temporary commit while I move dev environments
it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent
This commit is contained in:
parent
15d5c257a0
commit
07dba13ab6
1 changed files with 197 additions and 161 deletions
|
@ -22,30 +22,50 @@
|
||||||
|
|
||||||
// TODO read everything over and make sure it makes sense because I'm dropping logic errors left and right - Christian
|
// TODO read everything over and make sure it makes sense because I'm dropping logic errors left and right - Christian
|
||||||
|
|
||||||
|
// to reduce the amount of stuff that gets sent to cb_eval I separated it somewhat - Christian
|
||||||
struct callback_data {
|
struct callback_data {
|
||||||
std::vector<uint8_t> data;
|
std::vector<uint8_t> data;
|
||||||
ggml_context * ctx_ggml;
|
ggml_context * ctx_ggml; // holds v_pos, v_neg
|
||||||
|
|
||||||
int n_tokens = 0;
|
int n_tokens = 0;
|
||||||
int n_embd = 0;
|
|
||||||
bool is_eval_pos = true;
|
bool is_eval_pos = true;
|
||||||
|
|
||||||
// each element of the vector correspond to one layer
|
// each element of the vector correspond to one layer
|
||||||
std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
|
std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
|
||||||
std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
|
std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
|
||||||
std::vector<struct ggml_tensor *> v_final; // vector of finished vectors of size [n_embd]
|
|
||||||
std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [n_embd, m] where m ~ n_tokens * n_completions
|
|
||||||
|
|
||||||
// each element of the outer vector correspond to one layer, each element of the inner vector correspond to one prompt pass
|
|
||||||
std::vector<std::vector<struct ggml_tensor *>> v_diffs_wrapped; // vector of compiled diff matrices to be concatenated
|
|
||||||
|
|
||||||
// TODO ggml destructor?
|
|
||||||
~callback_data() {
|
~callback_data() {
|
||||||
for (auto ptr : v_pos) free(ptr);
|
for (auto ptr : v_pos) free(ptr);
|
||||||
for (auto ptr : v_neg) free(ptr);
|
for (auto ptr : v_neg) free(ptr);
|
||||||
|
ggml_free(ctx_ggml);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// I prefer having the different contexts so we can free each immediately after we're done using it
|
||||||
|
// e.g. we don't need the diffs_wrapped once we strip zero rows + concatenate them so we can ggml_free it, etc.
|
||||||
|
// @ngxson let me know what you think - @christianazinn
|
||||||
|
struct diff_ctx {
|
||||||
|
int n_embd = 0;
|
||||||
|
int n_threads = 8;
|
||||||
|
|
||||||
|
ggml_context * ctx_diffs_wrapped; // holds v_diffs_wrapped
|
||||||
|
ggml_context * ctx_diff; // holds v_diff
|
||||||
|
ggml_context * ctx_final; // holds v_final
|
||||||
|
|
||||||
|
// each element of the vector correspond to one layer
|
||||||
|
std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [n_embd, m] where m ~ n_tokens * n_completions
|
||||||
|
std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
|
||||||
|
|
||||||
|
// each element of the outer vector correspond to one layer, each element of the inner vector correspond to one prompt pass
|
||||||
|
std::vector<std::vector<struct ggml_tensor *>> v_diffs_wrapped; // vector of compiled diff matrices of size [n_embd, n_tokens] to be concatenated
|
||||||
|
|
||||||
|
~diff_ctx() {
|
||||||
for (auto ptr : v_diff) free(ptr);
|
for (auto ptr : v_diff) free(ptr);
|
||||||
for (auto ptr : v_final) free(ptr);
|
for (auto ptr : v_final) free(ptr);
|
||||||
for (auto & vec : v_diffs_wrapped) for (auto ptr : vec) free(ptr);
|
for (auto & vec : v_diffs_wrapped) for (auto ptr : vec) free(ptr);
|
||||||
|
ggml_free(ctx_diffs_wrapped);
|
||||||
|
ggml_free(ctx_diff);
|
||||||
|
ggml_free(ctx_final);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -289,9 +309,6 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
||||||
// copy the data from the GPU memory if needed
|
// copy the data from the GPU memory if needed
|
||||||
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
||||||
|
|
||||||
// FIXME something is very wrong here
|
|
||||||
// v_pos and v_neg are being populated, but the values aren't correct - it writes the same values to all vectors, it looks like?
|
|
||||||
// this leads ultimately to an error in calc_diff where diff becomes entirely zeroes and eventually a segfault several iterations into pca
|
|
||||||
struct ggml_tensor * t_host;
|
struct ggml_tensor * t_host;
|
||||||
auto n_bytes = ggml_nbytes(t);
|
auto n_bytes = ggml_nbytes(t);
|
||||||
t_host = ggml_new_tensor_2d(cb_data->ctx_ggml, t->type, t->ne[0], t->ne[1]);
|
t_host = ggml_new_tensor_2d(cb_data->ctx_ggml, t->type, t->ne[0], t->ne[1]);
|
||||||
|
@ -328,6 +345,40 @@ static void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void calc_diff(callback_data & cb_data, diff_ctx & dctx) {
|
||||||
|
// TODO: assert cb_data.v_pos.size() == cb_data.v_neg.size()
|
||||||
|
dctx.v_diffs_wrapped.resize(cb_data.v_pos.size());
|
||||||
|
for (size_t il = 0; il < cb_data.v_pos.size(); il++) {
|
||||||
|
std::cout << "il: " << il << " of " << cb_data.v_pos.size()-1 << std::endl;
|
||||||
|
|
||||||
|
auto & inp_pos = cb_data.v_pos[il];
|
||||||
|
auto & inp_neg = cb_data.v_neg[il];
|
||||||
|
auto n_bytes = ggml_nbytes(inp_pos);
|
||||||
|
|
||||||
|
printf("inp_pos [0][%d]: %f\n", DEBUG_POS, ggml_get_f32_nd(inp_pos, 0, DEBUG_POS, 0, 0));
|
||||||
|
printf("inp_neg [0][%d]: %f\n", DEBUG_POS, ggml_get_f32_nd(inp_neg, 0, DEBUG_POS, 0, 0));
|
||||||
|
|
||||||
|
// TODO is this the best way to get dimension? i don't know which way n_embd/n_tokens go
|
||||||
|
// for that matter can we get rid of n_embd/n_tokens fields in favor of ne[0]/ne[1]?
|
||||||
|
// TODO assert inp_pos->ne[0] == inp_neg->ne[0] && inp_pos->ne[1] == inp_neg->ne[1]
|
||||||
|
struct ggml_tensor * dest = ggml_new_tensor_2d(dctx.ctx_diffs_wrapped, GGML_TYPE_F32, inp_pos->ne[0], inp_pos->ne[1]);
|
||||||
|
dest->data = malloc(n_bytes); // TODO @ngxson get rid of this malloc somehow
|
||||||
|
|
||||||
|
for (size_t i = 0; i < inp_pos->ne[0]; i++) {
|
||||||
|
for (size_t j = 0; j < inp_pos->ne[1]; j++) {
|
||||||
|
ggml_set_f32_nd(dest, i, j, 0, 0, ggml_get_f32_nd(inp_pos, i, j, 0, 0) - ggml_get_f32_nd(inp_neg, i, j, 0, 0));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("dest [0][%d]: %f\n", DEBUG_POS, ggml_get_f32_nd(dest, 0, DEBUG_POS, 0, 0));
|
||||||
|
|
||||||
|
dctx.v_diffs_wrapped[il].push_back(dest);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO nomenclature is probably wrong! this should be cols
|
||||||
|
// row/col mixup has been giving me a headache this entire time because apparently ggml accesses 2d as [col][row] - @christianazinn
|
||||||
|
// TODO check row/col because that's probably where the logic error is
|
||||||
static bool is_row_all_zeros(struct ggml_tensor * diff, int row, int cols, float eps = 1e-6) {
|
static bool is_row_all_zeros(struct ggml_tensor * diff, int row, int cols, float eps = 1e-6) {
|
||||||
for (int i = 0; i < cols; ++i) {
|
for (int i = 0; i < cols; ++i) {
|
||||||
if (ggml_get_f32_nd(diff, i, row, 0, 0) > eps) {
|
if (ggml_get_f32_nd(diff, i, row, 0, 0) > eps) {
|
||||||
|
@ -337,114 +388,61 @@ static bool is_row_all_zeros(struct ggml_tensor * diff, int row, int cols, float
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void calc_diff(callback_data & cb_data) {
|
static void concatenate_diffs(diff_ctx & dctx) {
|
||||||
// TODO: assert cb_data.v_pos.size() == cb_data.v_neg.size()
|
// TODO can you do this inplace?
|
||||||
cb_data.v_diffs_wrapped.resize(cb_data.v_pos.size());
|
// TODO assert each tensor has the same ->ne[0] and it equals dctx.n_embd
|
||||||
for (size_t il = 0; il < cb_data.v_pos.size(); il++) {
|
printf("concatenate_diffs\n");
|
||||||
auto & inp_pos = cb_data.v_pos[il];
|
for (size_t il = 0; il < dctx.v_diffs_wrapped.size(); ++il) {
|
||||||
auto & inp_neg = cb_data.v_neg[il];
|
printf("il: %zu of %zu\n", il, dctx.v_diffs_wrapped.size()-1);
|
||||||
auto n_bytes = ggml_nbytes(inp_pos);
|
std::vector<struct ggml_tensor *> & vec = dctx.v_diffs_wrapped[il];
|
||||||
|
|
||||||
struct ggml_init_params params = {
|
std::cout << "vec size: " << vec.size() << std::endl;
|
||||||
/*.mem_size =*/ n_bytes + ggml_tensor_overhead(),
|
|
||||||
/*.mem_buffer =*/ NULL,
|
|
||||||
/*.no_alloc =*/ false,
|
|
||||||
};
|
|
||||||
struct ggml_context * ctx_data = ggml_init(params);
|
|
||||||
|
|
||||||
printf("inp_pos [0][%d]: %f\n", DEBUG_POS, ggml_get_f32_nd(inp_pos, 0, DEBUG_POS, 0, 0));
|
|
||||||
printf("inp_neg [0][%d]: %f\n", DEBUG_POS, ggml_get_f32_nd(inp_neg, 0, DEBUG_POS, 0, 0));
|
|
||||||
|
|
||||||
// TODO is this the best way to get dimension? i don't know which way n_embd/n_tokens go
|
|
||||||
// for that matter can we get rid of n_embd/n_tokens fields in favor of ne[0]/ne[1]?
|
|
||||||
struct ggml_tensor * dest = ggml_new_tensor_2d(ctx_data, GGML_TYPE_F32, inp_pos->ne[0], inp_pos->ne[1]);
|
|
||||||
|
|
||||||
for (size_t i = 0; i < cb_data.n_embd; i++) {
|
|
||||||
for (size_t j = 0; j < cb_data.n_tokens; j++) {
|
|
||||||
ggml_set_f32_nd(dest, i, j, 0, 0, ggml_get_f32_nd(inp_pos, i, j, 0, 0) - ggml_get_f32_nd(inp_neg, i, j, 0, 0));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
printf("dest [0][%d]: %f\n", DEBUG_POS, ggml_get_f32_nd(dest, 0, DEBUG_POS, 0, 0));
|
|
||||||
|
|
||||||
// TODO can we make this faster? like check during the above operation rather than on a second pass?
|
|
||||||
|
|
||||||
// strip zero rows
|
// strip zero rows
|
||||||
std::vector<int> nonzero_rows;
|
int n_nonzero_rows = 0;
|
||||||
for (int i = 0; i < cb_data.n_tokens; ++i) {
|
std::vector<std::vector<int>> nonzero_rows; // outer vector is tensor idx, inner vector is row in tensor
|
||||||
if (!is_row_all_zeros(dest, i, cb_data.n_embd)) {
|
nonzero_rows.resize(vec.size());
|
||||||
nonzero_rows.push_back(i);
|
for (int i = 0; i < vec.size(); ++i) {
|
||||||
|
for (int j = 0; j < vec[i]->ne[1]; ++j) {
|
||||||
|
if (!is_row_all_zeros(vec[i], j, vec[i]->ne[0])) {
|
||||||
|
nonzero_rows[i].push_back(j);
|
||||||
|
n_nonzero_rows++;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* debug
|
std::cout << "n_nonzero_rows: " << n_nonzero_rows << std::endl;
|
||||||
if(cb_data.n_tokens != nonzero_rows.size()) {
|
|
||||||
std::cout << "original n_tokens: " << cb_data.n_tokens << std::endl;
|
|
||||||
std::cout << "zero rows in layer " << il << ": " << cb_data.n_tokens - nonzero_rows.size() << std::endl;
|
|
||||||
} */
|
|
||||||
|
|
||||||
struct ggml_init_params params2 = {
|
// we transpose it here because ggml mul_mat is really weird
|
||||||
/*.mem_size =*/ inp_pos->ne[0] * nonzero_rows.size() * sizeof(float) + ggml_tensor_overhead(),
|
struct ggml_tensor * diff = ggml_new_tensor_2d(dctx.ctx_diff, GGML_TYPE_F32, n_nonzero_rows, dctx.n_embd);
|
||||||
/*.mem_buffer =*/ NULL,
|
|
||||||
/*.no_alloc =*/ false,
|
|
||||||
};
|
|
||||||
struct ggml_context * ctx_data2 = ggml_init(params);
|
|
||||||
|
|
||||||
struct ggml_tensor * diff = ggml_new_tensor_2d(ctx_data2, GGML_TYPE_F32, inp_pos->ne[0], nonzero_rows.size());
|
diff->data = malloc(dctx.n_embd * n_nonzero_rows * sizeof(float) + ggml_tensor_overhead()); // @ngxson get rid of this malloc somehow
|
||||||
|
|
||||||
//size_t offset = 0;
|
|
||||||
for (size_t i = 0; i < nonzero_rows.size(); ++i) {
|
for (size_t i = 0; i < nonzero_rows.size(); ++i) {
|
||||||
// probably eschew this in favor of the iterative method?
|
for (size_t j : nonzero_rows[i]) {
|
||||||
//float * origin = (float *)(dest->data) + nonzero_rows[i] * cb_data.n_embd;
|
for (size_t k = 0; k < vec[i]->ne[0]; k++) {
|
||||||
//memcpy((float *)(diff->data) + offset, origin, cb_data.n_embd * sizeof(float));
|
//std::cout << ggml_get_f32_nd(vec[i], k, j, 0, 0) << std::endl;
|
||||||
//offset += cb_data.n_embd;
|
ggml_set_f32_nd(diff, i, k, 0, 0, ggml_get_f32_nd(vec[i], k, j, 0, 0));
|
||||||
|
}
|
||||||
for (size_t j = 0; j < cb_data.n_embd; j++) {
|
|
||||||
ggml_set_f32_nd(diff, j, i, 0, 0, ggml_get_f32_nd(dest, j, nonzero_rows[i], 0, 0));
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// FIXME ggml_nbytes(diff) is 0
|
printf("diff[0][1]: %f\n", ggml_get_f32_nd(diff, 0, 1, 0, 0));
|
||||||
|
|
||||||
cb_data.v_diffs_wrapped[il].push_back(diff);
|
// TODO assert row == n_nonzero_rows
|
||||||
ggml_free(ctx_data);
|
|
||||||
ggml_free(ctx_data2);
|
dctx.v_diff.push_back(diff);
|
||||||
}
|
}
|
||||||
|
ggml_free(dctx.ctx_diffs_wrapped);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void concatenate_diffs(callback_data & cb_data) {
|
// TODO translate everything below this
|
||||||
printf("concatenate_diffs\n");
|
// TODO make sure to free everything in a timely manner
|
||||||
for (size_t i = 0; i < cb_data.v_diffs_wrapped.size(); ++i) {
|
|
||||||
std::vector<struct ggml_tensor *> & vec = cb_data.v_diffs_wrapped[i];
|
|
||||||
size_t n_rows_total = 0;
|
|
||||||
for (size_t j = 0; j < vec.size(); ++j) {
|
|
||||||
n_rows_total += vec[j]->ne[1];
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_init_params params = {
|
|
||||||
/*.mem_size =*/ cb_data.n_embd * n_rows_total * sizeof(float) + ggml_tensor_overhead(),
|
|
||||||
/*.mem_buffer =*/ NULL,
|
|
||||||
/*.no_alloc =*/ false,
|
|
||||||
};
|
|
||||||
struct ggml_context * ctx_data = ggml_init(params);
|
|
||||||
|
|
||||||
// std::cout << "n_rows_total: " << n_rows_total << std::endl;
|
|
||||||
struct ggml_tensor * diff = ggml_new_tensor_2d(ctx_data, GGML_TYPE_F32, cb_data.n_embd, n_rows_total);
|
|
||||||
|
|
||||||
size_t offset = 0;
|
|
||||||
for (size_t j = 0; j < vec.size(); ++j) {
|
|
||||||
float * origin = (float *)(vec[j]->data);
|
|
||||||
memcpy((float *)(diff->data) + offset, origin, vec[j]->ne[1] * cb_data.n_embd * sizeof(float));
|
|
||||||
offset += vec[j]->ne[0] * cb_data.n_embd;
|
|
||||||
}
|
|
||||||
|
|
||||||
cb_data.v_diff.push_back(diff);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
struct pca_model {
|
struct pca_model {
|
||||||
struct ggml_tensor * v_diff_original;
|
struct ggml_tensor * v_diff_original;
|
||||||
struct ggml_tensor * square;
|
struct ggml_tensor * square;
|
||||||
|
struct ggml_tensor * square_transpose;
|
||||||
struct ggml_tensor * eigenvector;
|
struct ggml_tensor * eigenvector;
|
||||||
|
|
||||||
ggml_backend_t backend = NULL;
|
ggml_backend_t backend = NULL;
|
||||||
|
@ -452,7 +450,7 @@ struct pca_model {
|
||||||
struct ggml_context * ctx;
|
struct ggml_context * ctx;
|
||||||
};
|
};
|
||||||
|
|
||||||
void load_pca_model(pca_model & model, struct ggml_tensor * v_diff_original, const int n_embd) {
|
void load_pca_model(pca_model & model, struct ggml_tensor * v_diff_original) {
|
||||||
#ifdef GGML_USE_CUDA
|
#ifdef GGML_USE_CUDA
|
||||||
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||||
model.backend = ggml_backend_cuda_init(0); // init device 0
|
model.backend = ggml_backend_cuda_init(0); // init device 0
|
||||||
|
@ -475,7 +473,9 @@ void load_pca_model(pca_model & model, struct ggml_tensor * v_diff_original, con
|
||||||
model.backend = ggml_backend_cpu_init();
|
model.backend = ggml_backend_cpu_init();
|
||||||
}
|
}
|
||||||
|
|
||||||
const int num_tensors = 3;
|
printf("v_diff_original[0][1]: %f\n", ggml_get_f32_nd(v_diff_original, 0, 1, 0, 0));
|
||||||
|
|
||||||
|
const int num_tensors = 4;
|
||||||
|
|
||||||
struct ggml_init_params params {
|
struct ggml_init_params params {
|
||||||
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
||||||
|
@ -486,19 +486,21 @@ void load_pca_model(pca_model & model, struct ggml_tensor * v_diff_original, con
|
||||||
model.ctx = ggml_init(params);
|
model.ctx = ggml_init(params);
|
||||||
|
|
||||||
model.v_diff_original = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, v_diff_original->ne[0], v_diff_original->ne[1]);
|
model.v_diff_original = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, v_diff_original->ne[0], v_diff_original->ne[1]);
|
||||||
model.square = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_embd, n_embd);
|
model.square = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, v_diff_original->ne[1], v_diff_original->ne[1]);
|
||||||
model.eigenvector = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, n_embd);
|
model.square_transpose = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, v_diff_original->ne[1], v_diff_original->ne[1]);
|
||||||
|
model.eigenvector = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, v_diff_original->ne[1]);
|
||||||
|
|
||||||
model.buffer = ggml_backend_alloc_ctx_tensors(model.ctx, model.backend);
|
model.buffer = ggml_backend_alloc_ctx_tensors(model.ctx, model.backend);
|
||||||
|
|
||||||
ggml_backend_tensor_set(model.v_diff_original, v_diff_original->data, 0, ggml_nbytes(v_diff_original));
|
ggml_backend_tensor_set(model.v_diff_original, v_diff_original->data, 0, ggml_nbytes(v_diff_original));
|
||||||
// no need to load anything into square yet
|
|
||||||
|
// no need to load anything into square or square_transpose yet
|
||||||
|
|
||||||
// initialize model.eigenvector to random vector
|
// initialize model.eigenvector to random vector
|
||||||
std::vector<float> random_vec = std::vector<float>();
|
std::vector<float> random_vec;
|
||||||
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
|
std::default_random_engine generator(static_cast<unsigned int>(std::time(0)));
|
||||||
std::uniform_real_distribution<float> distribution(0.0, 1.0);
|
std::uniform_real_distribution<float> distribution(0.0, 1.0);
|
||||||
for (int i = 0; i < n_embd; ++i) {
|
for (int i = 0; i < v_diff_original->ne[1]; ++i) {
|
||||||
random_vec.push_back(distribution(generator));
|
random_vec.push_back(distribution(generator));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -519,6 +521,7 @@ struct ggml_cgraph * square_diff_graph(const pca_model & model) {
|
||||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||||
|
|
||||||
struct ggml_tensor * square = ggml_mul_mat(ctx0, model.v_diff_original, model.v_diff_original);
|
struct ggml_tensor * square = ggml_mul_mat(ctx0, model.v_diff_original, model.v_diff_original);
|
||||||
|
//struct ggml_tensor * square_transpose = ggml_transpose(ctx0, square);
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, square);
|
ggml_build_forward_expand(gf, square);
|
||||||
|
|
||||||
|
@ -526,6 +529,7 @@ struct ggml_cgraph * square_diff_graph(const pca_model & model) {
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO do this before pca so the pca_model is easier to malloc?
|
||||||
struct ggml_tensor * compute_square(const pca_model & model, ggml_gallocr_t allocr, int n_threads) {
|
struct ggml_tensor * compute_square(const pca_model & model, ggml_gallocr_t allocr, int n_threads) {
|
||||||
struct ggml_cgraph * gf = square_diff_graph(model);
|
struct ggml_cgraph * gf = square_diff_graph(model);
|
||||||
|
|
||||||
|
@ -589,51 +593,44 @@ struct ggml_tensor * compute_piter(const pca_model & model, ggml_gallocr_t alloc
|
||||||
return gf->nodes[gf->n_nodes - 1];
|
return gf->nodes[gf->n_nodes - 1];
|
||||||
}
|
}
|
||||||
|
|
||||||
static void power_iteration(callback_data & cb_data, int idx, int n_threads, int maxIterations = 1000, float tolerance = 1e-7) {
|
static void power_iteration(diff_ctx & dctx, int idx, int maxIterations = 1000, float tolerance = 1e-7) {
|
||||||
printf("in power iteration\n");
|
printf("in power iteration\n");
|
||||||
|
|
||||||
pca_model model;
|
pca_model model;
|
||||||
load_pca_model(model, cb_data.v_diff[idx], cb_data.n_embd);
|
load_pca_model(model, dctx.v_diff[idx]);
|
||||||
|
std::cout << "model.v_diff_original->ne[0]: " << model.v_diff_original->ne[0] << std::endl;
|
||||||
|
|
||||||
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||||
|
|
||||||
// FIXME ggml_nbytes(square) is 0 because everything going back to diff in calc_diff is 0
|
struct ggml_tensor * square = compute_square(model, allocr, dctx.n_threads);
|
||||||
struct ggml_tensor * square = compute_square(model, allocr, n_threads);
|
ggml_backend_tensor_set(model.square, square->data, 0, ggml_nbytes(model.square));
|
||||||
ggml_backend_tensor_set(model.square, square->data, 0, ggml_nbytes(square));
|
|
||||||
|
|
||||||
// yes?
|
// yes?
|
||||||
ggml_gallocr_free(allocr);
|
ggml_gallocr_free(allocr);
|
||||||
|
|
||||||
|
struct ggml_init_params host_params = {
|
||||||
|
/*.mem_size =*/ (dctx.n_embd * sizeof(float) + ggml_tensor_overhead()) * 2u,
|
||||||
|
/*.mem_buffer =*/ NULL,
|
||||||
|
/*.no_alloc =*/ false,
|
||||||
|
};
|
||||||
|
struct ggml_context * host_ctx = ggml_init(host_params);
|
||||||
|
|
||||||
|
struct ggml_tensor * host_old_eigenvector = ggml_new_tensor_1d(host_ctx, GGML_TYPE_F32, dctx.n_embd);
|
||||||
|
struct ggml_tensor * host_new_eigenvector = ggml_new_tensor_1d(host_ctx, GGML_TYPE_F32, dctx.n_embd);
|
||||||
|
|
||||||
for (int iter = 0; iter < maxIterations; ++iter) {
|
for (int iter = 0; iter < maxIterations; ++iter) {
|
||||||
|
|
||||||
// TODO do I need to reset it like this every time?
|
// TODO do I need to reset it like this every time?
|
||||||
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
||||||
|
|
||||||
// i have no idea how ggml_contexts work so i'm making a different one for the original and the old one
|
struct ggml_tensor * b_tensor = compute_piter(model, allocr, dctx.n_threads, tolerance);
|
||||||
struct ggml_init_params hov_params = {
|
|
||||||
/*.mem_size =*/ cb_data.n_embd * sizeof(float) + ggml_tensor_overhead(),
|
|
||||||
/*.mem_buffer =*/ NULL,
|
|
||||||
/*.no_alloc =*/ false,
|
|
||||||
};
|
|
||||||
struct ggml_context * hov_ctx = ggml_init(hov_params);
|
|
||||||
|
|
||||||
struct ggml_init_params hnv_params = {
|
|
||||||
/*.mem_size =*/ cb_data.n_embd * sizeof(float) + ggml_tensor_overhead(),
|
|
||||||
/*.mem_buffer =*/ NULL,
|
|
||||||
/*.no_alloc =*/ false,
|
|
||||||
};
|
|
||||||
struct ggml_context * hnv_ctx = ggml_init(hnv_params);
|
|
||||||
|
|
||||||
struct ggml_tensor * host_old_eigenvector = ggml_new_tensor_1d(hov_ctx, GGML_TYPE_F32, cb_data.n_embd);
|
|
||||||
struct ggml_tensor * host_new_eigenvector = ggml_new_tensor_1d(hnv_ctx, GGML_TYPE_F32, cb_data.n_embd);
|
|
||||||
|
|
||||||
struct ggml_tensor * b_tensor = compute_piter(model, allocr, n_threads, tolerance);
|
|
||||||
|
|
||||||
ggml_backend_tensor_get(b_tensor, host_new_eigenvector->data, 0, ggml_nbytes(b_tensor));
|
ggml_backend_tensor_get(b_tensor, host_new_eigenvector->data, 0, ggml_nbytes(b_tensor));
|
||||||
ggml_backend_tensor_get(model.eigenvector, host_old_eigenvector->data, 0, ggml_nbytes(model.eigenvector));
|
ggml_backend_tensor_get(model.eigenvector, host_old_eigenvector->data, 0, ggml_nbytes(model.eigenvector));
|
||||||
|
|
||||||
// convergence check
|
// convergence check
|
||||||
float diff = 0.0;
|
float diff = 0.0;
|
||||||
for (int i = 0; i < cb_data.n_embd; ++i) {
|
for (int i = 0; i < dctx.n_embd; ++i) {
|
||||||
diff += std::pow((ggml_get_f32_1d(host_new_eigenvector, i) - ggml_get_f32_1d(host_old_eigenvector, i)), 2);
|
diff += std::pow((ggml_get_f32_1d(host_new_eigenvector, i) - ggml_get_f32_1d(host_old_eigenvector, i)), 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -649,36 +646,29 @@ static void power_iteration(callback_data & cb_data, int idx, int n_threads, int
|
||||||
// catch division by zero I guess
|
// catch division by zero I guess
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_free(hnv_ctx);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_backend_tensor_get(model.eigenvector, cb_data.v_final[idx]->data, 0, ggml_nbytes(model.eigenvector));
|
ggml_backend_tensor_get(model.eigenvector, dctx.v_final[idx]->data, 0, ggml_nbytes(model.eigenvector));
|
||||||
|
|
||||||
ggml_gallocr_free(allocr);
|
ggml_gallocr_free(allocr);
|
||||||
|
ggml_free(host_ctx);
|
||||||
ggml_free(model.ctx);
|
ggml_free(model.ctx);
|
||||||
ggml_backend_buffer_free(model.buffer);
|
ggml_backend_buffer_free(model.buffer);
|
||||||
ggml_backend_free(model.backend);
|
ggml_backend_free(model.backend);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void pca(callback_data & cb_data, int n_threads) {
|
static void pca(diff_ctx & dctx) {
|
||||||
printf("Running PCA...\n");
|
printf("Running PCA...\n");
|
||||||
for (int il = 0; il < cb_data.v_diff.size(); ++il) {
|
for (int il = 0; il < dctx.v_diff.size(); ++il) {
|
||||||
struct ggml_init_params params = {
|
dctx.v_final.push_back(ggml_new_tensor_1d(dctx.ctx_final, GGML_TYPE_F32, dctx.n_embd));
|
||||||
/*.mem_size =*/ cb_data.n_embd * sizeof(float) + ggml_tensor_overhead(),
|
power_iteration(dctx, il);
|
||||||
/*.mem_buffer =*/ NULL,
|
|
||||||
/*.no_alloc =*/ false,
|
|
||||||
};
|
|
||||||
struct ggml_context * ctx_data = ggml_init(params);
|
|
||||||
cb_data.v_final.push_back(ggml_new_tensor_1d(ctx_data, GGML_TYPE_F32, cb_data.n_embd));
|
|
||||||
power_iteration(cb_data, il, n_threads);
|
|
||||||
printf("Done with layer %d\n", il);
|
printf("Done with layer %d\n", il);
|
||||||
printf("il = %d | %f %f \n", il, ggml_get_f32_1d(cb_data.v_final[il], 0), ggml_get_f32_1d(cb_data.v_final[il], 1));
|
printf("il = %d | %f %f \n", il, ggml_get_f32_1d(dctx.v_final[il], 0), ggml_get_f32_1d(dctx.v_final[il], 1));
|
||||||
}
|
}
|
||||||
printf("Done with PCA.\n");
|
printf("Done with PCA.\n");
|
||||||
}
|
}
|
||||||
|
|
||||||
static void export_gguf(callback_data & cb_data, int n_layers, const std::string fname, const std::string model_hint) {
|
static void export_gguf(diff_ctx & dctx, int n_layers, const std::string fname, const std::string model_hint) {
|
||||||
struct gguf_context * ctx = gguf_init_empty();
|
struct gguf_context * ctx = gguf_init_empty();
|
||||||
|
|
||||||
size_t v_final_size_eff = n_layers - 1;
|
size_t v_final_size_eff = n_layers - 1;
|
||||||
|
@ -693,9 +683,11 @@ static void export_gguf(callback_data & cb_data, int n_layers, const std::string
|
||||||
// i'm pretty sure it's right now
|
// i'm pretty sure it's right now
|
||||||
const std::string name = "direction." + to_string(i+1);
|
const std::string name = "direction." + to_string(i+1);
|
||||||
|
|
||||||
ggml_set_name(cb_data.v_final[i], name.c_str());
|
std::cout << "dctx.v_final[i][0][1]: " << ggml_get_f32_nd(dctx.v_final[i], 0, 1, 0, 0) << std::endl;
|
||||||
|
|
||||||
gguf_add_tensor(ctx, cb_data.v_final[i]);
|
ggml_set_name(dctx.v_final[i], name.c_str());
|
||||||
|
|
||||||
|
gguf_add_tensor(ctx, dctx.v_final[i]);
|
||||||
printf("Added tensor %zu\n", i);
|
printf("Added tensor %zu\n", i);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -752,17 +744,47 @@ int main(int argc, char ** argv) {
|
||||||
int n_ctx = llama_n_ctx(ctx);
|
int n_ctx = llama_n_ctx(ctx);
|
||||||
int n_layers = llama_n_layer(model);
|
int n_layers = llama_n_layer(model);
|
||||||
int n_embd = llama_n_embd(model);
|
int n_embd = llama_n_embd(model);
|
||||||
cb_data.n_embd = n_embd;
|
|
||||||
int n_prompts = cparams.positive_prompts.size();
|
int n_prompts = cparams.positive_prompts.size();
|
||||||
|
|
||||||
// init ctx_ggml
|
// init ctx_ggml
|
||||||
struct ggml_init_params params_ggml = {
|
struct ggml_init_params params_ggml = {
|
||||||
/*.mem_size =*/ ggml_tensor_overhead() * n_prompts * n_layers * 4u,
|
/*.mem_size =*/ ggml_tensor_overhead() * n_layers * 2u,
|
||||||
/*.mem_buffer =*/ NULL,
|
/*.mem_buffer =*/ NULL,
|
||||||
/*.no_alloc =*/ true,
|
/*.no_alloc =*/ true,
|
||||||
};
|
};
|
||||||
cb_data.ctx_ggml = ggml_init(params_ggml);
|
cb_data.ctx_ggml = ggml_init(params_ggml);
|
||||||
|
|
||||||
|
// init diff_ctx
|
||||||
|
diff_ctx dctx;
|
||||||
|
|
||||||
|
// FIXME FIXME FIXME we are running out of memory here
|
||||||
|
// n_prompts should really be n_tokens damnit - remove the 2u and adapt
|
||||||
|
// we will either have to pretokenize everything so we know how much memory to allocate
|
||||||
|
// or allocate the tensor overhead as we go
|
||||||
|
struct ggml_init_params params_diffs_wrapped = {
|
||||||
|
/*.mem_size =*/ ggml_tensor_overhead() * n_prompts * n_layers * 16u,
|
||||||
|
/*.mem_buffer =*/ NULL,
|
||||||
|
/*.no_alloc =*/ true,
|
||||||
|
};
|
||||||
|
// this we know how much overhead to allocate in advance
|
||||||
|
struct ggml_init_params params_diff = {
|
||||||
|
/*.mem_size =*/ ggml_tensor_overhead() * n_layers,
|
||||||
|
/*.mem_buffer =*/ NULL,
|
||||||
|
/*.no_alloc =*/ true,
|
||||||
|
};
|
||||||
|
// and this we know exactly how much memory to allocate in advance without malloc() hacks
|
||||||
|
struct ggml_init_params params_final = {
|
||||||
|
/*.mem_size =*/ n_embd * sizeof(float) * n_layers
|
||||||
|
+ ggml_tensor_overhead() * n_layers,
|
||||||
|
/*.mem_buffer =*/ NULL,
|
||||||
|
/*.no_alloc =*/ false,
|
||||||
|
};
|
||||||
|
dctx.n_embd = n_embd;
|
||||||
|
dctx.n_threads = cparams.n_threads;
|
||||||
|
dctx.ctx_diffs_wrapped = ggml_init(params_diffs_wrapped);
|
||||||
|
dctx.ctx_diff = ggml_init(params_diff);
|
||||||
|
dctx.ctx_final = ggml_init(params_final);
|
||||||
|
|
||||||
// create templated prompts
|
// create templated prompts
|
||||||
for (int i = 0; i < n_prompts; ++i) {
|
for (int i = 0; i < n_prompts; ++i) {
|
||||||
populate_entries(cparams, cparams.positive_prompts[i], cparams.negative_prompts[i]);
|
populate_entries(cparams, cparams.positive_prompts[i], cparams.negative_prompts[i]);
|
||||||
|
@ -804,24 +826,33 @@ int main(int argc, char ** argv) {
|
||||||
cb_data.is_eval_pos = false;
|
cb_data.is_eval_pos = false;
|
||||||
get_hidden_layers(ctx, tokens_neg);
|
get_hidden_layers(ctx, tokens_neg);
|
||||||
|
|
||||||
// TODO check whether the same tokens correspond to zero rows because we don't seem to be getting many zero rows anymore
|
calc_diff(cb_data, dctx);
|
||||||
// we get a lot of zero rows for the first few prompts and then they drop off
|
|
||||||
// likewise most of the zero rows are in the first few layers for each prompt
|
|
||||||
|
|
||||||
calc_diff(cb_data);
|
|
||||||
|
|
||||||
// reset for next iteration
|
// reset for next iteration
|
||||||
// TODO @ngxson : find a more proper way to alloc / free tensors
|
// TODO @ngxson : find a more proper way to alloc / free tensors
|
||||||
for (auto ptr : cb_data.v_pos) free(ptr->data);
|
ggml_free(cb_data.ctx_ggml);
|
||||||
for (auto ptr : cb_data.v_neg) free(ptr->data);
|
// TODO move this to the top of the loop and remove the ggml_free() outside
|
||||||
|
cb_data.ctx_ggml = ggml_init(params_ggml);
|
||||||
cb_data.v_pos.clear();
|
cb_data.v_pos.clear();
|
||||||
cb_data.v_neg.clear();
|
cb_data.v_neg.clear();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO we can actually delete cb_data here
|
||||||
|
//ggml_free(cb_data.ctx_ggml);
|
||||||
|
|
||||||
|
printf("dctx.v_diffs_wrapped[0][0][2]: %f\n", ggml_get_f32_nd(dctx.v_diffs_wrapped[0][0], 0, 2, 0, 0));
|
||||||
|
|
||||||
printf("Done evaluate prompts\n");
|
printf("Done evaluate prompts\n");
|
||||||
|
|
||||||
concatenate_diffs(cb_data);
|
concatenate_diffs(dctx);
|
||||||
pca(cb_data, cparams.n_threads);
|
|
||||||
|
printf("dctx.v_diff[0][0][1]: %f\n", ggml_get_f32_nd(dctx.v_diff[0], 0, 1, 0, 0));
|
||||||
|
|
||||||
|
printf("Done concatenate diffs\n");
|
||||||
|
|
||||||
|
// code is known to work up to here
|
||||||
|
|
||||||
|
pca(dctx);
|
||||||
//printf("v_final %f %f \n", cb_data.v_final[0][0], cb_data.v_final[0][1]);
|
//printf("v_final %f %f \n", cb_data.v_final[0][0], cb_data.v_final[0][1]);
|
||||||
|
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
|
@ -831,9 +862,14 @@ int main(int argc, char ** argv) {
|
||||||
// we need get_arch_name() from llama.cpp
|
// we need get_arch_name() from llama.cpp
|
||||||
// TODO also has support been implemeneted for arches other than llama yet? see #5970
|
// TODO also has support been implemeneted for arches other than llama yet? see #5970
|
||||||
std::string model_hint = "llama";
|
std::string model_hint = "llama";
|
||||||
export_gguf(cb_data, n_layers, cparams.outfile, model_hint);
|
export_gguf(dctx, n_layers, cparams.outfile, model_hint);
|
||||||
|
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
std::cout << "okay which of you is failing" << std::endl;
|
||||||
|
|
||||||
|
// TODO free(): invalid pointer after the entire program is done????????
|
||||||
|
// probably because destructors free after you've already manually freed
|
||||||
|
// TODO fix destructor/ggml_free positioning
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue