gguf-debug: Example how to use ggml callback for debugging

This commit is contained in:
Pierrick HYMBERT 2024-04-10 03:35:57 +02:00
parent 54ea0698fb
commit 067e294783
5 changed files with 293 additions and 1 deletions

View file

@ -22,6 +22,7 @@ else()
add_subdirectory(finetune)
add_subdirectory(gritlm)
add_subdirectory(gguf-split)
add_subdirectory(ggml-debug)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)

View file

@ -0,0 +1,5 @@
set(TARGET ggml-debug)
add_executable(${TARGET} ggml-debug.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,106 @@
# llama.cpp/examples/ggml-debug
A simple example which demonstrates how to use callback during the inference.
It simply prints to the console all operations and tensor data.
Usage:
```shell
ggml-debug \
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model phi-2-q4_0.gguf \
--prompt hello \
--seed 42 \
-ngl 33
```
Will print:
```shell
llm_load_tensors: offloaded 33/33 layers to GPU
...
llama_new_context_with_model: n_ctx = 512
...
llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 2
system_info: n_threads = 6 / 12 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 |
ggml_debug: inp_embd = GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.0181, -0.0181, 0.0453, ...],
],
]
ggml_debug: norm-0 = NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -0.6989, -0.6989, 1.7686, ...],
],
]
ggml_debug: norm_w-0 = MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1800, -0.1788, 0.4663, ...],
],
]
ggml_debug: attn_norm-0 = ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1863, -0.1712, 0.4750, ...],
],
]
ggml_debug: wqkv-0 = MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1238, -2.3523, -1.6938, ...],
],
]
ggml_debug: bqkv-0 = ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1135, -2.5451, -1.8321, ...],
],
]
ggml_debug: bqkv-0 (view) = VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, -2.5451, -1.8321, ...],
],
]
ggml_debug: Qcur-0 = CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, -2.5451, -1.8321, ...],
],
]
ggml_debug: Qcur-0 (reshaped) = RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
[
[
[ -1.1135, 0.8348, 0.8010, ...],
[ -2.5451, -1.1920, 0.0546, ...],
[ -1.8321, -0.0515, 0.8186, ...],
...
],
]
ggml_debug: Qcur-0 = ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
[
[
[ -1.1135, 0.8348, 0.8010, ...],
[ -2.5451, -1.1920, 0.0546, ...],
[ -1.8321, -0.0515, 0.8186, ...],
...
],
]
ggml_debug: Qcur-0 = SCALE(Qcur-0{80, 32, 1, 1}, }) = {80, 32, 1, 1}
[
[
[ -0.1245, 0.0933, 0.0896, ...],
[ -0.2845, -0.1333, 0.0061, ...],
[ -0.2048, -0.0058, 0.0915, ...],
...
],
]
```

View file

@ -0,0 +1,180 @@
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <cstring>
#include <string>
#include <mutex>
#include <vector>
struct callback_data {
std::mutex m_mutex;
std::vector<float> data;
};
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static void ggml_print_tensor(const float * data, const int64_t * ne) {
int i, j, k;
printf(" [\n");
for (i = 0; i < ne[2] && i < 3; i++) {
printf(" [\n");
for (j = 0; j < ne[1] && j < 3; j++) {
printf(" [");
for (k = 0; k < ne[0] && k < 3; k++) {
printf("%8.4f", data[k * ne[1] * ne[2] + j * ne[2] + i]);
if (k < ne[0] - 1 && k < 2) printf(", ");
}
if (ne[0] > 3) printf(", ...");
printf("],\n");
}
if (ne[1] > 3) printf(" ...\n");
printf(" ],\n");
}
if (ne[2] > 3) printf(" ...\n");
printf(" ]\n");
}
/**
* GGML operations callback during the graph execution.
*
* @param t current tensor
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
* @param user_data user data to pass at each call back
* @return true to receive data or continue the graph, false otherwise
*/
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
if (ask) {
return true; // Always retrieve data
}
std::lock_guard<std::mutex> lock(cb_data->m_mutex);
char src1_str[128] = {0};
if (src1) {
sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
}
printf("%s: %24s = %10s(%s{%s}, %s}) = {%s} \n", __func__,
t->name, ggml_op_name(t->op),
src0->name, ggml_ne_string(src0).c_str(),
src1 ? src1_str : "",
ggml_ne_string(t).c_str());
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
if (!is_host) {
auto n_bytes = ggml_nbytes(t);
cb_data->data.resize(n_bytes / sizeof(float));
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
}
const float * data = is_host ? (const float *) t->data : cb_data->data.data();
ggml_print_tensor(data, t->ne);
return true;
}
static bool run(llama_context * ctx, const gpt_params & params) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
return true;
}
int main(int argc, char ** argv) {
callback_data cb_data;
gpt_params params;
params.n_batch = 512;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
params.n_batch = std::min(params.n_batch, params.n_ctx);
print_build_info();
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);
auto mparams = llama_model_params_from_gpt_params(params);
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), mparams);
} else if (!params.model_url.empty()) {
model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), mparams);
} else {
model = llama_load_model_from_file(params.model.c_str(), mparams);
}
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
auto cparams = llama_context_params_from_gpt_params(params);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
cparams.cb_eval = ggml_debug;
cparams.cb_eval_user_data = &cb_data;
llama_context * ctx = llama_new_context_with_model(model, cparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
llama_free_model(model);
return 1;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
bool OK = run(ctx, params);
if (!OK) {
return 1;
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}

View file

@ -11054,7 +11054,7 @@ struct llm_tokenizer_bpe {
add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
}
// add the fnished tokens to the final list keeping correct order for next and prev
// add the finished tokens to the final list keeping correct order for next and prev
for (auto & sym : symbols) {
if (sym.n > 0) {
sym.prev = final_prev_index;