ggml : mul_mat_id use the same tensor for all the experts (#6387)

* ggml : update mul_mat_id to use the same tensor for all the experts

* update cuda

* minor

* update metal

* update test-backend-ops

* fix cuda

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update convert.py

* update convert-hf-to-gguf.py

* update convert.py for mixtral hf models

* Update convert-hf-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* cuda : support non-pow-2 number of experts

* allow quantize to work for split and merged experts models in the same way

* cleanup + disable mmap automatically with split tensors models

* update imatrix

* test-backend-ops : test qwen argsort

* update grok model loading

* llama : add merged experts tensors to the grok tensor map

* minor

* gguf : bump version

* fix quantizing of merged experts

* convert-hf-to-gguf.py : update grok (untested)

* make linter happy

* cuda/argsort : use shared memory instead of pool memory

* convert : fix grok tensor names

* metal : add support for non-pow-2 argsort

* llama : more loader cleanup, better error checking

* cuda : fix warning

* llama : still use mmap for loading old models, but copy the data to a host buffer

* add review note

* llama : remove ffn tensor counting + add sanity check

ggml-ci

* convert : fix handling of n_experts == None

ggml-ci

* imatrix : fix ncall counters

* llama : produce error if imatrix size does not match

* quantize : terminate on errors + trace logs

ggml-ci

* metal : pad shared memory to 16 bytes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
slaren 2024-04-03 15:07:05 +02:00 committed by GitHub
parent 52604860f9
commit 08a0c02060
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 756 additions and 888 deletions

328
llama.cpp
View file

@ -426,9 +426,12 @@ enum llm_tensor {
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
LLM_TENSOR_FFN_DOWN_EXP,
LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP,
LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_LAYER_OUT_NORM,
@ -463,6 +466,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
@ -516,6 +522,9 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
},
@ -1864,9 +1873,9 @@ struct llama_layer {
// ff MoE
struct ggml_tensor * ffn_gate_inp;
struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
struct ggml_tensor * ffn_gate_exps;
struct ggml_tensor * ffn_down_exps;
struct ggml_tensor * ffn_up_exps ;
// ff bias
struct ggml_tensor * ffn_down_b; // b2
@ -2868,19 +2877,19 @@ struct llama_model_loader {
llama_mmaps mappings;
// Holds information on a model weights
struct llama_tensor_weights {
// Holds information on a model weight
struct llama_tensor_weight {
uint16_t idx; // source file index
size_t offs; // tensor data offset in the original file
ggml_tensor * tensor;
llama_tensor_weights(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
}
};
std::vector<llama_tensor_weights> weights;
std::vector<llama_tensor_weight> weights;
std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
@ -2920,7 +2929,7 @@ struct llama_model_loader {
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(llama_tensor_weights(0, cur->name, meta, cur));
weights.emplace_back(0, cur->name, meta, cur);
}
files.emplace_back(new llama_file(fname.c_str(), "rb"));
contexts.emplace_back(ctx);
@ -2960,7 +2969,7 @@ struct llama_model_loader {
// Save tensors data offset info of the shard.
for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
weights.emplace_back(llama_tensor_weights(idx, cur->name, ctx_gguf, cur));
weights.emplace_back(idx, cur->name, ctx_gguf, cur);
}
files.emplace_back(new llama_file(split_path, "rb"));
contexts.emplace_back(ctx);
@ -3164,21 +3173,37 @@ struct llama_model_loader {
return weights.at(i).tensor->name;
}
const llama_tensor_weights & get_weights(const char * name) const {
const llama_tensor_weight * get_weight(const char * name) const {
for (const auto & weight : weights) {
if (strcmp(name, weight.tensor->name) == 0) {
return weight;
return &weight;
}
}
throw std::runtime_error(format("tensor %s not found", name));
return nullptr;
}
const llama_tensor_weight & require_weight(const char * name) const {
const llama_tensor_weight * weight = get_weight(name);
if (!weight) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
}
return *weight;
}
struct ggml_tensor * get_tensor_meta(const char * name) const {
try {
return get_weights(name).tensor;
} catch (const std::runtime_error & e) {
return NULL;
const auto * weight = get_weight(name);
if (!weight) {
return nullptr;
}
return weight->tensor;
}
struct ggml_tensor * require_tensor_meta(const char * name) const {
struct ggml_tensor * tensor = get_tensor_meta(name);
if (!tensor) {
throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
}
return tensor;
}
struct ggml_tensor * get_tensor_meta(int i) const {
@ -3194,7 +3219,7 @@ struct llama_model_loader {
return tensor;
}
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
if (cur == NULL) {
@ -3206,8 +3231,8 @@ struct llama_model_loader {
{
bool is_ok = true;
for (size_t i = 0; i < ne.size(); ++i) {
if (ne[i] != cur->ne[i]) {
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
is_ok = false;
break;
}
@ -3221,9 +3246,47 @@ struct llama_model_loader {
}
}
return cur;
}
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
if (cur == NULL) {
return NULL;
}
return create_tensor_for(ctx, cur);
}
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
if (cur == NULL) {
return NULL;
}
if (cur->type != base->type) {
throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
}
std::array<int64_t, GGML_MAX_DIMS> dims;
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
dims[i] = i < ne.size() ? ne[i] : 1;
}
struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
dims[0], dims[1], dims[2], dims[3],
cur->nb[1], cur->nb[2], cur->nb[3],
offset);
ggml_set_name(tensor, name.c_str());
n_created++;
return tensor;
}
void done_getting_tensors() const {
if (n_created != n_tensors) {
throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
@ -3236,7 +3299,7 @@ struct llama_model_loader {
mmaps_used.reserve(files.size());
for (const auto & file : files) {
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
mmaps_used.emplace_back(std::make_pair(mapping->size, 0));
mmaps_used.emplace_back(mapping->size, 0);
if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
mlock_mmap->init(mapping->addr);
@ -3260,18 +3323,25 @@ struct llama_model_loader {
*last = 0;
*addr = mapping->addr;
for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
const auto & w = get_weights(ggml_get_name(tensor));
if (w.idx != idx) {
continue;
try {
const auto * weight = get_weight(ggml_get_name(tensor));
if (!weight) {
continue;
}
if (weight->idx != idx) {
continue;
}
*first = std::min(*first, weight->offs);
*last = std::max(*last, weight->offs + ggml_nbytes(tensor));
} catch(...) {
// the tensor is not in the model
}
*first = std::min(*first, w.offs);
*last = std::max(*last, w.offs + ggml_nbytes(tensor));
}
}
// for backwards compatibility, does not support ggml-backend
void load_data_for(struct ggml_tensor * cur) const {
const auto & w = get_weights(ggml_get_name(cur));
const auto & w = require_weight(ggml_get_name(cur));
if (use_mmap) {
const auto & mapping = mappings.at(w.idx);
@ -3304,44 +3374,49 @@ struct llama_model_loader {
std::vector<no_init<uint8_t>> read_buf;
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
const auto * weight = get_weight(ggml_get_name(cur));
if (weight == nullptr) {
// this can happen with split experts models
continue;
}
if (progress_callback) {
if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
return false;
}
}
const auto & w = get_weights(ggml_get_name(cur));
size_t n_size = ggml_nbytes(cur);
if (use_mmap) {
const auto & mapping = mappings.at(w.idx);
const auto & mapping = mappings.at(weight->idx);
ggml_backend_buffer_t buf_mmap = nullptr;
if (bufs_mmap.count(w.idx)) {
buf_mmap = bufs_mmap.at(w.idx);
if (bufs_mmap.count(weight->idx)) {
buf_mmap = bufs_mmap.at(weight->idx);
}
GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
if (buf_mmap && cur->data == nullptr) {
ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + w.offs);
ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
if (lmlocks) {
const auto & lmlock = lmlocks->at(w.idx);
lmlock->grow_to(w.offs + ggml_nbytes(cur));
const auto & lmlock = lmlocks->at(weight->idx);
lmlock->grow_to(weight->offs + ggml_nbytes(cur));
}
auto & mmap_used = mmaps_used[w.idx];
mmap_used.first = std::min(mmap_used.first, w.offs);
mmap_used.second = std::max(mmap_used.second, w.offs + n_size);
auto & mmap_used = mmaps_used[weight->idx];
mmap_used.first = std::min(mmap_used.first, weight->offs);
mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
} else {
ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + w.offs, 0, n_size);
ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
}
} else {
GGML_ASSERT(w.idx < files.size());
const auto & file = files.at(w.idx);
GGML_ASSERT(weight->idx < files.size());
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->seek(w.offs, SEEK_SET);
file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, ggml_nbytes(cur));
} else {
read_buf.resize(ggml_nbytes(cur));
file->seek(w.offs, SEEK_SET);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), ggml_nbytes(cur));
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
}
@ -4270,6 +4345,7 @@ static bool llm_load_tensors(
const int64_t n_layer = hparams.n_layer;
const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
bool use_mmap_buffer = true;
// there is very little benefit to offloading the input layer, so always keep it on the CPU
model.buft_input = llama_default_buffer_type_cpu(true);
@ -4358,6 +4434,10 @@ static bool llm_load_tensors(
// create one context per buffer type
size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
// for moe merged tensors
ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer;
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
for (auto & it : buft_layer_count) {
struct ggml_init_params params = {
@ -4384,6 +4464,11 @@ static bool llm_load_tensors(
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_vocab_type = hparams.n_vocab_type;
const int64_t n_ff = hparams.n_ff;
const int64_t n_expert = hparams.n_expert;
if (n_expert > 0 && hparams.n_expert_used == 0) {
throw std::runtime_error("model has expert layers but no expert layers are used");
}
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
@ -4438,30 +4523,50 @@ static bool llm_load_tensors(
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false);
if (layer.ffn_gate_inp == nullptr) {
GGML_ASSERT(hparams.n_expert == 0);
GGML_ASSERT(hparams.n_expert_used == 0);
if (n_expert == 0) {
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
} else {
GGML_ASSERT(hparams.n_expert > 0);
GGML_ASSERT(hparams.n_expert_used > 0);
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
// MoE branch
for (uint32_t x = 0; x < hparams.n_expert; ++x) {
layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
if (layer.ffn_gate_exps) {
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
} else {
// merge split expert into a single tensor for compatibility with older models
// requires disabling mmap
use_mmap_buffer = false;
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
for (uint32_t x = 0; x < n_expert; ++x) {
// the individual experts are loaded into a view of the merged tensor
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
}
}
}
}
} break;
case LLM_ARCH_GROK:
{
if (n_expert == 0) {
throw std::runtime_error("Grok model cannot have zero experts");
}
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
// output
@ -4493,16 +4598,35 @@ static bool llm_load_tensors(
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd});
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
GGML_ASSERT(hparams.n_expert > 0);
GGML_ASSERT(hparams.n_expert_used > 0);
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
if (layer.ffn_gate_exps) {
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
} else {
// merge split expert into a single tensor for compatibility with older models
// requires disabling mmap
use_mmap_buffer = false;
// MoE branch
for (uint32_t x = 0; x < hparams.n_expert; ++x) {
layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
for (uint32_t x = 0; x < n_expert; ++x) {
// the individual experts are loaded into a view of the merged tensor
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
}
}
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
@ -5308,7 +5432,7 @@ static bool llm_load_tensors(
// only the mmap region containing the tensors in the model is mapped to the backend buffer
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
void * addr = nullptr;
size_t first, last;
@ -5332,7 +5456,7 @@ static bool llm_load_tensors(
}
}
#ifdef GGML_USE_METAL
else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
const size_t max_size = ggml_get_max_tensor_size(ctx);
void * addr = nullptr;
@ -5415,8 +5539,10 @@ static bool llm_load_tensors(
}
}
for (auto & mapping : ml.mappings) {
model.mappings.emplace_back(std::move(mapping));
if (use_mmap_buffer) {
for (auto & mapping : ml.mappings) {
model.mappings.emplace_back(std::move(mapping));
}
}
// loading time will be recalculate after the first eval, so
@ -6284,19 +6410,19 @@ struct llm_build_context {
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert;
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
cb(cur_up, "ffn_moe_up", il);
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
cb(cur_gate, "ffn_moe_gate", il);
cur_gate = ggml_silu(ctx0, cur_gate);
cb(cur_gate, "ffn_moe_silu", il);
cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
cb(cur_expert, "ffn_moe_gate_par", il);
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cb(cur_expert, "ffn_moe_down", il);
cur_expert = ggml_mul(ctx0, cur_expert,
@ -6818,20 +6944,20 @@ struct llm_build_context {
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert;
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
cb(cur_up, "ffn_moe_up", il);
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
cb(cur_gate, "ffn_moe_gate", il);
//GeLU
cur_gate = ggml_gelu(ctx0, cur_gate);
cb(cur_gate, "ffn_moe_gelu", il);
cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
cb(cur_expert, "ffn_moe_gate_par", il);
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
cb(cur_expert, "ffn_moe_down", il);
cur_expert = ggml_mul(ctx0, cur_expert,
@ -12902,7 +13028,6 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
// for getting the current layer as I initially thought, and we need to resort to parsing the
// tensor name.
n_layer /= n_expert;
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
}
@ -13264,7 +13389,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
ml.init_mappings(false); // no prefetching?
ml.init_mappings(false); // no prefetching
llama_model model;
llm_load_arch(ml, model);
@ -13316,20 +13441,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
++qs.n_attention_wv;
} else if (name.find("ffn_down") != std::string::npos) {
++qs.n_ffn_down;
} else if (name.find("ffn_gate") != std::string::npos) {
++qs.n_ffn_gate;
} else if (name.find("ffn_up") != std::string::npos) {
++qs.n_ffn_up;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
}
}
if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t) qs.n_attention_wv != model.hparams.n_layer) {
LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
__func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
}
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks
GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected");
size_t total_size_org = 0;
size_t total_size_new = 0;
@ -13359,6 +13479,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// placeholder for the meta data
::zeros(fout, meta_size);
const auto tn = LLM_TN(model.arch);
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * tensor = ml.get_tensor_meta(i);
@ -13381,8 +13503,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// quantize only 2D tensors
quantize &= (ggml_n_dims(tensor) == 2);
// quantize only 2D and 3D tensors (experts)
quantize &= (ggml_n_dims(tensor) >= 2);
quantize &= params->quantize_output_tensor || name != "output.weight";
quantize &= !params->only_copy;
@ -13437,11 +13559,20 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (it == imatrix_data->end()) {
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
} else {
if (it->second.size() == (size_t)tensor->ne[0]) {
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
imatrix = it->second.data();
} else {
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
int(it->second.size()), int(tensor->ne[0]), tensor->name);
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
// this is a significant error and it may be good idea to abort the process if this happens,
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
// tok_embd should be ignored in this case, since it always causes this warning
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
}
}
}
}
@ -13478,15 +13609,24 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_data = work.data();
const int n_per_row = tensor->ne[0];
const int nrows = nelements / n_per_row;
const int nrows = tensor->ne[1];
static const int min_chunk_size = 32 * 512;
const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nelements_matrix = tensor->ne[0] * tensor->ne[1];
const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix, workers, nthread_use);
// quantize each expert separately since they have different importance matrices
new_size = 0;
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
}
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
}
total_size_org += ggml_nbytes(tensor);