llama : add basic support for offloading moe with CUDA

This commit is contained in:
slaren 2023-12-09 13:21:09 +01:00
parent 2cbcba829f
commit 06dfde3e94
3 changed files with 61 additions and 19 deletions

View file

@ -8242,15 +8242,21 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
// TODO: mmq/mmv support
#endif
const struct ggml_tensor * ids = src0;
const int32_t id = dst->op_params[0];
const int32_t n_as = dst->op_params[1];
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
const struct ggml_tensor * ids = src0;
const int32_t id = ((int32_t *) dst->op_params)[0];
const int32_t n_as = ((int32_t *) dst->op_params)[1];
std::vector<char> ids_host(ggml_nbytes(ids));
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
if (ids->backend == GGML_BACKEND_GPU) {
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0]));
CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0]));
} else {
memcpy(ids_host.data(), ids->data, ggml_nbytes(ids));
}
const ggml_tensor_extra_gpu * src1_extra = (const ggml_tensor_extra_gpu *) src1->extra;
const ggml_tensor_extra_gpu * dst_extra = (const ggml_tensor_extra_gpu *) dst->extra;
@ -8264,7 +8270,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
src1_row.ne[1] = 1;
dst_row.ne[1] = 1;
src1_row.extra = &src1_row_extra;
if (src1->backend == GGML_BACKEND_GPU) {
src1_row.extra = &src1_row_extra;
}
dst_row.extra = &dst_row_extra;
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
@ -8278,7 +8286,12 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
if (src1->backend == GGML_BACKEND_GPU) {
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
} else {
src1_row.data = (char *) src1->data + i01*src1->nb[1];
}
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row);
@ -8694,7 +8707,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
func = ggml_cuda_repeat;
break;
case GGML_OP_GET_ROWS:
func = ggml_cuda_get_rows;
if (ggml_is_contiguous(tensor->src[1])) {
func = ggml_cuda_get_rows;
}
break;
case GGML_OP_DUP:
func = ggml_cuda_dup;