Update bruteforce random tests
Add detokenizer checks New generator: ascii_lr_strip New generator: apostrophe Add more vocabs files
This commit is contained in:
parent
071bf42f23
commit
064b35eaff
1 changed files with 183 additions and 80 deletions
|
@ -13,7 +13,7 @@ import subprocess
|
|||
import random
|
||||
import unicodedata
|
||||
|
||||
from typing import Callable, Iterator
|
||||
from typing import Iterator
|
||||
|
||||
import cffi
|
||||
from transformers import AutoTokenizer
|
||||
|
@ -79,6 +79,7 @@ class LibLlamaModel:
|
|||
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
|
||||
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
|
||||
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
|
||||
self.text_buff = self.ffi.new("uint8_t[]", 1024)
|
||||
|
||||
def free(self):
|
||||
if self.ctx:
|
||||
|
@ -89,14 +90,78 @@ class LibLlamaModel:
|
|||
self.model = None
|
||||
self.lib = None
|
||||
|
||||
def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
|
||||
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
|
||||
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
|
||||
text = text.encode("utf-8")
|
||||
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
|
||||
if num < 0:
|
||||
return []
|
||||
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
|
||||
while num < 0 and len(self.token_ids) < (16 << 20):
|
||||
self.token_ids = self.ffi.new("llama_token[]", -2 * num)
|
||||
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
|
||||
return list(self.token_ids[0:num])
|
||||
|
||||
def detokenize(self, ids: list[int], special: bool = False) -> str:
|
||||
if len(self.token_ids) < len(ids):
|
||||
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
|
||||
for i, id in enumerate(ids):
|
||||
self.token_ids[i] = id
|
||||
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), special)
|
||||
while num < 0 and len(self.text_buff) < (16 << 20):
|
||||
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
|
||||
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), special)
|
||||
return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8")
|
||||
|
||||
|
||||
class Tokenizer:
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
raise NotImplementedError
|
||||
|
||||
def decode(self, ids: list[int]) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TokenizerGroundtruth (Tokenizer):
|
||||
|
||||
def __init__(self, dir_tokenizer: str):
|
||||
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
|
||||
# guess BOS and EOS
|
||||
ids = self.encode("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
|
||||
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
|
||||
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
|
||||
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
|
||||
# build vocab
|
||||
tokens = list(self.model.get_vocab().values())
|
||||
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
|
||||
self.vocab = list(sorted(self.vocab))
|
||||
# tokens and lists
|
||||
self.special_tokens = list(self.model.all_special_tokens)
|
||||
self.added_tokens = list(self.model.added_tokens_encoder)
|
||||
self.bos_token = self.model.bos_token
|
||||
self.eos_token = self.model.eos_token
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
return self.model.encode(text, add_special_tokens=True)
|
||||
|
||||
def decode(self, ids: list[int]) -> str:
|
||||
return self.model.decode(ids, skip_special_tokens=True)
|
||||
|
||||
|
||||
class TokenizerLlamaCpp (Tokenizer):
|
||||
|
||||
libllama: LibLlama = None
|
||||
|
||||
def __init__(self, vocab_file: str):
|
||||
if not self.libllama:
|
||||
self.libllama = LibLlama()
|
||||
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
|
||||
def encode(self, text: str) -> list[int]:
|
||||
return self.model.tokenize(text, add_special=True, parse_special=True)
|
||||
|
||||
def decode(self, ids: list[int]) -> str:
|
||||
return self.model.detokenize(ids, special=False)
|
||||
|
||||
|
||||
def generator_custom_text() -> Iterator[str]:
|
||||
"""General tests"""
|
||||
|
@ -165,19 +230,43 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
|
|||
'a </s> b', # rstrip phi-3
|
||||
'a <mask> b', # lstrip jina-v2
|
||||
'\xa0aC', # deepseek
|
||||
'\u2029 \uA3E4', # deepseek-llm
|
||||
"a ?",
|
||||
]
|
||||
|
||||
|
||||
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
|
||||
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
|
||||
"""Brute force check all vocab words"""
|
||||
yield from vocab
|
||||
yield from tokenizer.vocab
|
||||
|
||||
|
||||
def generator_added_lr_strip(tokenizer) -> Iterator[str]:
|
||||
def generator_ascii_lr_strip() -> Iterator[str]:
|
||||
WHITESPACES = ["", " ", " "]
|
||||
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
|
||||
for char1 in CHARACTERS:
|
||||
for char2 in CHARACTERS:
|
||||
for lstrip in WHITESPACES:
|
||||
for rstrip in WHITESPACES:
|
||||
yield lstrip + char1 + char2 + rstrip
|
||||
yield lstrip + char1 + rstrip + char2
|
||||
yield char1 + lstrip + char2 + rstrip
|
||||
|
||||
|
||||
def generator_apostrophe() -> Iterator[str]:
|
||||
WHITESPACES = ["", " ", " "]
|
||||
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
|
||||
for char1 in CHARACTERS:
|
||||
for char2 in CHARACTERS:
|
||||
for lstrip in WHITESPACES:
|
||||
for rstrip in WHITESPACES:
|
||||
yield char1 + lstrip + "'" + rstrip + char2
|
||||
yield char1 + char2 + lstrip + "'" + rstrip + "z"
|
||||
yield "a" + lstrip + "'" + rstrip + char1 + char2
|
||||
|
||||
|
||||
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
|
||||
WHITESPACES = ["", " ", " ", " "]
|
||||
special_tokens = list(tokenizer.all_special_tokens)
|
||||
added_tokens = list(tokenizer.added_tokens_encoder)
|
||||
all_tokens = list(sorted(set(special_tokens + added_tokens)))
|
||||
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
|
||||
for token in all_tokens:
|
||||
for lstrip in WHITESPACES:
|
||||
for rstrip in WHITESPACES:
|
||||
|
@ -187,11 +276,9 @@ def generator_added_lr_strip(tokenizer) -> Iterator[str]:
|
|||
yield "a" + lstrip + token + rstrip + "z"
|
||||
|
||||
|
||||
def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
|
||||
special_tokens = list(tokenizer.all_special_tokens)
|
||||
added_tokens = list(tokenizer.added_tokens_encoder)
|
||||
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
|
||||
all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
|
||||
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
|
||||
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
|
||||
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
|
||||
rand = random.Random()
|
||||
for m in range(iterations):
|
||||
rand.seed(m)
|
||||
|
@ -244,11 +331,13 @@ def generator_unicodes() -> Iterator[str]:
|
|||
return False
|
||||
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
|
||||
return False
|
||||
# if cpt == 0x2029: # deepseek-llm
|
||||
# return False
|
||||
if unicodedata.category(chr(cpt)) == "Cn":
|
||||
return False
|
||||
return True
|
||||
|
||||
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
|
||||
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
|
||||
|
||||
yield from characters
|
||||
|
||||
|
@ -273,11 +362,11 @@ def generator_random_unicodes(iterations=100) -> Iterator[str]:
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
|
||||
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text with vocab characters"""
|
||||
|
||||
vocab_chars = set()
|
||||
for word in vocab:
|
||||
for word in tokenizer.vocab:
|
||||
vocab_chars.update(word)
|
||||
vocab_chars = list(sorted(vocab_chars))
|
||||
|
||||
|
@ -288,10 +377,10 @@ def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[s
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
|
||||
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
|
||||
"""Brute force random text from vocab words"""
|
||||
|
||||
vocab = [w.strip() for w in vocab]
|
||||
vocab = [w.strip() for w in tokenizer.vocab]
|
||||
yield from vocab
|
||||
|
||||
rand = random.Random()
|
||||
|
@ -307,7 +396,7 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
|
|||
yield "".join(text)
|
||||
|
||||
|
||||
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
|
||||
def compare_tokenizers(tokenizer1: Tokenizer, tokenizer2: Tokenizer, generator: Iterator[str]):
|
||||
|
||||
def find_first_mismatch(ids1: list[int], ids2: list[int]):
|
||||
for i, (a, b) in enumerate(zip(ids1, ids2)):
|
||||
|
@ -317,34 +406,51 @@ def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, gener
|
|||
return -1
|
||||
return min(len(ids1), len(ids2))
|
||||
|
||||
t_tokenizer1 = 0
|
||||
t_tokenizer2 = 0
|
||||
t_encode1 = 0
|
||||
t_encode2 = 0
|
||||
t_decode1 = 0
|
||||
t_decode2 = 0
|
||||
t_start = time.perf_counter()
|
||||
num_errors = 10
|
||||
num_errors = 0
|
||||
|
||||
logger.info("%s: %s" % (generator.__name__, "ini"))
|
||||
for text in generator:
|
||||
# print(repr(text), text.encode())
|
||||
# print(repr(text), hex(ord(text[0])), text.encode())
|
||||
t0 = time.perf_counter()
|
||||
ids1 = func_tokenize1(text)
|
||||
ids1 = tokenizer1.encode(text)
|
||||
t1 = time.perf_counter()
|
||||
ids2 = func_tokenize2(text)
|
||||
ids2 = tokenizer2.encode(text)
|
||||
t2 = time.perf_counter()
|
||||
t_tokenizer1 += t1 - t0
|
||||
t_tokenizer2 += t2 - t1
|
||||
text1 = tokenizer1.decode(ids1)
|
||||
t3 = time.perf_counter()
|
||||
text2 = tokenizer2.decode(ids2)
|
||||
t4 = time.perf_counter()
|
||||
t_encode1 += t1 - t0
|
||||
t_encode2 += t2 - t1
|
||||
t_decode1 += t3 - t2
|
||||
t_decode2 += t4 - t3
|
||||
if ids1 != ids2:
|
||||
i = find_first_mismatch(ids1, ids2)
|
||||
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
|
||||
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
|
||||
logger.error(" TokenIDs: " + str(ids1))
|
||||
logger.error(" Expected: " + str(ids2))
|
||||
# raise Exception()
|
||||
logger.error(" Expected: " + str(ids1))
|
||||
logger.error(" Result: " + str(ids2))
|
||||
num_errors += 1
|
||||
if num_errors > 10:
|
||||
break
|
||||
if text1 != text2 and text != text2:
|
||||
i = find_first_mismatch(text1, text2)
|
||||
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
|
||||
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
|
||||
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
|
||||
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
|
||||
num_errors += 1
|
||||
if num_errors >= 10:
|
||||
logger.error(f" EXIT: {num_errors=}")
|
||||
# raise Exception()
|
||||
break
|
||||
|
||||
t_total = time.perf_counter() - t_start
|
||||
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
|
||||
logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
|
||||
|
||||
|
||||
def main(argv: list[str] = None):
|
||||
|
@ -357,74 +463,71 @@ def main(argv: list[str] = None):
|
|||
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
|
||||
logger.info(f"VOCABFILE: '{args.vocab_file}'")
|
||||
|
||||
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
|
||||
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
|
||||
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
|
||||
|
||||
def func_tokenize1(text: str):
|
||||
return model.tokenize(text, add_special=True, parse_special=True)
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
|
||||
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
|
||||
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
|
||||
|
||||
def func_tokenize2(text: str):
|
||||
return tokenizer.encode(text, add_special_tokens=True)
|
||||
|
||||
ids = func_tokenize2("a")
|
||||
assert 1 <= len(ids) <= 3
|
||||
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
|
||||
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
|
||||
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
|
||||
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
|
||||
|
||||
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
|
||||
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
|
||||
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
|
||||
|
||||
model.free()
|
||||
tokenizer2.model.free()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# main()
|
||||
|
||||
if True:
|
||||
logging.basicConfig(
|
||||
level = logging.DEBUG,
|
||||
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
||||
datefmt = "%Y-%m-%d %H:%M:%S",
|
||||
filename = logger.name + ".log",
|
||||
filemode = "a"
|
||||
)
|
||||
logging.basicConfig(
|
||||
level = logging.DEBUG,
|
||||
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
|
||||
datefmt = "%Y-%m-%d %H:%M:%S",
|
||||
filename = logger.name + ".log",
|
||||
filemode = "a"
|
||||
format = "%(levelname)s %(message)s",
|
||||
)
|
||||
|
||||
path_tokenizers = "./models/tokenizers/"
|
||||
path_vocab_format = "./models/ggml-vocab-%s.gguf"
|
||||
|
||||
# import os
|
||||
# tokenizers = os.listdir(path_tokenizers)
|
||||
tokenizers = [
|
||||
# "llama-spm", # SPM
|
||||
# "phi-3", # SPM
|
||||
# "bert-bge", # WPM
|
||||
# "jina-v2-en", # WPM
|
||||
"gpt-2", # BPE
|
||||
"llama-spm", # SPM
|
||||
"phi-3", # SPM
|
||||
"bert-bge", # WPM
|
||||
"jina-v2-en", # WPM
|
||||
"llama-bpe", # BPE
|
||||
"phi-2", # BPE
|
||||
"deepseek-llm", # BPE
|
||||
"deepseek-coder", # BPE
|
||||
"falcon", # BPE
|
||||
"mpt", # BPE
|
||||
"starcoder", # BPE
|
||||
"gpt-2", # BPE
|
||||
"stablelm2", # BPE
|
||||
"refact", # BPE
|
||||
"qwen2", # BPE
|
||||
"olmo", # BPE
|
||||
"jina-v2-es", # BPE
|
||||
"jina-v2-de", # BPE
|
||||
"jina-v2-code", # BPE
|
||||
"smaug-bpe", # BPE
|
||||
"phi-2", # BPE
|
||||
"deepseek-coder", # BPE
|
||||
"deepseek-llm", # BPE
|
||||
"poro-chat", # BPE
|
||||
"jina-v2-code", # BPE
|
||||
]
|
||||
|
||||
logger.info("=" * 50)
|
||||
for tokenizer in tokenizers:
|
||||
logger.info("=" * 50)
|
||||
logger.info("-" * 50)
|
||||
logger.info(f"TOKENIZER: '{tokenizer}'")
|
||||
vocab_file = path_vocab_format % tokenizer
|
||||
dir_tokenizer = path_tokenizers + "/" + tokenizer
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue