ggml : mul_mat_id use the same tensor for all the experts (#6387)
* ggml : update mul_mat_id to use the same tensor for all the experts * update cuda * minor * update metal * update test-backend-ops * fix cuda * Update ggml-metal.m Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * update convert.py * update convert-hf-to-gguf.py * update convert.py for mixtral hf models * Update convert-hf-to-gguf.py Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * cuda : support non-pow-2 number of experts * allow quantize to work for split and merged experts models in the same way * cleanup + disable mmap automatically with split tensors models * update imatrix * test-backend-ops : test qwen argsort * update grok model loading * llama : add merged experts tensors to the grok tensor map * minor * gguf : bump version * fix quantizing of merged experts * convert-hf-to-gguf.py : update grok (untested) * make linter happy * cuda/argsort : use shared memory instead of pool memory * convert : fix grok tensor names * metal : add support for non-pow-2 argsort * llama : more loader cleanup, better error checking * cuda : fix warning * llama : still use mmap for loading old models, but copy the data to a host buffer * add review note * llama : remove ffn tensor counting + add sanity check ggml-ci * convert : fix handling of n_experts == None ggml-ci * imatrix : fix ncall counters * llama : produce error if imatrix size does not match * quantize : terminate on errors + trace logs ggml-ci * metal : pad shared memory to 16 bytes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
52604860f9
commit
08a0c02060
15 changed files with 756 additions and 888 deletions
|
@ -231,9 +231,8 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear_v", # Grok
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
|
@ -252,9 +251,8 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear" # Grok
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear" # Grok (merged)
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
|
@ -280,10 +278,8 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
|
||||
"transformer.decoder_layer.{bid}.moe.{xid}.linear_1", # Grok
|
||||
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue