diff --git a/Makefile b/Makefile index a6bf0e024..6fd26679e 100644 --- a/Makefile +++ b/Makefile @@ -206,7 +206,7 @@ endif BLAS_BUILD = ifeq ($(OS),Windows_NT) - BLAS_BUILD = $(CXX) $(CXXFLAGS) ggml_blas.o common.o extra.o expose.o model_adapter.o libopenblas.lib -shared -o llamacpp_blas.dll $(LDFLAGS) + BLAS_BUILD = $(CXX) $(CXXFLAGS) ggml_blas.o expose.o llama_adapter.o llamaextra.o common.o libopenblas.lib -shared -o llamacpp_blas.dll $(LDFLAGS) else BLAS_BUILD = @echo 'Your OS is $(OS) and does not appear to be Windows. If you want to use openblas, please link it manually with LLAMA_OPENBLAS=1' endif @@ -247,14 +247,17 @@ llama.o: llama.cpp llama.h common.o: examples/common.cpp examples/common.h $(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o -extra.o: extra.cpp extra.h - $(CXX) $(CXXFLAGS) -c extra.cpp -o extra.o +llamaextra.o: llamaextra.cpp llamaextra.h + $(CXX) $(CXXFLAGS) -c llamaextra.cpp -o llamaextra.o expose.o: expose.cpp expose.h $(CXX) $(CXXFLAGS) -c expose.cpp -o expose.o -model_adapter.o: - $(CXX) $(CXXFLAGS) -c llama_adapter.cpp -o model_adapter.o +llama_adapter.o: + $(CXX) $(CXXFLAGS) -c llama_adapter.cpp -o llama_adapter.o + +gptj_adapter.o: ggml_old_v1.o + $(CXX) $(CXXFLAGS) otherarch/gptj_old.cpp otherarch/utils.cpp ggml_old_v1.o gptj_adapter.cpp -o gptj_adapter.o clean: rm -vf *.o main quantize perplexity embedding main.exe quantize.exe llamacpp.dll llamacpp_blas.dll gpt2.exe gptj.exe @@ -269,10 +272,10 @@ gptj: ggml_old_v1.o $(CXX) $(CXXFLAGS) otherarch/gptj_old.cpp otherarch/utils.cpp ggml_old_v1.o -o gptj $(LDFLAGS) -llamalib: ggml.o common.o extra.o expose.o model_adapter.o - $(CXX) $(CXXFLAGS) ggml.o common.o extra.o expose.o model_adapter.o -shared -o llamacpp.dll $(LDFLAGS) +llamalib: ggml.o expose.o llama_adapter.o llamaextra.o common.o + $(CXX) $(CXXFLAGS) expose.o ggml.o llama_adapter.o llamaextra.o common.o -shared -o llamacpp.dll $(LDFLAGS) -llamalib_blas: ggml_blas.o common.o extra.o expose.o model_adapter.o +llamalib_blas: ggml_blas.o expose.o llama_adapter.o llamaextra.o common.o $(BLAS_BUILD) quantize: examples/quantize/quantize.cpp ggml.o llama.o diff --git a/expose.cpp b/expose.cpp index 173595122..b436c9c30 100644 --- a/expose.cpp +++ b/expose.cpp @@ -9,7 +9,9 @@ #include "model_adapter.h" #include "expose.h" -#include "extra.h" +#include "llamaextra.h" + + extern "C" { diff --git a/expose.h b/expose.h index d25be93f0..509837e1e 100644 --- a/expose.h +++ b/expose.h @@ -25,4 +25,5 @@ struct generation_outputs { int status = -1; char text[16384]; //16kb should be enough for any response -}; \ No newline at end of file +}; + diff --git a/gptj_adapter.cpp b/gptj_adapter.cpp index 0629316d7..9498855d5 100644 --- a/gptj_adapter.cpp +++ b/gptj_adapter.cpp @@ -10,196 +10,50 @@ #include #include "model_adapter.h" #include "otherarch/otherarch.h" +#include "llamaextra.h" //return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) static FileFormat file_format = FileFormat::FAIL; -static llama_context_params ctx_params; +static gpt_vocab vocab; +static gptj_model model; static gpt_params params; static int n_past = 0; static int n_threads = 4; static int n_batch = 8; -static std::string model; -static llama_context *ctx; -static std::vector last_n_tokens; -static std::vector current_context_tokens; +static std::string modelname; +static std::vector current_context_tokens; +static size_t mem_per_token = 0; +static std::vector logits; -void nnn() +bool gptj_load_model(const load_model_inputs inputs, FileFormat in_file_format) { + ggml_time_init(); - const int64_t t_main_start_us = ggml_time_us(); - - gpt_params params; - params.model = "models/gpt-j-6B/ggml-model.bin"; - - if (params.seed < 0) { - params.seed = time(NULL); - } - - printf("%s: seed = %d\n", __func__, params.seed); - - std::mt19937 rng(params.seed); - - - int64_t t_load_us = 0; - - gpt_vocab vocab; - gptj_model model; - - // load the model - { - const int64_t t_start_us = ggml_time_us(); - - if (!legacy_gptj_model_load(params.model, model, vocab)) { - fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); - return 1; - } - - t_load_us = ggml_time_us() - t_start_us; - } - - int n_past = 0; - - int64_t t_sample_us = 0; - int64_t t_predict_us = 0; - - std::vector logits; - - // tokenize the prompt - std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); - - params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size()); - - printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); - printf("\n"); - - std::vector embd; - - // determine the required inference memory per token: - size_t mem_per_token = 0; - legacy_gptj_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); - - for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) { - // predict - if (embd.size() > 0) { - const int64_t t_start_us = ggml_time_us(); - - if (!legacy_gptj_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { - printf("Failed to predict\n"); - return 1; - } - - t_predict_us += ggml_time_us() - t_start_us; - } - - n_past += embd.size(); - embd.clear(); - - if (i >= embd_inp.size()) { - // sample next token - const int top_k = params.top_k; - const float top_p = params.top_p; - const float temp = params.temp; - - const int n_vocab = model.hparams.n_vocab; - - gpt_vocab::id id = 0; - - { - const int64_t t_start_sample_us = ggml_time_us(); - - id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); - - t_sample_us += ggml_time_us() - t_start_sample_us; - } - - // add it to the context - embd.push_back(id); - } else { - // if here, it means we are still processing the input prompt - for (int k = i; k < embd_inp.size(); k++) { - embd.push_back(embd_inp[k]); - if (embd.size() > params.n_batch) { - break; - } - } - i += embd.size() - 1; - } - - // display text - for (auto id : embd) { - printf("%s", vocab.id_to_token[id].c_str()); - } - fflush(stdout); - - // end of text token - if (embd.back() == 50256) { - break; - } - } - - // report timing - { - const int64_t t_main_end_us = ggml_time_us(); - - printf("\n\n"); - printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token); - printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f); - printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f); - printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past); - printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f); - } - - ggml_free(model.ctx); - - return 0; -} - -bool llama_load_model(const load_model_inputs inputs, FileFormat in_file_format) -{ - printf("System Info: %s\n", llama_print_system_info()); - - ctx_params = llama_context_default_params(); - - n_threads = inputs.threads; - n_batch = inputs.batch_size; - model = inputs.model_filename; - - ctx_params.n_ctx = inputs.max_context_length; - ctx_params.n_parts = inputs.n_parts_overwrite; - ctx_params.seed = -1; - ctx_params.f16_kv = inputs.f16_kv; - ctx_params.logits_all = false; file_format = in_file_format; + n_threads = params.n_threads = inputs.threads; + n_batch = params.n_batch = inputs.batch_size; + modelname = params.model = inputs.model_filename; - if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF) - { - ctx = legacy_llama_init_from_file(model.c_str(), ctx_params); - } - else - { - ctx = llama_init_from_file(model.c_str(), ctx_params); - } - - if (ctx == NULL) - { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str()); + if (!legacy_gptj_model_load(params.model, model, vocab)) { + fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); return false; } - if (file_format < FileFormat::GGJT) + if (file_format != FileFormat::GPTJ2) { printf("\n---\nWarning: Your model has an INVALID or OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format); } - //determine mem per token - const std::vector tmp = {0, 1, 2, 3}; - llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads); + // determine the required inference memory per token: + legacy_gptj_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); return true; } -generation_outputs llama_generate(const generation_inputs inputs, generation_outputs &output) + + +generation_outputs gptj_generate(const generation_inputs inputs, generation_outputs &output) { params.prompt = inputs.prompt; params.seed = inputs.seed; @@ -207,16 +61,9 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out params.top_k = inputs.top_k; params.top_p = inputs.top_p; params.temp = inputs.temperature; - params.repeat_last_n = inputs.rep_pen_range; - params.repeat_penalty = inputs.rep_pen; - params.n_ctx = inputs.max_context_length; params.n_batch = n_batch; params.n_threads = n_threads; - if (params.repeat_last_n < 1) - { - params.repeat_last_n = 1; - } if (params.top_k < 1) { params.top_k = 300; //to disable top_k we actually need to increase this value to a very high number @@ -225,41 +72,20 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out { params.seed = time(NULL); } - - params.prompt.insert(0, 1, ' '); - + // tokenize the prompt - std::vector embd_inp; - if (file_format == 1) - { - embd_inp = ::legacy_llama_tokenize(ctx, params.prompt, true); - } - else - { - embd_inp = ::llama_tokenize(ctx, params.prompt, true); - } + std::vector embd_inp = ::gpt_tokenize(vocab, params.prompt); - //params.n_predict = std::min(params.n_predict, params.n_ctx - (int) embd_inp.size()); //truncate to front of the prompt if its too long - if (embd_inp.size() + params.n_predict > params.n_ctx) + if (embd_inp.size() + params.n_predict > model.hparams.n_ctx) { - int offset = embd_inp.size() - params.n_ctx + params.n_predict; + int offset = embd_inp.size() - model.hparams.n_ctx + params.n_predict; embd_inp = std::vector(embd_inp.begin() + offset, embd_inp.end()); } //determine how much npast we have to rewind from the current state + std::vector embd; - std::vector embd; - - int last_n_size = params.repeat_last_n; - last_n_tokens.resize(last_n_size); - - //display usage - // std::string tst = " "; - // char * tst2 = (char*)tst.c_str(); - // gpt_print_usage(1,&tst2,params); - - std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); n_past = 0; //fast forward the past based on identical tokens, stop once a divergence is noted @@ -269,7 +95,6 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out if (current_context_tokens[i] == embd_inp[i]) { n_past += 1; - last_n_tokens.push_back(current_context_tokens[i]); } else { @@ -281,11 +106,10 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out } } - last_n_tokens.erase(last_n_tokens.begin(), last_n_tokens.begin() + n_past); embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_past); //if using BLAS and prompt is big enough, switch to single thread and use a huge batch - bool blasmode = (embd_inp.size() >= 32 && ggml_cpu_has_blas()); + bool blasmode = false;// (embd_inp.size() >= 32 && ggml_cpu_has_blas()); int original_batch = params.n_batch; int original_threads = params.n_threads; if (blasmode) @@ -306,11 +130,13 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out timer_start(); double time1 = 0, time2 = 0; unsigned int embd_inp_size = embd_inp.size(); + const int n_vocab = model.hparams.n_vocab; + printf("\n"); while (remaining_tokens > 0) { - llama_token id = 0; + gpt_vocab::id id = 0; // predict unsigned int embdsize = embd.size(); if (embdsize > 0) @@ -324,8 +150,8 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out { printf("\rGenerating (%d / %d tokens)", (1 + params.n_predict - remaining_tokens), params.n_predict); } - //printf("\nnp:%d embd:%d txt:%s",n_past,embd.size(),llama_token_to_str(ctx, embd[0])); - if (llama_eval(ctx, embd.data(), embdsize, n_past, params.n_threads)) + + if (!legacy_gptj_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) { fprintf(stderr, "Failed to predict\n"); snprintf(output.text, sizeof(output.text), "%s", ""); @@ -342,7 +168,6 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out const float top_k = params.top_k; const float top_p = params.top_p; const float temp = params.temp; - const float repeat_penalty = params.repeat_penalty; if (!startedsampling) { @@ -355,17 +180,13 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out } { - auto logits = llama_get_logits(ctx); // set the logit of the eos token (2) to zero to avoid sampling it - logits[llama_token_eos()] = 0; + logits[50256] = 0; //set logits of opening square bracket to zero. - logits[518] = 0; - logits[29961] = 0; + + + id = gpt_sample_top_k_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_k, top_p, temp, rng); - id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty); - - last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(id); current_context_tokens.push_back(id); } @@ -374,17 +195,17 @@ generation_outputs llama_generate(const generation_inputs inputs, generation_out // decrement remaining sampling budget --remaining_tokens; - //printf("\nid:%d word:%s\n",id,llama_token_to_str(ctx, id)); - concat_output += llama_token_to_str(ctx, id); + + for (auto id : embd) { + concat_output += vocab.id_to_token[id].c_str(); + } } else { // some user input remains from prompt or interaction, forward it to processing while ((int)embd_inp.size() > input_consumed) { - embd.push_back(embd_inp[input_consumed]); - last_n_tokens.erase(last_n_tokens.begin()); - last_n_tokens.push_back(embd_inp[input_consumed]); + embd.push_back(embd_inp[input_consumed]); current_context_tokens.push_back(embd_inp[input_consumed]); ++input_consumed; if ((int)embd.size() >= params.n_batch) diff --git a/llama_adapter.cpp b/llama_adapter.cpp index 1fa163416..d9f9dac05 100644 --- a/llama_adapter.cpp +++ b/llama_adapter.cpp @@ -19,7 +19,7 @@ static gpt_params params; static int n_past = 0; static int n_threads = 4; static int n_batch = 8; -static std::string model; +static std::string modelname; static llama_context *ctx; static std::vector last_n_tokens; static std::vector current_context_tokens; @@ -32,7 +32,7 @@ bool llama_load_model(const load_model_inputs inputs, FileFormat in_file_format) n_threads = inputs.threads; n_batch = inputs.batch_size; - model = inputs.model_filename; + modelname = inputs.model_filename; ctx_params.n_ctx = inputs.max_context_length; ctx_params.n_parts = inputs.n_parts_overwrite; @@ -44,16 +44,16 @@ bool llama_load_model(const load_model_inputs inputs, FileFormat in_file_format) if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF) { - ctx = legacy_llama_init_from_file(model.c_str(), ctx_params); + ctx = legacy_llama_init_from_file(modelname.c_str(), ctx_params); } else { - ctx = llama_init_from_file(model.c_str(), ctx_params); + ctx = llama_init_from_file(modelname.c_str(), ctx_params); } if (ctx == NULL) { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, model.c_str()); + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); return false; } diff --git a/llamacpp.dll b/llamacpp.dll index 23f4d62a1..4a6b9702a 100644 Binary files a/llamacpp.dll and b/llamacpp.dll differ diff --git a/llamacpp_blas.dll b/llamacpp_blas.dll index 0d180f202..78f91df4a 100644 Binary files a/llamacpp_blas.dll and b/llamacpp_blas.dll differ diff --git a/extra.cpp b/llamaextra.cpp similarity index 99% rename from extra.cpp rename to llamaextra.cpp index 2ae47f196..40ada56bd 100644 --- a/extra.cpp +++ b/llamaextra.cpp @@ -1,5 +1,5 @@ #include "ggml.h" -#include "extra.h" +#include "llamaextra.h" #include "llama.cpp" #include diff --git a/extra.h b/llamaextra.h similarity index 96% rename from extra.h rename to llamaextra.h index ae11eb2f3..c31e840b8 100644 --- a/extra.h +++ b/llamaextra.h @@ -21,13 +21,15 @@ enum FileFormat FAIL=0, GGML=1, GGHF=2, - GGJT=3 + GGJT=3, + + GPTJ1=100, + GPTJ2=101 }; -void print_tok_vec(std::vector &embd); void timer_start(); double timer_check(); - +void print_tok_vec(std::vector &embd); FileFormat check_file_format(const std::string & fname); std::vector legacy_llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos); diff --git a/model_adapter.h b/model_adapter.h index c7a6e492e..803c08563 100644 --- a/model_adapter.h +++ b/model_adapter.h @@ -1,6 +1,8 @@ #pragma once #include "expose.h" -#include "extra.h" +#include "llamaextra.h" bool llama_load_model(const load_model_inputs inputs, FileFormat file_format); -generation_outputs llama_generate(const generation_inputs inputs, generation_outputs &output); \ No newline at end of file +generation_outputs llama_generate(const generation_inputs inputs, generation_outputs &output); +bool gptj_load_model(const load_model_inputs inputs, FileFormat in_file_format); +generation_outputs gptj_generate(const generation_inputs inputs, generation_outputs &output); \ No newline at end of file diff --git a/otherarch/utils.h b/otherarch/utils.h index 0b93763e0..92bc29027 100644 --- a/otherarch/utils.h +++ b/otherarch/utils.h @@ -7,32 +7,12 @@ #include #include #include +#include "common.h" // // CLI argument parsing // -struct gpt_params { - int32_t seed = -1; // RNG seed - int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); - int32_t n_predict = 200; // new tokens to predict - - // sampling parameters - int32_t top_k = 40; - float top_p = 0.9f; - float temp = 0.9f; - - int32_t n_batch = 8; // batch size for prompt processing - - std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path - std::string prompt; -}; - -bool gpt_params_parse(int argc, char ** argv, gpt_params & params); - -void gpt_print_usage(int argc, char ** argv, const gpt_params & params); - -std::string gpt_random_prompt(std::mt19937 & rng); // // Vocab utils