model): return [(self.map_tensor_name(name), data_torch)] - def prepare_tensors_for_writing(self): - super().prepare_tensors_for_writing() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -1882,8 +1882,8 @@ class Qwen2MoeModel(Model): return [(self.map_tensor_name(name), data_torch)] - def prepare_tensors_for_writing(self): - super().prepare_tensors_for_writing() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -2950,8 +2950,8 @@ class ArcticModel(Model): return [(self.map_tensor_name(name), data_torch)] - def prepare_tensors_for_writing(self): - super().prepare_tensors_for_writing() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -3029,8 +3029,8 @@ class DeepseekV2Model(Model): return [(self.map_tensor_name(name), data_torch)] - def prepare_tensors_for_writing(self): - super().prepare_tensors_for_writing() + def prepare_tensors(self): + super().prepare_tensors() if self._experts is not None: # flatten `list[dict[str, Tensor]]` into `list[str]` @@ -3266,8 +3266,8 @@ class JaisModel(Model): return tensors - def prepare_tensors_for_writing(self): - super().prepare_tensors_for_writing() + def prepare_tensors(self): + super().prepare_tensors() self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)