Update bruteforce random tests

Add detokenizer checks
New generator: ascii_lr_strip
New generator: apostrophe
Add more vocabs files
This commit is contained in:
jaime-m-p 2024-06-20 21:41:37 +02:00
parent 071bf42f23
commit 064b35eaff

View file

@ -13,7 +13,7 @@ import subprocess
import random
import unicodedata
from typing import Callable, Iterator
from typing import Iterator
import cffi
from transformers import AutoTokenizer
@ -79,6 +79,7 @@ class LibLlamaModel:
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
self.text_buff = self.ffi.new("uint8_t[]", 1024)
def free(self):
if self.ctx:
@ -89,14 +90,78 @@ class LibLlamaModel:
self.model = None
self.lib = None
def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
text = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
if num < 0:
return []
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
while num < 0 and len(self.token_ids) < (16 << 20):
self.token_ids = self.ffi.new("llama_token[]", -2 * num)
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, len(self.token_ids), add_special, parse_special)
return list(self.token_ids[0:num])
def detokenize(self, ids: list[int], special: bool = False) -> str:
if len(self.token_ids) < len(ids):
self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
for i, id in enumerate(ids):
self.token_ids[i] = id
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), special)
while num < 0 and len(self.text_buff) < (16 << 20):
self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), special)
return str(self.ffi.buffer(self.text_buff, num), encoding="utf-8")
class Tokenizer:
def encode(self, text: str) -> list[int]:
raise NotImplementedError
def decode(self, ids: list[int]) -> str:
raise NotImplementedError
class TokenizerGroundtruth (Tokenizer):
def __init__(self, dir_tokenizer: str):
self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
# guess BOS and EOS
ids = self.encode("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
# build vocab
tokens = list(self.model.get_vocab().values())
self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
self.vocab = list(sorted(self.vocab))
# tokens and lists
self.special_tokens = list(self.model.all_special_tokens)
self.added_tokens = list(self.model.added_tokens_encoder)
self.bos_token = self.model.bos_token
self.eos_token = self.model.eos_token
def encode(self, text: str) -> list[int]:
return self.model.encode(text, add_special_tokens=True)
def decode(self, ids: list[int]) -> str:
return self.model.decode(ids, skip_special_tokens=True)
class TokenizerLlamaCpp (Tokenizer):
libllama: LibLlama = None
def __init__(self, vocab_file: str):
if not self.libllama:
self.libllama = LibLlama()
self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
def encode(self, text: str) -> list[int]:
return self.model.tokenize(text, add_special=True, parse_special=True)
def decode(self, ids: list[int]) -> str:
return self.model.detokenize(ids, special=False)
def generator_custom_text() -> Iterator[str]:
"""General tests"""
@ -165,19 +230,43 @@ def generator_custom_text_edge_cases() -> Iterator[str]:
'a </s> b', # rstrip phi-3
'a <mask> b', # lstrip jina-v2
'\xa0aC', # deepseek
'\u2029 \uA3E4', # deepseek-llm
"a ?",
]
def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
"""Brute force check all vocab words"""
yield from vocab
yield from tokenizer.vocab
def generator_added_lr_strip(tokenizer) -> Iterator[str]:
def generator_ascii_lr_strip() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield lstrip + char1 + char2 + rstrip
yield lstrip + char1 + rstrip + char2
yield char1 + lstrip + char2 + rstrip
def generator_apostrophe() -> Iterator[str]:
WHITESPACES = ["", " ", " "]
CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
for char1 in CHARACTERS:
for char2 in CHARACTERS:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
yield char1 + lstrip + "'" + rstrip + char2
yield char1 + char2 + lstrip + "'" + rstrip + "z"
yield "a" + lstrip + "'" + rstrip + char1 + char2
def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
WHITESPACES = ["", " ", " ", " "]
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
all_tokens = list(sorted(set(special_tokens + added_tokens)))
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
for token in all_tokens:
for lstrip in WHITESPACES:
for rstrip in WHITESPACES:
@ -187,11 +276,9 @@ def generator_added_lr_strip(tokenizer) -> Iterator[str]:
yield "a" + lstrip + token + rstrip + "z"
def generator_random_added_tokens(tokenizer, iterations=100) -> Iterator[str]:
special_tokens = list(tokenizer.all_special_tokens)
added_tokens = list(tokenizer.added_tokens_encoder)
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(special_tokens + added_tokens + separations)))
def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
@ -244,11 +331,13 @@ def generator_unicodes() -> Iterator[str]:
return False
if 0x00D800 <= cpt <= 0x00F8FF: # Surrogates
return False
# if cpt == 0x2029: # deepseek-llm
# return False
if unicodedata.category(chr(cpt)) == "Cn":
return False
return True
characters = [chr(cpt) for cpt in range(1, MAX_CODEPOINTS) if _valid(cpt)]
characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
yield from characters
@ -273,11 +362,11 @@ def generator_random_unicodes(iterations=100) -> Iterator[str]:
yield "".join(text)
def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_chars = set()
for word in vocab:
for word in tokenizer.vocab:
vocab_chars.update(word)
vocab_chars = list(sorted(vocab_chars))
@ -288,10 +377,10 @@ def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[s
yield "".join(text)
def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
"""Brute force random text from vocab words"""
vocab = [w.strip() for w in vocab]
vocab = [w.strip() for w in tokenizer.vocab]
yield from vocab
rand = random.Random()
@ -307,7 +396,7 @@ def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[s
yield "".join(text)
def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
def compare_tokenizers(tokenizer1: Tokenizer, tokenizer2: Tokenizer, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]):
for i, (a, b) in enumerate(zip(ids1, ids2)):
@ -317,34 +406,51 @@ def compare_tokenizers(func_tokenize1: Callable, func_tokenize2: Callable, gener
return -1
return min(len(ids1), len(ids2))
t_tokenizer1 = 0
t_tokenizer2 = 0
t_encode1 = 0
t_encode2 = 0
t_decode1 = 0
t_decode2 = 0
t_start = time.perf_counter()
num_errors = 10
num_errors = 0
logger.info("%s: %s" % (generator.__name__, "ini"))
for text in generator:
# print(repr(text), text.encode())
# print(repr(text), hex(ord(text[0])), text.encode())
t0 = time.perf_counter()
ids1 = func_tokenize1(text)
ids1 = tokenizer1.encode(text)
t1 = time.perf_counter()
ids2 = func_tokenize2(text)
ids2 = tokenizer2.encode(text)
t2 = time.perf_counter()
t_tokenizer1 += t1 - t0
t_tokenizer2 += t2 - t1
text1 = tokenizer1.decode(ids1)
t3 = time.perf_counter()
text2 = tokenizer2.decode(ids2)
t4 = time.perf_counter()
t_encode1 += t1 - t0
t_encode2 += t2 - t1
t_decode1 += t3 - t2
t_decode2 += t4 - t3
if ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
logger.error(" TokenIDs: " + str(ids1))
logger.error(" Expected: " + str(ids2))
# raise Exception()
logger.error(" Expected: " + str(ids1))
logger.error(" Result: " + str(ids2))
num_errors += 1
if num_errors > 10:
break
if text1 != text2 and text != text2:
i = find_first_mismatch(text1, text2)
text1 = list(text1[max(0, i - 2) : i + 5 + 1])
text2 = list(text2[max(0, i - 2) : i + 5 + 1])
logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
num_errors += 1
if num_errors >= 10:
logger.error(f" EXIT: {num_errors=}")
# raise Exception()
break
t_total = time.perf_counter() - t_start
logger.info("%s: end, tok1: %.3f tok2: %.3f total: %.3f" % (generator.__name__, t_tokenizer1, t_tokenizer2, t_total))
logger.info(f"{generator.__name__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
def main(argv: list[str] = None):
@ -357,74 +463,71 @@ def main(argv: list[str] = None):
logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
logger.info(f"VOCABFILE: '{args.vocab_file}'")
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
def func_tokenize1(text: str):
return model.tokenize(text, add_special=True, parse_special=True)
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
# compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
# compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
def func_tokenize2(text: str):
return tokenizer.encode(text, add_special_tokens=True)
ids = func_tokenize2("a")
assert 1 <= len(ids) <= 3
add_bos_token = len(ids) > 1 and tokenizer.bos_token_id == ids[0]
add_eos_token = len(ids) > 1 and tokenizer.eos_token_id == ids[-1]
tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", add_bos_token)
tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", add_eos_token)
vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_unicodes())
compare_tokenizers(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_added_lr_strip(tokenizer))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_added_tokens(tokenizer, 10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_unicodes(10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
compare_tokenizers(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
model.free()
tokenizer2.model.free()
if __name__ == "__main__":
# main()
if True:
logging.basicConfig(
level = logging.DEBUG,
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
datefmt = "%Y-%m-%d %H:%M:%S",
filename = logger.name + ".log",
filemode = "a"
)
logging.basicConfig(
level = logging.DEBUG,
format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
datefmt = "%Y-%m-%d %H:%M:%S",
filename = logger.name + ".log",
filemode = "a"
format = "%(levelname)s %(message)s",
)
path_tokenizers = "./models/tokenizers/"
path_vocab_format = "./models/ggml-vocab-%s.gguf"
# import os
# tokenizers = os.listdir(path_tokenizers)
tokenizers = [
# "llama-spm", # SPM
# "phi-3", # SPM
# "bert-bge", # WPM
# "jina-v2-en", # WPM
"gpt-2", # BPE
"llama-spm", # SPM
"phi-3", # SPM
"bert-bge", # WPM
"jina-v2-en", # WPM
"llama-bpe", # BPE
"phi-2", # BPE
"deepseek-llm", # BPE
"deepseek-coder", # BPE
"falcon", # BPE
"mpt", # BPE
"starcoder", # BPE
"gpt-2", # BPE
"stablelm2", # BPE
"refact", # BPE
"qwen2", # BPE
"olmo", # BPE
"jina-v2-es", # BPE
"jina-v2-de", # BPE
"jina-v2-code", # BPE
"smaug-bpe", # BPE
"phi-2", # BPE
"deepseek-coder", # BPE
"deepseek-llm", # BPE
"poro-chat", # BPE
"jina-v2-code", # BPE
]
logger.info("=" * 50)
for tokenizer in tokenizers:
logger.info("=" * 50)
logger.info("-" * 50)
logger.info(f"TOKENIZER: '{tokenizer}'")
vocab_file = path_vocab_format % tokenizer
dir_tokenizer = path_tokenizers + "/" + tokenizer