diff --git a/examples/convert-llama2c/convert-lamma-2c.cpp b/examples/convert-llama2c/convert-lamma-2c.cpp deleted file mode 100644 index bf282ab86..000000000 --- a/examples/convert-llama2c/convert-lamma-2c.cpp +++ /dev/null @@ -1,676 +0,0 @@ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "llama.h" -#include "ggml.h" - -typedef struct { - int dim; // transformer dimension - int hidden_dim; // for ffn layers - int n_layers; // number of layers - int n_heads; // number of query heads - int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) - int vocab_size; // vocabulary size, usually 256 (byte-level) - int seq_len; // max sequence length -} Config; - -typedef struct { - // token embedding table - float* token_embedding_table; // (vocab_size, dim) - // weights for rmsnorms - float* rms_att_weight; // (layer, dim) rmsnorm weights - float* rms_ffn_weight; // (layer, dim) - // weights for matmuls - float* wq; // (layer, dim, dim) - float* wk; // (layer, dim, dim) - float* wv; // (layer, dim, dim) - float* wo; // (layer, dim, dim) - // weights for ffn - float* w1; // (layer, hidden_dim, dim) - float* w2; // (layer, dim, hidden_dim) - float* w3; // (layer, hidden_dim, dim) - // final rmsnorm - float* rms_final_weight; // (dim,) - // freq_cis for RoPE relatively positional embeddings - float* freq_cis_real; // (seq_len, dim/2) - float* freq_cis_imag; // (seq_len, dim/2) -} TransformerWeights; - -#ifdef __GNUC__ -#ifdef __MINGW32__ -__attribute__((format(gnu_printf, 1, 2))) -#else -__attribute__((format(printf, 1, 2))) -#endif -#endif -static std::string format(const char * fmt, ...) { - va_list ap, ap2; - va_start(ap, fmt); - va_copy(ap2, ap); - int size = vsnprintf(NULL, 0, fmt, ap); - GGML_ASSERT(size >= 0 && size < INT_MAX); - std::vector buf(size + 1); - int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); - GGML_ASSERT(size2 == size); - va_end(ap2); - va_end(ap); - return std::string(buf.data(), size); -} -struct llama_file { - // use FILE * so we don't have to re-open the file to mmap - FILE * fp; - size_t size; - - llama_file(const char * fname, const char * mode) { - fp = std::fopen(fname, mode); - if (fp == NULL) { - size = 0; - } else { - seek(0, SEEK_END); - size = tell(); - seek(0, SEEK_SET); - } - } - - size_t tell() const { -#ifdef _WIN32 - __int64 ret = _ftelli64(fp); -#else - long ret = std::ftell(fp); -#endif - GGML_ASSERT(ret != -1); // this really shouldn't fail - return (size_t) ret; - } - - void seek(size_t offset, int whence) { -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, whence); -#else - int ret = std::fseek(fp, (long) offset, whence); -#endif - GGML_ASSERT(ret == 0); // same - } - - void read_raw(void * ptr, size_t size) { - if (size == 0) { - return; - } - errno = 0; - std::size_t ret = std::fread(ptr, size, 1, fp); - if (ferror(fp)) { - throw std::runtime_error(format("read error: %s", strerror(errno))); - } - if (ret != 1) { - throw std::runtime_error(std::string("unexpectedly reached end of file")); - } - } - - std::uint32_t read_u32() { - std::uint32_t ret; - read_raw(&ret, sizeof(ret)); - return ret; - } - - std::string read_string(std::uint32_t len) { - std::vector chars(len); - read_raw(chars.data(), len); - return std::string(chars.data(), len); - } - - void write_raw(const void * ptr, size_t size) { - if (size == 0) { - return; - } - errno = 0; - size_t ret = std::fwrite(ptr, size, 1, fp); - if (ret != 1) { - throw std::runtime_error(format("write error: %s", strerror(errno))); - } - } - - void write_u32(std::uint32_t val) { - write_raw(&val, sizeof(val)); - } - - ~llama_file() { - if (fp) { - std::fclose(fp); - } - } -}; - -struct my_llama_hparams { - uint32_t n_vocab = 32000; - uint32_t n_ctx = 512; // this is provided as user input? - uint32_t n_embd = 4096; - uint32_t n_mult = 4; - uint32_t n_head = 32; - uint32_t n_layer = 32; - uint32_t n_rot = 64; - - bool operator!=(const my_llama_hparams& other) const { - return memcmp(this, &other, sizeof(my_llama_hparams)); - } -}; -struct my_llama_layer { - // normalization - struct ggml_tensor * attention_norm; - - // attention - struct ggml_tensor * wq; - struct ggml_tensor * wk; - struct ggml_tensor * wv; - struct ggml_tensor * wo; - - // normalization - struct ggml_tensor * ffn_norm; - - // ff - struct ggml_tensor * w1; - struct ggml_tensor * w2; - struct ggml_tensor * w3; -}; -struct my_llama_model { - struct ggml_context * ctx = NULL; - - my_llama_hparams hparams; - - struct ggml_tensor * tok_embeddings; - - struct ggml_tensor * norm; - struct ggml_tensor * output; - - std::vector layers; - - uint32_t train_its = 0; - uint32_t train_samples = 0; - uint32_t train_tokens = 0; -}; -struct llama_vocab { - using id = int32_t; - using token = std::string; - - struct token_score { - token tok; - float score; - }; - - std::unordered_map token_to_id; - std::vector id_to_token; -}; - -struct train_params { - const char * fn_vocab_model; - const char * fn_train_data; - const char * fn_checkpoint_in; - const char * fn_checkpoint_out; - const char * fn_model_out; - - uint32_t seed; - - int n_ctx; - int n_embd; - int n_mult; - int n_head; - int n_layer; - int n_rotmax; - - int n_threads; - int n_batch; - int n_examples; - int n_predict; - - int print_info_interval; - int print_details_interval; - - bool samples_start_after_nl; - bool use_adam; - bool use_flash; - bool use_scratch; - - // only adam - int warmup; - int cos_decay_steps; - float cos_decay_restart; - float cos_decay_alpha; - - int lbfgs_n_iter; - int adam_n_iter; - float adam_alpha; - float adam_decay; - - int mem_model_gb; - int mem_compute_gb; - int mem_compute0_gb; - int mem_compute1_gb; -}; - -struct train_params get_default_train_params() { - struct train_params params; - params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; - params.fn_train_data = "shakespeare.txt"; - params.fn_checkpoint_in = "checkpoint.bin"; - params.fn_checkpoint_out = "checkpoint.bin"; - params.fn_model_out = "ggml-checkpoint-f32.bin"; - - params.seed = -1; - - params.n_ctx = 128; - params.n_embd = 256; - params.n_mult = 256; - params.n_head = 8; - params.n_layer = 16; - params.n_rotmax = 64; - - params.n_threads = 6; - params.n_batch = 8; - params.n_examples = 8; - params.n_predict = 1024; - - params.print_info_interval = 1; - params.print_details_interval = 2; - - params.samples_start_after_nl = false; - params.use_adam = true; - params.use_flash = true; - params.use_scratch = true; - - // only adam - params.warmup = 100; - params.cos_decay_steps = 1000; - params.cos_decay_restart = 1.1f; - params.cos_decay_alpha = 0.0f; - - params.lbfgs_n_iter = 16; - params.adam_n_iter = 16; - params.adam_alpha = 1e-3f; - params.adam_decay = 1e-3f; - - params.mem_model_gb = 2; - params.mem_compute_gb = 24; - params.mem_compute0_gb = 8; - params.mem_compute1_gb = 2; - - return params; -} - -void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { - if (tensor == NULL) { - file->write_u32(0); - file->write_u32(0); - file->write_u32(GGML_TYPE_F32); - file->seek((0-file->tell()) & 31, SEEK_CUR); - return; - } - const char * name = ggml_get_name(tensor); - uint32_t name_len = strlen(name); - uint32_t nd = tensor->n_dims; - uint32_t ne[4] = { (uint32_t)tensor->ne[0], - (uint32_t)tensor->ne[1], - (uint32_t)tensor->ne[2], - (uint32_t)tensor->ne[3] }; - file->write_u32(nd); - file->write_u32(name_len); - file->write_u32(tensor->type); - file->write_raw(ne, sizeof(ne[0]) * nd); - file->write_raw(name, name_len); - file->seek((0-file->tell()) & 31, SEEK_CUR); - file->write_raw(tensor->data, ggml_nbytes(tensor)); -} - -void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, const char * filename) { - struct llama_file file(filename, "wb"); - if (file.fp == NULL) { - return; - } - - // write_magic - file.write_u32(LLAMA_FILE_MAGIC); // magic - file.write_u32(LLAMA_FILE_VERSION); // version - // write_hparams - file.write_u32(model->hparams.n_vocab); - file.write_u32(model->hparams.n_embd); - file.write_u32(model->hparams.n_mult); - file.write_u32(model->hparams.n_head); - file.write_u32(model->hparams.n_layer); - file.write_u32(model->hparams.n_rot); - file.write_u32(LLAMA_FTYPE_ALL_F32); - // write_vocab - uint32_t n_vocab = model->hparams.n_vocab; - for (uint32_t i = 0; i < n_vocab; i++) { - const auto & token_score = vocab->id_to_token.at(i); - file.write_u32((uint32_t) token_score.tok.size()); - file.write_raw(token_score.tok.data(), token_score.tok.size()); - file.write_raw(&token_score.score, sizeof(token_score.score)); - } - // write tensors - write_tensor(&file, model->tok_embeddings); - write_tensor(&file, model->norm); - write_tensor(&file, model->output); - for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { - auto & layer = model->layers[i]; - - write_tensor(&file, layer.attention_norm); - write_tensor(&file, layer.wq); - write_tensor(&file, layer.wk); - write_tensor(&file, layer.wv); - write_tensor(&file, layer.wo); - write_tensor(&file, layer.ffn_norm); - write_tensor(&file, layer.w1); - write_tensor(&file, layer.w2); - write_tensor(&file, layer.w3); - } -} - -void print_config(Config* p){ - printf("----- Configs extracted from the header -------\n"); - printf("config.dim %d\n", p->dim); - printf("config.hidden_dim %d\n", p->hidden_dim); - printf("config.n_layers %d\n", p->n_layers); - printf("config.n_heads %d\n", p->n_heads ); - printf("config.n_kv_heads %d\n", p->n_kv_heads); - printf("config.vocab_size %d\n", p->vocab_size); - printf("config.seq_len %d\n", p->seq_len); - printf("----------------------------------------------\n"); -} - -void print_sample_weights(TransformerWeights *w){ - printf("----- Quick print of first of the weight vales of all the variables\n"); - printf("%f\n", w->token_embedding_table[0]); - printf("%f\n", w->rms_att_weight[0]); - printf("%f\n", w->rms_ffn_weight[0]); - - printf("%f\n", w->wq[0]); - printf("%f\n", w->wk[0]); - printf("%f\n", w->wv[0]); - printf("%f\n", w->wo[0]); - printf("%f\n", w->w1[0]); - printf("%f\n", w->w2[0]); - printf("%f\n", w->w3[0]); - printf("%f\n", w->rms_att_weight[0]); - printf("%f\n", w->freq_cis_real[0]); - printf("%f\n", w->freq_cis_imag[0]); - printf("------------------------------------------------------------------\n"); - - -} -void malloc_weights(TransformerWeights* w, Config* p) { - // we calloc instead of malloc to keep valgrind happy - w->token_embedding_table = new float[p->vocab_size * p->dim]();//calloc(p->vocab_size * p->dim, sizeof(float)); - w->rms_att_weight = new float[p->n_layers * p->dim](); //calloc(p->n_layers * p->dim, sizeof(float)); - w->rms_ffn_weight = new float[p->n_layers * p->dim](); //calloc(p->n_layers * p->dim, sizeof(float)); - w->wq = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - w->wk = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - w->wv = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - w->wo = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - w->w1 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float)); - w->w2 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->dim * p->hidden_dim, sizeof(float)); - w->w3 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float)); - w->rms_final_weight = new float[p->dim](); //calloc(p->dim, sizeof(float)); - w->freq_cis_real = new float[p->seq_len * p->dim / 2](); //calloc(p->seq_len * p->dim / 2, sizeof(float)); - w->freq_cis_imag = new float[p->seq_len * p->dim / 2](); //calloc(p->seq_len * p->dim / 2, sizeof(float)); - // ensure all mallocs went fine - // if (!w->token_embedding_table || !w->rms_att_weight || !w->rms_ffn_weight - // || !w->wq || !w->wk || !w->wv || !w->wo || !w->w1 || !w->w2 || !w->w3 || - // !w->rms_final_weight || !w->freq_cis_real || !w->freq_cis_imag) { - // printf("malloc failed!\n"); - // exit(1); - // } -} - -void free_weights(TransformerWeights* w) { - free(w->token_embedding_table); - free(w->rms_att_weight); - free(w->rms_ffn_weight); - free(w->wq); - free(w->wk); - free(w->wv); - free(w->wo); - free(w->w1); - free(w->w2); - free(w->w3); - free(w->rms_final_weight); - free(w->freq_cis_real); - free(w->freq_cis_imag); -} - -int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) { - if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast(p->vocab_size * p->dim)) return 1; - if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; - if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; - if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; - if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast(p->n_layers * p->hidden_dim * p->dim)) return 1; - if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; - if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast(p->dim)) return 1; - int head_size = p->dim / p->n_heads; - if (fread(w->freq_cis_real, sizeof(float), p->seq_len * head_size / 2, f) != static_cast(p->seq_len * head_size / 2)) return 1; - if (fread(w->freq_cis_imag, sizeof(float), p->seq_len * head_size / 2, f) != static_cast(p->seq_len * head_size / 2)) return 1; - return 0; -} - -int main(int argc, char *argv[]) { - - // poor man's C argparse - char *checkpoint = NULL; - char *tokenizer = NULL; - // float temperature = 0.9f; - // 'checkpoint' is necessary arg - if (argc < 3) { - printf("Usage: %s \n", argv[0]); - return 1; - } - checkpoint = argv[1]; - tokenizer = argv[2]; - // if (argc < 3) { - // printf("Usage: %s \n", argv[0]); - // return 1; - // } - // temperature is optional - // if (argc >= 3) { - // temperature = atof(argv[2]); - // } - // seed is optional - // if (argc >= 4) { - // unsigned int seed = atoi(argv[3]); - // srand(seed); - // } else { - // time_t current_time; - // time(¤t_time); - // srand((unsigned int)current_time); - // } - - // read in the Karpathy model.bin file - Config config; // Configs are stashed in the bin file as header - TransformerWeights weights; - struct my_llama_model model; - { - FILE *file = fopen(checkpoint, "rb"); - if (!file) { - printf("Unable to open the checkpoint file %s!\n", checkpoint); - return 1; - } - else{ - printf("model file opened for reading...\n"); - } - // read in the config header - if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; } - printf("config file read..\n"); - print_config(&config); - // read in the Transformer weights - malloc_weights(&weights, &config); - printf("reading the opened model file...\n"); - if(checkpoint_init_weights(&weights, &config, file)) { return 1; } - print_sample_weights(&weights); - - // copy weights to ggml tensors. - //model.tok_embeddings <<< weights.token_embedding_table; - - - printf("Closing model file..bye...\n"); - fclose(file); - } - - // read in the tokenizer.bin file - // char** vocab_ak = (char**)malloc(config.vocab_size * sizeof(char*)); - // { - // FILE *file = fopen(tokenizer, "rb"); - // if (!file) { - // printf("Unable to open the tokenizer file tokenizer.bin! Run " - // "python tokenizer.py to convert tokenizer.model -> tokenizer.bin\n"); - // return 1; - // } - // int len; - // printf("karpathy vocab size = %d\n", config.vocab_size); - - // for (int i = 0; i < config.vocab_size; i++) { - // if(fread(&len, sizeof(int), 1, file) != 1) { return 1; } - // vocab_ak[i] = (char *)malloc(len + 1); - // if(fread(vocab_ak[i], len, 1, file) != 1) { return 1; } - // vocab_ak[i][len] = '\0'; // add the string terminating token - // printf("len = %d, %s\n", len, vocab_ak[i]); - - // } - // fclose(file); - // } - - //TODO:------------------------------------------------------------------------------- - - // struct train_params params = get_default_train_params(); - // struct llama_context_params llama_params = llama_context_default_params(); - // struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); - // struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); - // struct llama_vocab vocab; - // { - // std::vector strings; - // std::vector scores; - // int n_vocab = llama_n_vocab(lctx); - // strings.resize(n_vocab, NULL); - // scores.resize(n_vocab, 0); - // n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab); - // GGML_ASSERT(n_vocab == llama_n_vocab(lctx)); - // vocab.id_to_token.resize(n_vocab); - // for (int i=0; idim); - // printf("config.hidden_dim %d\n", p->hidden_dim); - // printf("config.n_layers %d\n", p->n_layers); - // printf("config.n_heads %d\n", p->n_heads ); - // printf("config.n_kv_heads %d\n", p->n_kv_heads); - // printf("config.vocab_size %d\n", p->vocab_size); - // printf("config.seq_len %d\n", p->seq_len); - - // file.write_u32(model->hparams.n_vocab); - file.write_u32(config.vocab_size); // 32000 - - // file.write_u32(model->hparams.n_embd); - file.write_u32(config.dim); /// <<<<<<<<<<<<<< NEEDS CHECKING - - // file.write_u32(model->hparams.n_mult); - file.write_u32(config.dim); /// <<<<<<<<<<<<<< JUST PLACEHOLDER - - // file.write_u32(model->hparams.n_head); - file.write_u32(config.n_heads); - - // file.write_u32(model->hparams.n_layer); - file.write_u32(config.n_layers); - - // file.write_u32(model->hparams.n_rot); - file.write_u32(config.dim); /// <<<<<<<<<<<<<< JUST PLACEHOLDER - - file.write_u32(LLAMA_FTYPE_ALL_F32); - - // write_vocab ///////////////////////////////////////////////////////////////// - char** vocab_ak = (char**)malloc(config.vocab_size * sizeof(char*)); - { - FILE *file_tok_ak = fopen(tokenizer, "rb"); - if (!file_tok_ak) { - printf("Unable to open the tokenizer file tokenizer.bin! Run " - "python tokenizer.py to convert tokenizer.model -> tokenizer.bin\n"); - return 1; - } - int len; - printf("karpathy vocab size = %d\n", config.vocab_size); - - for (int i = 0; i < config.vocab_size; i++) { - if(fread(&len, sizeof(int), 1, file_tok_ak) != 1) { return 1; } - file.write_u32((uint32_t) len); - - vocab_ak[i] = (char *)malloc(len + 1); - if(fread(vocab_ak[i], len, 1, file_tok_ak) != 1) { return 1; } - vocab_ak[i][len] = '\0'; // add the string terminating token - file.write_raw(vocab_ak[i], len+1); - float x = 0.0f; - file.write_raw(&x, sizeof(float)); - // printf("len = %d, %s\n", len, vocab_ak[i]); - - } - fclose(file_tok_ak); - } - - // uint32_t n_vocab = config.vocab_size;//model->hparams.n_vocab; - // for (uint32_t i = 0; i < n_vocab; i++) { - // const auto & token_score = vocab->id_to_token.at(i); - // file.write_u32((uint32_t) token_score.tok.size()); - // file.write_raw(token_score.tok.data(), token_score.tok.size()); - // file.write_raw(&token_score.score, sizeof(token_score.score)); - // } - ///////////////////////////////////////////////////////////////// - - // write tensors - write_tensor(&file, model.tok_embeddings); - // write_tensor(&file, model.norm); - // write_tensor(&file, model.output); - // for (int i = 0; i < config.n_layers; ++i) { - // auto & layer = model.layers[i]; - - // write_tensor(&file, layer.attention_norm); - // write_tensor(&file, layer.wq); - // write_tensor(&file, layer.wk); - // write_tensor(&file, layer.wv); - // write_tensor(&file, layer.wo); - // write_tensor(&file, layer.ffn_norm); - // write_tensor(&file, layer.w1); - // write_tensor(&file, layer.w2); - // write_tensor(&file, layer.w3); - // } - - printf("\n"); - free_weights(&weights); - free(vocab_ak); - return 0; - -} \ No newline at end of file diff --git a/examples/my-tests/mappings.md b/examples/my-tests/mappings.md deleted file mode 100644 index f0a561a88..000000000 --- a/examples/my-tests/mappings.md +++ /dev/null @@ -1,31 +0,0 @@ -Variable mapping from llama.c to ggml llama.cpp - -config variables in llama.c -`dim`, `vocab_size`, `num_layers`, `num_heads`, `num_kv_heads`, `seq_length` - -| llama.c (karpathy) | ggml (gg) |dim| -| ------------- | ------------- |-- | -| `dim` | `n_embed` | Transformer dim | -| `hidden_dim` | `n_ff` (calculated) | ff hidden dim | -| `n_layers` | `n_layers` | number of decoder layers | -| `n_heads` | `n_head` | number of heads | -| `n_kv_heads` | `-` | | -| `vocab_size` | `n_vocab` | | -| `seq_len` | `-` | | -| --- | --- | --- | -| `rms_att_weight` | `attention_norm` | `num_layers` x `dim` | -| `rms_ffn_weight` | `ffn_norm` | `num_layers` x `dim` | -| `wq` | `ffn_norm` | `num_layers` x `dim` x `dim` | -| `qk` | `ffn_norm` | `num_layers` x `dim` x `dim` | -| `wv` | `ffn_norm` | `num_layers` x `dim` x `dim` | -| `wo` | `wo` | `num_layers` x `dim` x `dim` | -| `w1` | `w1` | `num_layers` x `hidden_dim` x `dim` | -| `w2` | `w2` | `num_layers` x `dim` x `hidden_dim` | -| `w3` | `w3` | `num_layers` x `hidden_dim` x `dim` | -| `token_embedding_table` | `tok_embeddings` | `vocab_size` x `dim` | -| `rms_final_weight` | `?` | `dim` | -| `freq_cis_real` | `?` | `seq_len` x `dim/2` | -| `freq_cis_img ` | `?` | `seq_len` x `dim/2` | - - - diff --git a/examples/my-tests/my-tests.cpp b/examples/my-tests/my-tests.cpp deleted file mode 100644 index 0f3e50827..000000000 --- a/examples/my-tests/my-tests.cpp +++ /dev/null @@ -1,1820 +0,0 @@ -#include "ggml.h" -#include "llama.h" -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#if defined(_MSC_VER) -#pragma warning(disable: 4244 4267) // possible loss of data -#endif - -// static const float rms_norm_eps = 1e-6f; - -typedef struct { - // token embedding table - float* token_embedding_table; // (vocab_size, dim) - // weights for rmsnorms - float* rms_att_weight; // (layer, dim) rmsnorm weights - float* rms_ffn_weight; // (layer, dim) - // weights for matmuls - float* wq; // (layer, dim, dim) - float* wk; // (layer, dim, dim) - float* wv; // (layer, dim, dim) - float* wo; // (layer, dim, dim) - // weights for ffn - float* w1; // (layer, hidden_dim, dim) - float* w2; // (layer, dim, hidden_dim) - float* w3; // (layer, hidden_dim, dim) - // final rmsnorm - float* rms_final_weight; // (dim,) - // freq_cis for RoPE relatively positional embeddings - float* freq_cis_real; // (seq_len, dim/2) - float* freq_cis_imag; // (seq_len, dim/2) -} TransformerWeights; - -struct random_normal_distribution { - std::mt19937 gen; - std::normal_distribution rd; - float min; - float max; -}; - -struct random_uniform_distribution { - std::mt19937 gen; - std::uniform_real_distribution rd; -}; - -void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->rd = std::normal_distribution{mean, std}; - rnd->min = min; - rnd->max = max; -} - -void init_random_uniform_distribution(struct random_uniform_distribution * rnd, int seed, float min, float max) { - rnd->gen = std::mt19937(seed); - rnd->rd = std::uniform_real_distribution{min, max}; -} - -int clamp(const int v, const int min, const int max) { - return ((v < min) ? (min) : (v > max) ? (max) : v); -} - -float fclamp(const float v, const float min, const float max) { - return ((v < min) ? (min) : (v > max) ? (max) : v); -} - -float frand() { - return (float)rand()/(float)RAND_MAX; -} - -float frand_normal(struct random_normal_distribution * rnd) { - return fclamp(rnd->rd(rnd->gen), rnd->min, rnd->max); -} - -float frand_uniform(struct random_uniform_distribution * rnd) { - return rnd->rd(rnd->gen); -} - -void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * graph, int n_threads) { - struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); - - if (plan.work_size > 0) { - buf.resize(plan.work_size); - plan.work_data = buf.data(); - } - - ggml_graph_compute(graph, &plan); -} - -struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { - float scale = 1.0f; // xavier - switch (tensor->n_dims) { - case 1: - scale /= sqrtf(tensor->ne[0]); - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); - *dst = scale * frand_normal(rnd); - } - break; - case 2: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *dst = scale * frand_normal(rnd); - } - } - break; - case 3: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *dst = scale * frand_normal(rnd); - } - } - } - break; - case 4: - scale /= sqrtf(tensor->ne[0]+tensor->ne[1]); - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); - *dst = scale * frand_normal(rnd); - } - } - } - } - break; - default: - assert(false); - }; - return tensor; -} - -struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) { - switch (tensor->n_dims) { - case 1: - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]); - *dst = frand_uniform(rnd); - } - break; - case 2: - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *dst = frand_uniform(rnd); - } - } - break; - case 3: - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *dst = frand_uniform(rnd); - } - } - } - break; - case 4: - for (int i3 = 0; i3 < tensor->ne[3]; i3++) { - for (int i2 = 0; i2 < tensor->ne[2]; i2++) { - for (int i1 = 0; i1 < tensor->ne[1]; i1++) { - for (int i0 = 0; i0 < tensor->ne[0]; i0++) { - float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]); - *dst = frand_uniform(rnd); - } - } - } - } - break; - default: - assert(false); - }; - return tensor; -} - -struct llama_vocab { - using id = int32_t; - using token = std::string; - - struct token_score { - token tok; - float score; - }; - - std::unordered_map token_to_id; - std::vector id_to_token; -}; - -struct my_llama_hparams { - uint32_t n_vocab = 32000; - uint32_t n_ctx = 512; // this is provided as user input? - uint32_t n_embd = 4096; - uint32_t n_mult = 4; - uint32_t n_head = 32; - uint32_t n_layer = 32; - uint32_t n_rot = 64; - - bool operator!=(const my_llama_hparams& other) const { - return memcmp(this, &other, sizeof(my_llama_hparams)); - } -}; - -struct my_llama_layer { - // normalization - struct ggml_tensor * attention_norm; - - // attention - struct ggml_tensor * wq; - struct ggml_tensor * wk; - struct ggml_tensor * wv; - struct ggml_tensor * wo; - - // normalization - struct ggml_tensor * ffn_norm; - - // ff - struct ggml_tensor * w1; - struct ggml_tensor * w2; - struct ggml_tensor * w3; -}; - -struct my_llama_kv_cache { - struct ggml_context * ctx = NULL; - - struct ggml_tensor * k; - struct ggml_tensor * v; - - // llama_ctx_buffer buf; - - int n; // number of tokens currently in the cache -}; - -struct my_llama_model { - struct ggml_context * ctx = NULL; - - my_llama_hparams hparams; - - struct ggml_tensor * tok_embeddings; - - struct ggml_tensor * norm; - struct ggml_tensor * output; - - std::vector layers; - - uint32_t train_its = 0; - uint32_t train_samples = 0; - uint32_t train_tokens = 0; -}; - -uint32_t get_n_ff(const struct my_llama_hparams* hparams) { - const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult; - return n_ff; -} - -void print_params(struct my_llama_hparams * params) { - printf("%s: n_vocab: %d\n", __func__, params->n_vocab); - printf("%s: n_ctx: %d\n", __func__, params->n_ctx); - printf("%s: n_embd: %d\n", __func__, params->n_embd); - printf("%s: n_mult: %d\n", __func__, params->n_mult); - printf("%s: n_head: %d\n", __func__, params->n_head); - printf("%s: n_ff: %d\n", __func__, get_n_ff(params)); - printf("%s: n_layer: %d\n", __func__, params->n_layer); - printf("%s: n_rot: %d\n", __func__, params->n_rot); -} - -void init_model(struct my_llama_model * model) { - const auto & hparams = model->hparams; - - const uint32_t n_embd = hparams.n_embd; - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_vocab = hparams.n_vocab; - - const uint32_t n_ff = get_n_ff(&hparams); - - struct ggml_context * ctx = model->ctx; - - model->train_its = 0; - model->train_samples = 0; - model->train_tokens = 0; - // printf("FROM INIT_MODEL BHAI...\n\n\n"); - // print_params(&model->hparams); - model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); - printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab); - - model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd); - - model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab); - - // printing the per-layer allocations here so we dont print in the for loop. - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__,n_embd, n_embd, n_embd * n_embd, n_layer); - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__,n_embd, n_embd, n_embd * n_embd, n_layer); - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__,n_embd, n_embd, n_embd * n_embd, n_layer); - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__,n_embd, n_embd, n_embd * n_embd, n_layer); - - printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer); - - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__,n_embd, n_ff, n_embd * n_ff, n_layer); - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__,n_ff, n_embd, n_ff * n_embd, n_layer); - printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__,n_embd, n_ff, n_embd * n_ff, n_layer); - - - ggml_set_name(model->tok_embeddings, "tok_embeddings.weight"); - ggml_set_name(model->norm, "norm.weight"); - ggml_set_name(model->output, "output.weight"); - - model->layers.resize(n_layer); - for (uint32_t i = 0; i < n_layer; ++i) { - auto & layer = model->layers[i]; - - std::string layers_i = "layers." + std::to_string(i); - - layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); - layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); - layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); - layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); - - layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); - - layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); - layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); - layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); - - ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str()); - - ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str()); - ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str()); - ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str()); - ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str()); - - ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str()); - - ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str()); - ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str()); - ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str()); - } -} - -void set_param_model(struct my_llama_model * model) { - const auto& hparams = model->hparams; - - const uint32_t n_layer = hparams.n_layer; - - struct ggml_context* ctx = model->ctx; - - ggml_set_param(ctx, model->tok_embeddings); - ggml_set_param(ctx, model->norm); - ggml_set_param(ctx, model->output); - - for (uint32_t i = 0; i < n_layer; ++i) { - auto & layer = model->layers[i]; - - ggml_set_param(ctx, layer.attention_norm); - ggml_set_param(ctx, layer.wq); - ggml_set_param(ctx, layer.wk); - ggml_set_param(ctx, layer.wv); - ggml_set_param(ctx, layer.wo); - ggml_set_param(ctx, layer.ffn_norm); - ggml_set_param(ctx, layer.w1); - ggml_set_param(ctx, layer.w2); - ggml_set_param(ctx, layer.w3); - } -} - - -bool init_kv_cache(struct my_llama_kv_cache* cache, struct my_llama_model * model, int n_batch) { - const auto & hparams = model->hparams; - - const uint32_t n_ctx = hparams.n_ctx; - const uint32_t n_embd = hparams.n_embd; - const uint32_t n_layer = hparams.n_layer; - - const int64_t n_mem = n_layer*n_ctx*n_batch; - const int64_t n_elements = n_embd*n_mem; - - // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); - - // struct ggml_init_params params; - // params.mem_size = cache.buf.size; - // params.mem_buffer = cache.buf.addr; - // params.no_alloc = false; - if (!cache->ctx) { - struct ggml_init_params params; - params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024; - params.mem_buffer = NULL; - params.no_alloc = false; - - cache->ctx = ggml_init(params); - - if (!cache->ctx) { - fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); - return false; - } - } - - cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); - cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements); - - return true; -} - - -void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) { - GGML_ASSERT(tensor->n_dims == 1); - GGML_ASSERT(tensor->ne[0] == ne0); -} - -void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) { - GGML_ASSERT(tensor->n_dims == 2); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); -} - -void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) { - GGML_ASSERT(tensor->n_dims == 3); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); -} - -void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { - GGML_ASSERT(tensor->n_dims == 4); - GGML_ASSERT(tensor->ne[0] == ne0); - GGML_ASSERT(tensor->ne[1] == ne1); - GGML_ASSERT(tensor->ne[2] == ne2); - GGML_ASSERT(tensor->ne[3] == ne3); -} - -void set_f32_3d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int64_t i2, float value) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2]); - *ptr = value; -} - -void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *ptr = value; -} - -void set_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, int32_t value) { - int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - *ptr = value; -} - -float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { - float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - return *ptr; -} - -int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) { - int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]); - return *ptr; -} - -void print_row(struct ggml_tensor * probs, int i) { - for (int k = 0; k < probs->ne[0]; ++k) { - float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); - } - printf("\n"); -} - -void print_matrix(struct ggml_tensor * probs) { - assert(probs->n_dims == 2); - for (int i = 0; i < probs->ne[1]; ++i) { - for (int k = 0; k < probs->ne[0]; ++k) { - float p = get_f32_2d(probs, k, i); - printf(" %.2f", p); - } - printf("\n"); - } -} - - -void print_token(struct llama_context * ctx, llama_token token) { - printf("%s", llama_token_to_str(ctx, token)); -} - -void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) { - for (int i=0; ine[0]; ++i) { - int token = ggml_get_i32_1d(tokens, i); - print_token(ctx, token); - } -} - -void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens) { - for (int i1=0; i1ne[1]; ++i1) { - //int num_newline = 0; - for (int i0=0; i0ne[0]; ++i0) { - int token = get_i32_2d(tokens, i0, i1); - print_token(ctx, token); - // bool isnl = (token == llama_token_nl()); - // if (isnl) { - // ++num_newline; - // } - // if (isnl) { - // if (num_newline < 2) { - // print_token(ctx, token); - // } else { - // printf("\\n"); - // } - // } else { - // print_token(ctx, token); - // } - } - printf("\n--\n"); - } -} - -void get_example_targets(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) { - int n_tokens = tokens_input->ne[0]; - int n_vocab = target_logits->ne[0]; - - size_t sample = train_samples[example_id % n_train_samples]; - GGML_ASSERT(sample+n_tokens-1 < n_train_data); - - ggml_set_f32(target_logits, -1.0f/n_vocab); - ggml_set_f32(target_probs, 0.0f); - ggml_set_i32_1d(tokens_input, 0, llama_token_bos()); - for (int i=1; in_dims == 2); - GGML_ASSERT(target_logits->n_dims == 3); - GGML_ASSERT(target_probs->n_dims == 3); - int n_vocab = target_logits->ne[0]; - int n_tokens = tokens_input->ne[0]; - int n_batch = tokens_input->ne[1]; - GGML_ASSERT(n_tokens == target_logits->ne[1]); - GGML_ASSERT(n_batch == target_logits->ne[2]); - GGML_ASSERT(n_vocab == target_probs->ne[0]); - GGML_ASSERT(n_tokens == target_probs->ne[1]); - GGML_ASSERT(n_batch == target_probs->ne[2]); - - ggml_set_f32(target_logits, -1.0f/n_vocab); - ggml_set_f32(target_probs, 0.0f); - for (int k=0; kne[0]; - int n_vocab = target_logits->ne[0]; - for (int i=0; i= 0 && size < INT_MAX); - std::vector buf(size + 1); - int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); - GGML_ASSERT(size2 == size); - va_end(ap2); - va_end(ap); - return std::string(buf.data(), size); -} - -struct llama_file { - // use FILE * so we don't have to re-open the file to mmap - FILE * fp; - size_t size; - - llama_file(const char * fname, const char * mode) { - fp = std::fopen(fname, mode); - if (fp == NULL) { - size = 0; - } else { - seek(0, SEEK_END); - size = tell(); - seek(0, SEEK_SET); - } - } - - size_t tell() const { -#ifdef _WIN32 - __int64 ret = _ftelli64(fp); -#else - long ret = std::ftell(fp); -#endif - GGML_ASSERT(ret != -1); // this really shouldn't fail - return (size_t) ret; - } - - void seek(size_t offset, int whence) { -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, whence); -#else - int ret = std::fseek(fp, (long) offset, whence); -#endif - GGML_ASSERT(ret == 0); // same - } - - void read_raw(void * ptr, size_t size) { - if (size == 0) { - return; - } - errno = 0; - std::size_t ret = std::fread(ptr, size, 1, fp); - if (ferror(fp)) { - throw std::runtime_error(format("read error: %s", strerror(errno))); - } - if (ret != 1) { - throw std::runtime_error(std::string("unexpectedly reached end of file")); - } - } - - std::uint32_t read_u32() { - std::uint32_t ret; - read_raw(&ret, sizeof(ret)); - return ret; - } - - std::string read_string(std::uint32_t len) { - std::vector chars(len); - read_raw(chars.data(), len); - return std::string(chars.data(), len); - } - - void write_raw(const void * ptr, size_t size) { - if (size == 0) { - return; - } - errno = 0; - size_t ret = std::fwrite(ptr, size, 1, fp); - if (ret != 1) { - throw std::runtime_error(format("write error: %s", strerror(errno))); - } - } - - void write_u32(std::uint32_t val) { - write_raw(&val, sizeof(val)); - } - - ~llama_file() { - if (fp) { - std::fclose(fp); - } - } -}; - -int tokenize_file(struct llama_context * lctx, const char * filename, std::vector& out) { - struct llama_file f(filename, "rb"); - - std::vector buf; - buf.resize(f.size+1); - - f.read_raw(buf.data(), f.size); - buf[f.size] = '\0'; - - out.resize(buf.size()); - - int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false); - if (n_tokens >= 0) { - out.resize(n_tokens); - } - - bool verify = false; - if (verify) { - const char * in = buf.data(); - const char * end = buf.data() + buf.size(); - for (int i = 0; i < (int) out.size(); ++i) { - const char * s = llama_token_to_str(lctx, out[i]); - int len = strlen(s); - if (in >= end) { - printf("%s: unexpected end of original text.\n", __func__); - break; - } - const bool matches = (strncmp(in, s, len) == 0); - if (matches) { - in += len; - } else { - printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s); - } - } - } - - return n_tokens; -} - -void shuffle_ints(int * begin, int * end) { - if (end <= begin) return; - int max=begin[0]; - for (int i=1; i max) { - max = begin[i]; - } - } - std::vector vals; - vals.resize(max+1); - for (int i=0; i candidates; - llama_token_data_array candidates_p; - -}; - -void init_sampler(struct my_llama_sampler * sampler, struct llama_context * ctx) { - sampler->ctx = ctx; - sampler->n_vocab = llama_n_vocab(sampler->ctx); - sampler->n_ctx = llama_n_ctx(sampler->ctx); - sampler->mirostat_mu = 2.0f * sampler->params.mirostat_tau; -} - -llama_token sample(struct my_llama_sampler * sampler, float * logits, const llama_token * last_tokens, int n_last_tokens) { - GGML_ASSERT(sampler->ctx != NULL); - - struct llama_context * ctx = sampler->ctx; - - sampler->candidates.resize(sampler->n_vocab); - for (llama_token token_id = 0; token_id < sampler->n_vocab; ++token_id) { - sampler->candidates[token_id].id = token_id; - sampler->candidates[token_id].logit = logits[token_id]; - sampler->candidates[token_id].p = 0.0; - } - - llama_token_data_array * candidates_p = & sampler->candidates_p; - - candidates_p->data = sampler->candidates.data(); - candidates_p->size = sampler->candidates.size(); - candidates_p->sorted = false; - - const auto params = sampler->params; - - // Apply penalties - const float nl_logit = logits[llama_token_nl()]; - - const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx); - - llama_sample_repetition_penalty( - ctx, - candidates_p, - last_tokens + n_last_tokens - n_last, - n_last, - params.repeat_penalty); - llama_sample_frequency_and_presence_penalties( - ctx, - candidates_p, - last_tokens + n_last_tokens - n_last, - n_last, - params.alpha_frequency, - params.alpha_presence); - - if (!params.penalize_nl) { - logits[llama_token_nl()] = nl_logit; - } - - llama_token token = 0; - if (params.temp <= 0) { - // Greedy sampling - token = llama_sample_token_greedy(ctx, candidates_p); - } else { - if (params.mirostat == 1) { - int mirostat_m = 100; - llama_sample_temperature(ctx, candidates_p, params.temp); - token = llama_sample_token_mirostat(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, mirostat_m, &sampler->mirostat_mu); - } else if (params.mirostat == 2) { - llama_sample_temperature(ctx, candidates_p, params.temp); - token = llama_sample_token_mirostat_v2(ctx, candidates_p, params.mirostat_tau, params.mirostat_eta, &sampler->mirostat_mu); - } else { - // Temperature sampling - llama_sample_top_k (ctx, candidates_p, params.top_k, 1); - llama_sample_tail_free (ctx, candidates_p, params.tfs_z, 1); - llama_sample_typical (ctx, candidates_p, params.typical_p, 1); - - llama_sample_top_p (ctx, candidates_p, params.top_p, 1); - llama_sample_temperature (ctx, candidates_p, params.temp); - token = llama_sample_token(ctx, candidates_p); - } - } - return token; -} - -void set_logits_masked(struct ggml_tensor * logits, std::vector& mask, float value) { - GGML_ASSERT(logits->ne[0] == (int64_t) mask.size()); - for (int i2 = 0; i2 < logits->ne[2]; ++i2) { - for (int i1 = 0; i1 < logits->ne[1]; ++i1) { - for (int i0 = 0; i0 < logits->ne[0]; ++i0) { - if (!mask[i0]) continue; - float * ptr = (float *) ((char *) logits->data + i2*logits->nb[2] + i1*logits->nb[1] + i0*logits->nb[0]); - *ptr = value; - } - } - } -} - -void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) { - if (tensor == NULL) { - file->write_u32(0); - file->write_u32(0); - file->write_u32(GGML_TYPE_F32); - file->seek((0-file->tell()) & 31, SEEK_CUR); - return; - } - const char * name = ggml_get_name(tensor); - uint32_t name_len = strlen(name); - uint32_t nd = tensor->n_dims; - uint32_t ne[4] = { (uint32_t)tensor->ne[0], - (uint32_t)tensor->ne[1], - (uint32_t)tensor->ne[2], - (uint32_t)tensor->ne[3] }; - file->write_u32(nd); - file->write_u32(name_len); - file->write_u32(tensor->type); - file->write_raw(ne, sizeof(ne[0]) * nd); - file->write_raw(name, name_len); - file->seek((0-file->tell()) & 31, SEEK_CUR); - file->write_raw(tensor->data, ggml_nbytes(tensor)); -} - -void read_tensor(struct llama_file * file, struct ggml_tensor * tensor) { - int32_t nd = file->read_u32(); - GGML_ASSERT(nd == tensor->n_dims); - - uint32_t name_len = file->read_u32(); - enum ggml_type type = (enum ggml_type) file->read_u32(); - GGML_ASSERT(type == tensor->type); - - uint32_t ne[4]; - file->read_raw(ne, sizeof(ne[0]) * nd); - for (int i=0; ine[i]); - } - - std::string name = file->read_string(name_len); - GGML_ASSERT(strncmp(ggml_get_name(tensor), name.c_str(), sizeof(tensor->name)-1) == 0); - - file->seek((0-file->tell()) & 31, SEEK_CUR); - file->read_raw(tensor->data, ggml_nbytes(tensor)); -} - -void write_opt_context(struct llama_file * file, struct ggml_opt_context * opt) { - const uint32_t version = 0; - GGML_ASSERT(opt->nx >= 0); - GGML_ASSERT(opt->iter >= 0); - file->write_u32(version); - file->write_raw(&opt->params, sizeof(opt->params)); - file->write_raw(&opt->nx, sizeof(opt->nx)); - file->write_raw(&opt->iter, sizeof(opt->iter)); - file->write_u32((uint32_t) opt->just_initialized); - switch (opt->params.type) { - case GGML_OPT_ADAM: - { - GGML_ASSERT(opt->adam.x != NULL); - write_tensor(file, opt->adam.x); - write_tensor(file, opt->adam.g1); - write_tensor(file, opt->adam.g2); - write_tensor(file, opt->adam.m); - write_tensor(file, opt->adam.v); - write_tensor(file, opt->adam.mh); - write_tensor(file, opt->adam.vh); - write_tensor(file, opt->adam.pf); - file->write_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); - file->write_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); - file->write_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); - } break; - case GGML_OPT_LBFGS: - { - GGML_ASSERT(opt->adam.x != NULL); - write_tensor(file, opt->lbfgs.x); - write_tensor(file, opt->lbfgs.xp); - write_tensor(file, opt->lbfgs.g); - write_tensor(file, opt->lbfgs.gp); - write_tensor(file, opt->lbfgs.d); - write_tensor(file, opt->lbfgs.pf); - write_tensor(file, opt->lbfgs.lmal); - write_tensor(file, opt->lbfgs.lmys); - write_tensor(file, opt->lbfgs.lms); - write_tensor(file, opt->lbfgs.lmy); - file->write_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); - file->write_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); - file->write_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); - file->write_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); - file->write_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); - file->write_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); - } break; - } -} - -void read_opt_context(struct llama_file * file, struct ggml_context * ctx, struct ggml_opt_context * opt) { - uint32_t version = file->read_u32(); - GGML_ASSERT(version == 0); - - file->read_raw(&opt->params, sizeof(opt->params)); - file->read_raw(&opt->nx, sizeof(opt->nx)); - ggml_opt_init(ctx, opt, opt->params, opt->nx); - - file->read_raw(&opt->iter, sizeof(opt->iter)); - opt->just_initialized = (bool) file->read_u32(); - - switch (opt->params.type) { - case GGML_OPT_ADAM: - { - read_tensor(file, opt->adam.x); - read_tensor(file, opt->adam.g1); - read_tensor(file, opt->adam.g2); - read_tensor(file, opt->adam.m); - read_tensor(file, opt->adam.v); - read_tensor(file, opt->adam.mh); - read_tensor(file, opt->adam.vh); - if (opt->adam.pf) { read_tensor(file, opt->adam.pf); } - file->read_raw(&opt->adam.fx_best, sizeof(opt->adam.fx_best)); - file->read_raw(&opt->adam.fx_prev, sizeof(opt->adam.fx_prev)); - file->read_raw(&opt->adam.n_no_improvement, sizeof(opt->adam.n_no_improvement)); - } break; - case GGML_OPT_LBFGS: - { - GGML_ASSERT(opt->adam.x != NULL); - read_tensor(file, opt->lbfgs.x); - read_tensor(file, opt->lbfgs.xp); - read_tensor(file, opt->lbfgs.g); - read_tensor(file, opt->lbfgs.gp); - read_tensor(file, opt->lbfgs.d); - if (opt->lbfgs.pf) { read_tensor(file, opt->lbfgs.pf); } - read_tensor(file, opt->lbfgs.lmal); - read_tensor(file, opt->lbfgs.lmys); - read_tensor(file, opt->lbfgs.lms); - read_tensor(file, opt->lbfgs.lmy); - file->read_raw(&opt->lbfgs.fx_best, sizeof(opt->lbfgs.fx_best)); - file->read_raw(&opt->lbfgs.step, sizeof(opt->lbfgs.step)); - file->read_raw(&opt->lbfgs.j, sizeof(opt->lbfgs.j)); - file->read_raw(&opt->lbfgs.k, sizeof(opt->lbfgs.k)); - file->read_raw(&opt->lbfgs.end, sizeof(opt->lbfgs.end)); - file->read_raw(&opt->lbfgs.n_no_improvement, sizeof(opt->lbfgs.n_no_improvement)); - } break; - } -} - -bool load_checkpoint(struct my_llama_model * model, struct ggml_opt_context * opt, const char * filename, bool init) { - struct llama_file file(filename, "rb"); - - uint32_t magic; - uint32_t version; - - uint32_t train_its = 0; - uint32_t train_samples = 0; - uint32_t train_tokens = 0; - - if (file.fp) { - printf("%s: Loading model from '%s'.\n", __func__, filename); - magic = file.read_u32(); - GGML_ASSERT(magic == 'ggcp'); - version = file.read_u32(); - GGML_ASSERT(version == 0); - train_its = file.read_u32(); - train_samples = file.read_u32(); - train_tokens = file.read_u32(); - model->hparams.n_vocab = file.read_u32(); - model->hparams.n_embd = file.read_u32(); - model->hparams.n_mult = file.read_u32(); - model->hparams.n_head = file.read_u32(); - model->hparams.n_layer = file.read_u32(); - model->hparams.n_rot = file.read_u32(); - print_params(&model->hparams); - } - - if (init) { - init_model(model); - } - - if (file.fp) { - model->train_its = train_its; - model->train_samples = train_samples; - model->train_tokens = train_tokens; - } - - printf("%s: Training iterations: %u.\n", __func__, model->train_its); - printf("%s: Training samples: %u.\n", __func__, model->train_samples); - printf("%s: Training tokens: %u.\n", __func__, model->train_tokens); - - if (file.fp) { - read_tensor(&file, model->tok_embeddings); - read_tensor(&file, model->norm); - read_tensor(&file, model->output); - - for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { - auto & layer = model->layers[i]; - - read_tensor(&file, layer.attention_norm); - read_tensor(&file, layer.wq); - read_tensor(&file, layer.wk); - read_tensor(&file, layer.wv); - read_tensor(&file, layer.wo); - read_tensor(&file, layer.ffn_norm); - read_tensor(&file, layer.w1); - read_tensor(&file, layer.w2); - read_tensor(&file, layer.w3); - } - - read_opt_context(&file, model->ctx, opt); - } - - return (file.fp != NULL); -} - -void print_sample_weights(TransformerWeights *w){ - printf("----- Quick print of first of the weight vales of all the variables\n"); - printf("%f\n", w->token_embedding_table[0]); - printf("%f\n", w->rms_att_weight[0]); - printf("%f\n", w->rms_ffn_weight[0]); - - printf("%f\n", w->wq[0]); - printf("%f\n", w->wk[0]); - printf("%f\n", w->wv[0]); - printf("%f\n", w->wo[0]); - printf("%f\n", w->w1[0]); - printf("%f\n", w->w2[0]); - printf("%f\n", w->w3[0]); - printf("%f\n", w->rms_att_weight[0]); - printf("%f\n", w->freq_cis_real[0]); - printf("%f\n", w->freq_cis_imag[0]); - printf("------------------------------------------------------------------\n"); - - -} - -void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){ - - int ct; - switch (gg_weights->n_dims){ - case 1: - ct = 0; - for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){ - float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]); - *ptr = karpathy_weights[ct]; - } - case 2: - ct = 0; - for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) { - for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) { - // set_f32_2d(gg_weights, k, i, karpathy_weights[ct]); - float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]); - *ptr = karpathy_weights[ct]; - ct++; - } - } - break; - case 3: - ct = 0; - for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) { - for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) { - for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) { - // set_f32_3d(gg_weights, k, j, i, karpathy_weights[ct]); - float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]); - *ptr = karpathy_weights[ct]; - ct++; - } - } - } - break; - } - - // void set_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1, float value) - // set_f32_2d(gg_weights, 142.0, 0, 0); - - // float p = get_f32_2d(gg_weights, 0, 0); - // print_row(gg_weights, 0); - // print_matrix(gg_weights); -} - -void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) { - struct llama_file file(filename, "wb"); - if (file.fp == NULL) { - return; - } - // print_sample_weights(w); - // write_magic - file.write_u32(LLAMA_FILE_MAGIC); // magic - file.write_u32(LLAMA_FILE_VERSION); // version - // write_hparams - file.write_u32(model->hparams.n_vocab); - file.write_u32(model->hparams.n_embd); - file.write_u32(model->hparams.n_mult); - file.write_u32(model->hparams.n_head); - file.write_u32(model->hparams.n_layer); - file.write_u32(model->hparams.n_rot); - file.write_u32(LLAMA_FTYPE_ALL_F32); - // write_vocab - uint32_t n_vocab = model->hparams.n_vocab; - for (uint32_t i = 0; i < n_vocab; i++) { - const auto & token_score = vocab->id_to_token.at(i); - file.write_u32((uint32_t) token_score.tok.size()); - file.write_raw(token_score.tok.data(), token_score.tok.size()); - file.write_raw(&token_score.score, sizeof(token_score.score)); - } - - // stuff AK weights into GG weights one by one. - // w->token_embedding_table -> model->tok_embeddings - // float* -> struct ggml_tensor - stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table); - print_row(model->tok_embeddings, 0); - - // stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight); - // stuff_karpathy_weights_into_gg(model->norm, w->freq_cis_real); // <<<<<<<<<< mostly wrong - // stuff_karpathy_weights_into_gg(model->norm, w->freq_cis_imag); // <<<<<<<<<< mostly wrong - - // for rms-att-weight - int row_length = model->hparams.n_embd; - for (uint32_t i = 0; i < model->hparams.n_layer; ++i){ - auto & layer = model->layers[i]; - // 2d - stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]); - stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]); - stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length]); - stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length]); - stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length]); - stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length]); - stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length]); - stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*row_length]); - stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length]); - } - - // write tensors - write_tensor(&file, model->tok_embeddings); - write_tensor(&file, model->norm); - write_tensor(&file, model->output); - for (uint32_t i = 0; i < model->hparams.n_layer; ++i) { - printf(" testing new here %d\n", i); - auto & layer = model->layers[i]; - - write_tensor(&file, layer.attention_norm); - write_tensor(&file, layer.wq); - write_tensor(&file, layer.wk); - write_tensor(&file, layer.wv); - write_tensor(&file, layer.wo); - write_tensor(&file, layer.ffn_norm); - write_tensor(&file, layer.w1); - write_tensor(&file, layer.w2); - write_tensor(&file, layer.w3); - } -} - - - -struct train_params { - const char * fn_vocab_model; - const char * fn_train_data; - const char * fn_checkpoint_in; - const char * fn_checkpoint_out; - const char * fn_model_out; - - uint32_t seed; - - int n_ctx; - int n_embd; - int n_mult; - int n_head; - int n_layer; - int n_rotmax; - - int n_threads; - int n_batch; - int n_examples; - int n_predict; - - int print_info_interval; - int print_details_interval; - - bool samples_start_after_nl; - bool use_adam; - bool use_flash; - bool use_scratch; - - // only adam - int warmup; - int cos_decay_steps; - float cos_decay_restart; - float cos_decay_alpha; - - int lbfgs_n_iter; - int adam_n_iter; - float adam_alpha; - float adam_decay; - - int mem_model_gb; - int mem_compute_gb; - int mem_compute0_gb; - int mem_compute1_gb; -}; - -struct train_params get_default_train_params() { - struct train_params params; - params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin"; - params.fn_train_data = "shakespeare.txt"; - params.fn_checkpoint_in = "checkpoint.bin"; - params.fn_checkpoint_out = "checkpoint.bin"; - params.fn_model_out = "ggml-checkpoint-f32.bin"; - - params.seed = -1; - - params.n_ctx = 128; - params.n_embd = 256; - params.n_mult = 256; - params.n_head = 8; - params.n_layer = 16; - params.n_rotmax = 64; - - params.n_threads = 6; - params.n_batch = 8; - params.n_examples = 8; - params.n_predict = 1024; - - params.print_info_interval = 1; - params.print_details_interval = 2; - - params.samples_start_after_nl = false; - params.use_adam = true; - params.use_flash = true; - params.use_scratch = true; - - // only adam - params.warmup = 100; - params.cos_decay_steps = 1000; - params.cos_decay_restart = 1.1f; - params.cos_decay_alpha = 0.0f; - - params.lbfgs_n_iter = 16; - params.adam_n_iter = 16; - params.adam_alpha = 1e-3f; - params.adam_decay = 1e-3f; - - params.mem_model_gb = 2; - params.mem_compute_gb = 24; - params.mem_compute0_gb = 8; - params.mem_compute1_gb = 2; - - return params; -} - -void train_print_usage(int /*argc*/, char ** argv, const struct train_params * params) { - fprintf(stderr, "usage: %s [options]\n", argv[0]); - fprintf(stderr, "\n"); - fprintf(stderr, "options:\n"); - fprintf(stderr, " -h, --help show this help message and exit\n"); - fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model); - fprintf(stderr, " --train-data FNAME path from which to load training data (default '%s')\n", params->fn_train_data); - fprintf(stderr, " --checkpoint-in FNAME path from which to load training checkpoint (default '%s')\n", params->fn_checkpoint_in); - fprintf(stderr, " --checkpoint-out FNAME path to save training checkpoint (default '%s')\n", params->fn_checkpoint_out); - fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out); - fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for -1)\n"); - fprintf(stderr, " -c N, --ctx N Context size used during training (default %d)\n", params->n_ctx); - fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd); - fprintf(stderr, " --mult N Mult size used for new models, influences feedforward size. (default %d)\n", params->n_mult); - fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head); - fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer); - fprintf(stderr, " --rotmax N Maximal number Rope dimensions for new models (default %d)\n", params->n_rotmax); - fprintf(stderr, " -t N, --threads N Number of threads (default %d)\n", params->n_threads); - fprintf(stderr, " -b N, --batch N Parallel batch size (default %d)\n", params->n_batch); - fprintf(stderr, " -n N, --examples N Number of examples to train (default %d)\n", params->n_examples); - fprintf(stderr, " --predict N Number of tokens to generate after training (default %d)\n", params->n_predict); - fprintf(stderr, " --print-info-interval N Print infos during training each N examples (default %d)\n", params->print_info_interval); - fprintf(stderr, " --print-details-interval N Print details during training each N examples (default %d)\n", params->print_details_interval); - fprintf(stderr, " --samples-after-nl Training samples start after newlines. (default %s)\n", params->samples_start_after_nl ? "on" : "off"); - fprintf(stderr, " --use-lbfgs Use LBFGS optimizer instead of default Adam\n"); - fprintf(stderr, " --use-adam Use Adam optimizer (default)\n"); - fprintf(stderr, " --no-flash Don't use flash attention.\n"); - fprintf(stderr, " --use-flash Use flash attention (default)\n"); - fprintf(stderr, " --no-scratch Don't use scratch buffers\n"); - fprintf(stderr, " --use-scratch Use scratch buffers (default)\n"); - fprintf(stderr, " --warmup N Number of warmup steps (default %d)\n", params->warmup); - fprintf(stderr, " --cos-decay-steps N Number of cosine decay steps (default %d)\n", params->cos_decay_steps); - fprintf(stderr, " --cos-decay-restart N Increase of cosine decay steps after restart (default %f)\n", params->cos_decay_restart); - fprintf(stderr, " --cos-decay-alpha N Cosine decay alpha (default %f)\n", params->cos_decay_alpha); - fprintf(stderr, " --lbfgs-iter N Maximum number of LBFGS optimization iterations for each batch (default %d)\n", params->lbfgs_n_iter); - fprintf(stderr, " --adam-iter N Maximum number of Adam optimization iterations for each batch (default %d)\n", params->adam_n_iter); - fprintf(stderr, " --adam-alpha N Adam learning rate alpha (default %f)\n", params->adam_alpha); - fprintf(stderr, " --adam-decay N AdamW weight decay. Values greater zero enable AdamW instead of regular Adam. (default %f)\n", params->adam_decay); - fprintf(stderr, " --mem-model N Memory to allocate for model and cache in gigabytes. (default %d)\n", params->mem_model_gb); - fprintf(stderr, " --mem-compute N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute_gb); - fprintf(stderr, " --mem-compute0 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute0_gb); - fprintf(stderr, " --mem-compute1 N Memory to allocate for compute in gigabytes. (default %d)\n", params->mem_compute1_gb); - fprintf(stderr, "\n"); -} - -bool train_params_parse(int argc, char ** argv, struct train_params * params) { - bool invalid_param = false; - std::string arg; - struct train_params default_params = get_default_train_params(); - const std::string arg_prefix = "--"; - - for (int i = 1; i < argc; i++) { - arg = argv[i]; - if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) { - std::replace(arg.begin(), arg.end(), '_', '-'); - } - - if (arg == "--vocab-model") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_vocab_model = argv[i]; - } else if (arg == "--train-data") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_train_data = argv[i]; - } else if (arg == "--checkpoint-in") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_checkpoint_in = argv[i]; - } else if (arg == "--checkpoint-out") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_checkpoint_out = argv[i]; - } else if (arg == "--model-out") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->fn_model_out = argv[i]; - } else if (arg == "-s" || arg == "--seed") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->seed = std::stoi(argv[i]); - } else if (arg == "-c" || arg == "--ctx") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_ctx = std::stoi(argv[i]); - } else if (arg == "--embd") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_embd = std::stoi(argv[i]); - } else if (arg == "--mult") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_mult = std::stoi(argv[i]); - } else if (arg == "--head") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_head = std::stoi(argv[i]); - } else if (arg == "--layer") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_layer = std::stoi(argv[i]); - } else if (arg == "--rotmax") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_rotmax = std::stoi(argv[i]); - } else if (arg == "-t" || arg == "--threads") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_threads = std::stoi(argv[i]); - } else if (arg == "-b" || arg == "--batch") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_batch = std::stoi(argv[i]); - } else if (arg == "-n" || arg == "--examples") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_examples = std::stoi(argv[i]); - } else if (arg == "--predict") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->n_predict = std::stoi(argv[i]); - } else if (arg == "--print-info-interval") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->print_info_interval = std::stoi(argv[i]); - } else if (arg == "--print-details-interval") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->print_details_interval = std::stoi(argv[i]); - } else if (arg == "--samples-after-nl") { - params->samples_start_after_nl = true; - } else if (arg == "--use-lbfgs") { - params->use_adam = false; - } else if (arg == "--use-adam") { - params->use_adam = true; - } else if (arg == "--no-flash") { - params->use_flash = false; - } else if (arg == "--use-flash") { - params->use_flash = true; - } else if (arg == "--no-scratch") { - params->use_scratch = false; - } else if (arg == "--use-scratch") { - params->use_scratch = true; - } else if (arg == "--warmup") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->warmup = std::stoi(argv[i]); - } else if (arg == "--cos-decay-steps") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_steps = std::stof(argv[i]); - } else if (arg == "--cos-decay-restart") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_restart = std::stof(argv[i]); - } else if (arg == "--cos-decay-alpha") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->cos_decay_alpha = std::stof(argv[i]); - } else if (arg == "--lbfgs-iter") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->lbfgs_n_iter = std::stoi(argv[i]); - } else if (arg == "--adam-iter") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_n_iter = std::stoi(argv[i]); - } else if (arg == "--adam-alpha") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_alpha = std::stof(argv[i]); - } else if (arg == "--adam-decay") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->adam_decay = std::stof(argv[i]); - } else if (arg == "--mem-model") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_model_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute0") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute0_gb = std::stoi(argv[i]); - } else if (arg == "--mem-compute1") { - if (++i >= argc) { - invalid_param = true; - break; - } - params->mem_compute1_gb = std::stoi(argv[i]); - } else if (arg == "-h" || arg == "--help") { - train_print_usage(argc, argv, &default_params); - exit(0); - } else { - fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); - train_print_usage(argc, argv, &default_params); - exit(1); - } - } - if (invalid_param) { - fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); - train_print_usage(argc, argv, &default_params); - exit(1); - } - - return true; -} - -typedef struct { - int dim; // transformer dimension - int hidden_dim; // for ffn layers - int n_layers; // number of layers - int n_heads; // number of query heads - int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) - int vocab_size; // vocabulary size, usually 256 (byte-level) - int seq_len; // max sequence length -} Config; - - - -void malloc_weights(TransformerWeights* w, Config* p) { - // we calloc instead of malloc to keep valgrind happy - w->token_embedding_table = new float[p->vocab_size * p->dim]();//calloc(p->vocab_size * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim); - - w->rms_att_weight = new float[p->n_layers * p->dim](); //calloc(p->n_layers * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim); - - w->rms_ffn_weight = new float[p->n_layers * p->dim](); //calloc(p->n_layers * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim); - - w->wq = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); - - w->wk = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); - - w->wv = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); - - w->wo = new float[p->n_layers * p->dim * p->dim](); //calloc(p->n_layers * p->dim * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim); - - w->w1 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); - - w->w2 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->dim * p->hidden_dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); - - w->w3 = new float[p->n_layers * p->hidden_dim * p->dim](); //calloc(p->n_layers * p->hidden_dim * p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim); - - w->rms_final_weight = new float[p->dim](); //calloc(p->dim, sizeof(float)); - printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim); - - w->freq_cis_real = new float[p->seq_len * p->dim / 2](); //calloc(p->seq_len * p->dim / 2, sizeof(float)); - printf("[%s:AK] Allocating [%d] float space for w->freq_cis_real\n",__func__,p->seq_len * p->dim / 2); - - w->freq_cis_imag = new float[p->seq_len * p->dim / 2](); //calloc(p->seq_len * p->dim / 2, sizeof(float)); - printf("[%s:AK] Allocating [%d] float space for w->freq_cis_imag\n\n",__func__,p->seq_len * p->dim / 2); - - // ensure all mallocs went fine - // if (!w->token_embedding_table || !w->rms_att_weight || !w->rms_ffn_weight - // || !w->wq || !w->wk || !w->wv || !w->wo || !w->w1 || !w->w2 || !w->w3 || - // !w->rms_final_weight || !w->freq_cis_real || !w->freq_cis_imag) { - // printf("malloc failed!\n"); - // exit(1); - // } -} - -int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f) { - if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast(p->vocab_size * p->dim)) return 1; - if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; - if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast(p->n_layers * p->dim * p->dim)) return 1; - if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast(p->n_layers * p->dim)) return 1; - if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; - if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast(p->n_layers * p->hidden_dim * p->dim)) return 1; - if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast(p->n_layers * p->dim * p->hidden_dim)) return 1; - if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast(p->dim)) return 1; - int head_size = p->dim / p->n_heads; - if (fread(w->freq_cis_real, sizeof(float), p->seq_len * head_size / 2, f) != static_cast(p->seq_len * head_size / 2)) return 1; - if (fread(w->freq_cis_imag, sizeof(float), p->seq_len * head_size / 2, f) != static_cast(p->seq_len * head_size / 2)) return 1; - return 0; -} - -void free_weights(TransformerWeights* w) { - free(w->token_embedding_table); - free(w->rms_att_weight); - free(w->rms_ffn_weight); - free(w->wq); - free(w->wk); - free(w->wv); - free(w->wo); - free(w->w1); - free(w->w2); - free(w->w3); - free(w->rms_final_weight); - free(w->freq_cis_real); - free(w->freq_cis_imag); -} - - -void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) { - const auto & hparams = model->hparams; - - const uint32_t n_layer = hparams.n_layer; - - struct random_normal_distribution rnd; - init_random_normal_distribution(&rnd, seed, mean, std, min, max); - - randomize_tensor_normal(model->tok_embeddings, &rnd); - randomize_tensor_normal(model->norm, &rnd); - randomize_tensor_normal(model->output, &rnd); - - for (uint32_t i = 0; i < n_layer; ++i) { - auto & layer = model->layers[i]; - randomize_tensor_normal(layer.attention_norm, &rnd); - - randomize_tensor_normal(layer.wq, &rnd); - randomize_tensor_normal(layer.wk, &rnd); - randomize_tensor_normal(layer.wv, &rnd); - randomize_tensor_normal(layer.wo, &rnd); - - randomize_tensor_normal(layer.ffn_norm, &rnd); - - randomize_tensor_normal(layer.w1, &rnd); - randomize_tensor_normal(layer.w2, &rnd); - randomize_tensor_normal(layer.w3, &rnd); - } -} - -int main(int argc, char ** argv) { - Config config; - TransformerWeights weights; - { - FILE *file = fopen("/Users/aniket/Projects/karpathy/llama2.c/out/model.bin", "rb"); - if (!file) { - printf("Unable to open the checkpoint file %s!\n", "/Users/aniket/Projects/karpathy/llama2.c/out/model.bin"); - return 1; - } - else{ - printf("model file opened for reading...\n"); - } - // read in the config header - if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; } - printf("config file read..\n"); - - // read in the Transformer weights - malloc_weights(&weights, &config); - printf("reading the opened model file...\n"); - if(checkpoint_init_weights(&weights, &config, file)) { return 1; } - - fclose(file); - - } - ////////////// Loads default train parameters /////////////////////////// - struct train_params params = get_default_train_params(); - printf("params.n_ctx %d\n", params.n_ctx); - printf("params.n_embd %d\n", params.n_embd); - printf("params.fn_vocab_model %s\n", params.fn_vocab_model); - - if (!train_params_parse(argc, argv, ¶ms)) { - return 1; - } - - // Seed not needed here. - // if (params.seed == LLAMA_DEFAULT_SEED) { - // params.seed = time(NULL); - // } - // printf("[%s]: seed: %u\n", __func__, params.seed); - // srand(params.seed); - //////////////////////////////////////////////////////////////////////////////////// - - struct llama_context_params llama_params = llama_context_default_params(); - llama_params.vocab_only = true; - - struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); - struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); - - struct llama_vocab vocab; - { - std::vector strings; - std::vector scores; - int n_vocab = llama_n_vocab(lctx); - printf("nvocab = %d\n", n_vocab); - strings.resize(n_vocab, NULL); - scores.resize(n_vocab, 0); - n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab); - GGML_ASSERT(n_vocab == llama_n_vocab(lctx)); - vocab.id_to_token.resize(n_vocab); - for (int i=0; i train_tokens; - if (tokenize_file(lctx, params.fn_train_data, train_tokens) < 0) { - fprintf(stderr, "%s: failed to tokenize file '%s'\n", __func__, params.fn_train_data); - } - printf("%s: number of training tokens: %d\n", __func__, (int) train_tokens.size()); - - struct my_llama_model model; - - model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx); - model.hparams.n_ctx = params.n_ctx; - model.hparams.n_embd = config.dim; //params.n_embd; - model.hparams.n_mult = params.n_mult; - model.hparams.n_head = config.n_heads; //params.n_head; - model.hparams.n_layer = config.n_layers; //params.n_layer; - model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head); - - print_params(&model.hparams); - struct ggml_init_params lcparams; - lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb); - lcparams.mem_buffer = NULL; - lcparams.no_alloc = false; - - model.ctx = ggml_init(lcparams); - - init_model(&model); - // randomize_model(&model, params.seed, 0.0f, 1.0f, -1.0f, +1.0f); - save_as_llama_model(&vocab, &model, &weights, "ak_model.bin"); - - // llama_free(lctx); - llama_free_model(lmodel); - ggml_free(model.ctx); - // free(&weights); - return 0; -}