Merge branch 'master' into sync

ggml-ci
This commit is contained in:
Georgi Gerganov 2023-11-06 07:51:40 +02:00
commit 081a86d0df
No known key found for this signature in database
GPG key ID: 449E073F9DC10735
9 changed files with 241 additions and 125 deletions

View file

@ -288,6 +288,7 @@ jobs:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
SDE_VERSION: 9.21.1-2023-04-24
strategy:
matrix:
@ -383,11 +384,23 @@ jobs:
- name: Test
id: cmake_test
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512
run: |
cd build
ctest -C Release --verbose --timeout 900
- name: Test (Intel SDE)
id: cmake_test_sde
if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
run: |
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/777395/sde-external-${env:SDE_VERSION}-win.tar.xz"
# for some weird reason windows tar doesn't like sde tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
cd build
& $sde -future -- ctest -C Release --verbose --timeout 900
- name: Determine tag name
id: tag
shell: bash

View file

@ -10,7 +10,7 @@ endif()
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
# configure project version
@ -44,7 +44,7 @@ endif()
# general
option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
option(LLAMA_LTO "llama: enable link time optimization" OFF)
# debug
@ -510,6 +510,10 @@ if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATC
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (LLAMA_NATIVE)
include(cmake/FindSIMD.cmake)
endif ()
if (LLAMA_AVX512)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)

100
cmake/FindSIMD.cmake Normal file
View file

@ -0,0 +1,100 @@
include(CheckCSourceRuns)
set(AVX_CODE "
#include <immintrin.h>
int main()
{
__m256 a;
a = _mm256_set1_ps(0);
return 0;
}
")
set(AVX512_CODE "
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);
__m512i b = a;
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
return 0;
}
")
set(AVX2_CODE "
#include <immintrin.h>
int main()
{
__m256i a = {0};
a = _mm256_abs_epi16(a);
__m256i x;
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
return 0;
}
")
set(FMA_CODE "
#include <immintrin.h>
int main()
{
__m256 acc = _mm256_setzero_ps();
const __m256 d = _mm256_setzero_ps();
const __m256 p = _mm256_setzero_ps();
acc = _mm256_fmadd_ps( d, p, acc );
return 0;
}
")
macro(check_sse type flags)
set(__FLAG_I 1)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
foreach (__FLAG ${flags})
if (NOT ${type}_FOUND)
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
if (HAS_${type}_${__FLAG_I})
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
endif()
math(EXPR __FLAG_I "${__FLAG_I}+1")
endif()
endforeach()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
if (NOT ${type}_FOUND)
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
set(${type}_FLAGS "" CACHE STRING "${type} flags")
endif()
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
endmacro()
# flags are for MSVC only!
check_sse("AVX" " ;/arch:AVX")
if (NOT ${AVX_FOUND})
set(LLAMA_AVX OFF)
else()
set(LLAMA_AVX ON)
endif()
check_sse("AVX2" " ;/arch:AVX2")
check_sse("FMA" " ;/arch:AVX2")
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
set(LLAMA_AVX2 OFF)
else()
set(LLAMA_AVX2 ON)
endif()
check_sse("AVX512" " ;/arch:AVX512")
if (NOT ${AVX512_FOUND})
set(LLAMA_AVX512 OFF)
else()
set(LLAMA_AVX512 ON)
endif()

View file

@ -90,6 +90,19 @@ void process_escapes(std::string& input) {
case '\'': input[output_idx++] = '\''; break;
case '\"': input[output_idx++] = '\"'; break;
case '\\': input[output_idx++] = '\\'; break;
case 'x':
// Handle \x12, etc
if (input_idx + 2 < input_len) {
const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
char *err_p = nullptr;
const long val = std::strtol(x, &err_p, 16);
if (err_p == x + 2) {
input_idx += 2;
input[output_idx++] = char(val);
break;
}
}
// fall through
default: input[output_idx++] = '\\';
input[output_idx++] = input[input_idx]; break;
}

View file

@ -7,7 +7,7 @@ Command line options:
- `--threads N`, `-t N`: Set the number of threads to use during generation.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.

View file

@ -39,10 +39,6 @@
#define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
#define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
#define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
#define cudaDeviceGetMemPool hipDeviceGetMemPool
#define cudaMemPoolAttrReleaseThreshold hipMemPoolAttrReleaseThreshold
#define cudaMemPoolSetAttribute hipMemPoolSetAttribute
#define cudaMemPool_t hipMemPool_t
#define cudaDeviceProp hipDeviceProp_t
#define cudaDeviceSynchronize hipDeviceSynchronize
#define cudaError_t hipError_t
@ -52,7 +48,6 @@
#define cudaEvent_t hipEvent_t
#define cudaEventDestroy hipEventDestroy
#define cudaFree hipFree
#define cudaFreeAsync hipFreeAsync
#define cudaFreeHost hipHostFree
#define cudaGetDevice hipGetDevice
#define cudaGetDeviceCount hipGetDeviceCount
@ -60,7 +55,6 @@
#define cudaGetErrorString hipGetErrorString
#define cudaGetLastError hipGetLastError
#define cudaMalloc hipMalloc
#define cudaMallocFromPoolAsync hipMallocFromPoolAsync
#define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
#define cudaMemcpy hipMemcpy
#define cudaMemcpy2DAsync hipMemcpy2DAsync
@ -188,11 +182,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
do { \
cudaError_t err_ = (err); \
if (err_ != cudaSuccess) { \
int dev_id; \
cudaGetDevice(&dev_id); \
int id; \
cudaGetDevice(&id); \
fprintf(stderr, "\nCUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
cudaGetErrorString(err_)); \
fprintf(stderr, "current device: %d\n", dev_id); \
fprintf(stderr, "current device: %d\n", id); \
exit(1); \
} \
} while (0)
@ -202,11 +196,11 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
do { \
cublasStatus_t err_ = (err); \
if (err_ != CUBLAS_STATUS_SUCCESS) { \
int dev_id; \
cudaGetDevice(&dev_id); \
int id; \
cudaGetDevice(&id); \
fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n", \
err_, __FILE__, __LINE__, cublasGetStatusString(err_)); \
fprintf(stderr, "current device: %d\n", dev_id); \
fprintf(stderr, "current device: %d\n", id); \
exit(1); \
} \
} while (0)
@ -472,7 +466,6 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA
#define MAX_STREAMS 8
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_DEVICES][MAX_STREAMS] = { nullptr };
static cudaMemPool_t g_cudaMemPools[GGML_CUDA_MAX_DEVICES] = { nullptr };
struct ggml_tensor_extra_gpu {
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
@ -990,7 +983,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.y*blockDim.y + threadIdx.y;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
@ -1094,7 +1087,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
@ -1198,7 +1191,7 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
@ -1452,7 +1445,7 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.y*blockDim.y + threadIdx.y;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
@ -4262,7 +4255,7 @@ template <bool need_check> static __global__ void
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) {
return;
@ -4302,7 +4295,7 @@ template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
// qk = quantized weights per x block
// qr = number of quantized weights per data value in x block
const int row = blockIdx.y*blockDim.y + threadIdx.y;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) {
return;
@ -4875,7 +4868,8 @@ static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cu
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4884,7 +4878,7 @@ static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4893,7 +4887,7 @@ static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4902,7 +4896,7 @@ static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4911,7 +4905,7 @@ static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y,
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -4921,7 +4915,7 @@ static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
@ -4930,7 +4924,7 @@ static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
@ -4939,7 +4933,7 @@ static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
@ -4954,7 +4948,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
@ -4962,7 +4956,7 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK4_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -4971,7 +4965,7 @@ static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK4_1 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -4980,7 +4974,7 @@ static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK5_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -4989,7 +4983,7 @@ static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK5_1 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -4998,7 +4992,7 @@ static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK8_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5007,7 +5001,7 @@ static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5016,7 +5010,7 @@ static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5025,7 +5019,7 @@ static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5034,7 +5028,7 @@ static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5043,7 +5037,7 @@ static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float *
static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
@ -5062,7 +5056,7 @@ static void convert_fp32_to_fp16_cuda(const void * vx, half * y, const int k, cu
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<1, 1, convert_f16>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
@ -5780,16 +5774,6 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr;
}
static void * ggml_cuda_pool_malloc_async(size_t size, size_t * actual_size, int id, cudaStream_t stream) {
if (g_cudaMemPools[id] == nullptr) {
return ggml_cuda_pool_malloc(size, actual_size);
}
void *ptr;
CUDA_CHECK(cudaMallocFromPoolAsync(&ptr, size, g_cudaMemPools[id], stream));
*actual_size = size;
return ptr;
}
static void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock);
int id;
@ -5808,13 +5792,6 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) {
}
static void ggml_cuda_pool_free_async(void * ptr, size_t actual_size, int id, cudaStream_t stream) {
if (g_cudaMemPools[id] == nullptr) {
return ggml_cuda_pool_free(ptr, actual_size);
}
CUDA_CHECK(cudaFreeAsync(ptr, stream));
}
void ggml_init_cublas() {
static bool initialized = false;
@ -5869,13 +5846,6 @@ void ggml_init_cublas() {
// create cublas handle
CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
// configure memory pool
cudaError_t err = cudaDeviceGetMemPool(&g_cudaMemPools[id], id);
if (err == cudaSuccess) {
size_t treshold = UINT64_MAX;
CUDA_CHECK(cudaMemPoolSetAttribute(g_cudaMemPools[id], cudaMemPoolAttrReleaseThreshold, &treshold));
}
}
// configure logging to stdout
@ -6469,7 +6439,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = row_diff*ne00;
src0_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src0_as, id, stream);
src0_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as);
to_fp16_cuda(src0_dd_i, src0_as_f16, ne, stream);
}
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16;
@ -6480,12 +6450,13 @@ inline void ggml_cuda_op_mul_mat_cublas(
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t ne = src1_ncols*ne10;
src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &src1_as, id, stream);
src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf_i, src1_as_f16, ne, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddq_i : src1_as_f16;
size_t dst_f16_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(row_diff*src1_ncols * sizeof(half), &dst_f16_as, id, stream);
size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc(row_diff*src1_ncols * sizeof(half), &dst_as);
const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;
@ -6503,15 +6474,14 @@ inline void ggml_cuda_op_mul_mat_cublas(
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_dd_i, row_diff*src1_ncols, stream);
if (dst_f16_as != 0) {
ggml_cuda_pool_free_async(dst_f16, dst_f16_as, id, stream);
}
ggml_cuda_pool_free(dst_f16, dst_as);
if (src0_as != 0) {
ggml_cuda_pool_free_async(src0_as_f16, src0_as, id, stream);
ggml_cuda_pool_free(src0_as_f16, src0_as);
}
if (src1_as != 0) {
ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, stream);
ggml_cuda_pool_free(src1_as_f16, src1_as);
}
}
else {
@ -6521,7 +6491,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
if (src0->type != GGML_TYPE_F32) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
GGML_ASSERT(to_fp32_cuda != nullptr);
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc_async(row_diff*ne00 * sizeof(float), &src0_as, id, stream); // NOLINT
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
}
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
@ -6538,7 +6508,7 @@ inline void ggml_cuda_op_mul_mat_cublas(
&beta, dst_dd_i, ldc));
if (src0_as != 0) {
ggml_cuda_pool_free_async(src0_ddq_as_f32, src0_as, id, stream);
ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
}
}
@ -6924,6 +6894,8 @@ static void ggml_cuda_op_mul_mat(
int64_t row_low[GGML_CUDA_MAX_DEVICES];
int64_t row_high[GGML_CUDA_MAX_DEVICES];
int used_devices = 0;
for (int64_t id = 0; id < g_device_count; ++id) {
// by default, use all rows
row_low[id] = 0;
@ -6951,6 +6923,8 @@ static void ggml_cuda_op_mul_mat(
continue;
}
used_devices++;
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
@ -6961,22 +6935,21 @@ static void ggml_cuda_op_mul_mat(
src0_dd[id] = (char *) src0_extra->data_device[id];
} else {
const size_t size_src0_ddq = split ? (row_high[id]-row_low[id])*ne00 * src0_ts/src0_bs : ggml_nbytes(src0);
src0_dd[id] = (char *) ggml_cuda_pool_malloc_async(ggml_nbytes(src0), &src0_as[id], id, stream);
src0_dd[id] = (char *) ggml_cuda_pool_malloc(ggml_nbytes(src0), &src0_as[id]);
}
if (src1_on_device && src1_is_contiguous) {
src1_ddf[id] = (float *) src1_extra->data_device[id];
} else {
src1_ddf[id] = (float *) ggml_cuda_pool_malloc_async(ggml_nbytes(src1), &src1_asf[id], id, stream);
src1_ddf[id] = (float *) ggml_cuda_pool_malloc(ggml_nbytes(src1), &src1_asf[id]);
}
if (convert_src1_to_q8_1) {
const size_t size_dst_ddq = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
src1_ddq[id] = (char *) ggml_cuda_pool_malloc_async(size_dst_ddq, &src1_asq[id], id, stream);
src1_ddq[id] = (char *) ggml_cuda_pool_malloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs, &src1_asq[id]);
if (src1_on_device && src1_is_contiguous) {
quantize_row_q8_1_cuda(src1_ddf[id], src1_ddq[id], ne10, nrows1, src1_padded_col_size, stream);
// CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaGetLastError());
}
}
@ -6984,18 +6957,18 @@ static void ggml_cuda_op_mul_mat(
dst_dd[id] = (float *) dst_extra->data_device[id];
} else {
const size_t size_dst_ddf = split ? (row_high[id]-row_low[id])*ne1*sizeof(float) : ggml_nbytes(dst);
dst_dd[id] = (float *) ggml_cuda_pool_malloc_async(size_dst_ddf, &dst_as[id], id, stream);
dst_dd[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_as[id]);
}
}
// if multiple devices are used they need to wait for the main device
// here an event is recorded that signals that the main device has finished calculating the input data
if (split && g_device_count > 1) {
if (split && used_devices > 1) {
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device][0], g_cudaStreams[g_main_device][0]));
}
const int64_t src1_col_stride = split && g_device_count > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
@ -7110,6 +7083,27 @@ static void ggml_cuda_op_mul_mat(
}
}
for (int64_t id = 0; id < g_device_count; ++id) {
if ((!split && id != g_main_device) || row_low[id] == row_high[id]) {
continue;
}
CUDA_CHECK(ggml_cuda_set_device(id));
// free buffers again when done
if (src0_as[id] > 0) {
ggml_cuda_pool_free(src0_dd[id], src0_as[id]);
}
if (src1_asf[id] > 0) {
ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
}
if (src1_asq[id] > 0) {
ggml_cuda_pool_free(src1_ddq[id], src1_asq[id]);
}
if (dst_as[id] > 0) {
ggml_cuda_pool_free(dst_dd[id], dst_as[id]);
}
}
// main device waits for all other devices to be finished
if (split && g_device_count > 1) {
int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
@ -7117,6 +7111,9 @@ static void ggml_cuda_op_mul_mat(
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
for (int64_t id = 0; id < g_device_count; ++id) {
if (row_low[id] == row_high[id]) {
continue;
}
for (int64_t is = 0; is < is_max; ++is) {
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams[g_main_device][0], src0_extra->events[id][is], 0));
}
@ -7127,21 +7124,6 @@ static void ggml_cuda_op_mul_mat(
CUDA_CHECK(ggml_cuda_set_device(g_main_device));
CUDA_CHECK(cudaDeviceSynchronize());
}
for (int64_t id = 0; id < g_device_count; ++id) {
if (src0_as[id] > 0) {
ggml_cuda_pool_free_async(src0_dd[id], src0_as[id], id, g_cudaStreams[id][0]);
}
if (src1_asf[id] > 0) {
ggml_cuda_pool_free_async(src1_ddf[id], src1_asf[id], id, g_cudaStreams[id][0]);
}
if (src1_asq[id] > 0) {
ggml_cuda_pool_free_async(src1_ddq[id], src1_asq[id], id, g_cudaStreams[id][0]);
}
if (dst_as[id] > 0) {
ggml_cuda_pool_free_async(dst_dd[id], dst_as[id], id, g_cudaStreams[id][0]);
}
}
}
static void ggml_cuda_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -7328,11 +7310,11 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
GGML_ASSERT(to_fp16_cuda != nullptr);
size_t src1_as = 0;
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc_async(ne1 * sizeof(half), &src1_as, id, main_stream);
half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
size_t dst_as = 0;
half * dst_f16 = (half *) ggml_cuda_pool_malloc_async(ne * sizeof(half), &dst_as, id, main_stream);
half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
GGML_ASSERT(ne12 % ne02 == 0);
GGML_ASSERT(ne13 % ne03 == 0);
@ -7386,8 +7368,8 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
size_t ptrs_src_s = 0;
size_t ptrs_dst_s = 0;
ptrs_src = (const void **) ggml_cuda_pool_malloc_async(2*ne23*sizeof(void *), &ptrs_src_s, id, main_stream);
ptrs_dst = ( void **) ggml_cuda_pool_malloc_async(1*ne23*sizeof(void *), &ptrs_dst_s, id, main_stream);
ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
dim3 block_dims(ne13, ne12);
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
@ -7400,6 +7382,7 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
dst->nb[2], dst->nb[3],
r2, r3);
CUDA_CHECK(cudaGetLastError());
CUBLAS_CHECK(
cublasGemmBatchedEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
ne01, ne11, ne10,
@ -7411,30 +7394,29 @@ static void ggml_cuda_mul_mat_mat_batched_cublas(const ggml_tensor * src0, const
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
if (ptrs_src_s != 0) {
ggml_cuda_pool_free_async(ptrs_src, ptrs_src_s, id, main_stream);
ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
}
if (ptrs_dst_s != 0) {
ggml_cuda_pool_free_async(ptrs_dst, ptrs_dst_s, id, main_stream);
ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
}
}
#endif
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
if (src1_as != 0) {
ggml_cuda_pool_free_async(src1_as_f16, src1_as, id, main_stream);
}
if (dst_as != 0) {
ggml_cuda_pool_free_async(dst_f16, dst_as, id, main_stream);
}
ggml_cuda_pool_free(src1_as_f16, src1_as);
ggml_cuda_pool_free(dst_f16, dst_as);
}
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool all_on_device =
(src0->backend == GGML_BACKEND_GPU) &&
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
(src1->backend == GGML_BACKEND_GPU) &&
( dst->backend == GGML_BACKEND_GPU);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
int64_t min_compute_capability = INT_MAX;
for (int64_t id = 0; id < g_device_count; ++id) {
if (min_compute_capability > g_compute_capabilities[id] && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
@ -7456,13 +7438,13 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
if (all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
// KQ single-batch
ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
} else if (all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
} else if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
// KQV single-batch
ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
} else if (all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
} else if (!split && all_on_device && use_tensor_cores && src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
// KQ + KQV multi-batch
ggml_cuda_mul_mat_mat_batched_cublas(src0, src1, dst);
} else if (src0->type == GGML_TYPE_F32) {

View file

@ -1024,7 +1024,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
[encoder setThreadgroupMemoryLength:MAX(16, nth/32*sizeof(float)) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
@ -1355,7 +1355,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
[encoder setThreadgroupMemoryLength:MAX(16, nth*sizeof(float)) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
@ -1410,7 +1410,8 @@ void ggml_metal_graph_compute(
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_orig_ctx = ((int32_t *) dst->op_params)[3];
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));

View file

@ -393,6 +393,7 @@ class TensorNameMap:
"layers.{bid}.attention_norm", # llama-pth
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
"model.layers.{bid}.ln1", # yi
),
# Attention norm 2
@ -464,6 +465,7 @@ class TensorNameMap:
"layers.{bid}.ffn_norm", # llama-pth
"encoder.layer.{bid}.output.LayerNorm", # bert
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
"model.layers.{bid}.ln2", # yi
),
# Feed-forward up

View file

@ -5170,7 +5170,8 @@ static int llama_decode_internal(
model.arch == LLM_ARCH_BAICHUAN ||
model.arch == LLM_ARCH_FALCON ||
model.arch == LLM_ARCH_REFACT ||
model.arch == LLM_ARCH_MPT;
model.arch == LLM_ARCH_MPT ||
model.arch == LLM_ARCH_STARCODER;
const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {