Merge branch 'ggerganov:master' into master

This commit is contained in:
momonga 2024-11-07 22:02:02 +09:00 committed by GitHub
commit 09086b60fb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
96 changed files with 21641 additions and 23991 deletions

View file

@ -92,7 +92,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-latest-cmake-x64:
runs-on: macos-12
runs-on: macos-13
steps:
- name: Clone

View file

@ -48,10 +48,23 @@
}
},
{
"name": "arm64-apple-clang", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
}
},
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{ "name": "arm64-apple-clang-debug" , "inherits": [ "base", "arm64-apple-clang", "debug" ] },
{ "name": "arm64-apple-clang-release" , "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release" , "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },

View file

@ -1,7 +1,6 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
libllava.a \
llama-baby-llama \
llama-batched \
llama-batched-bench \
llama-bench \
@ -34,6 +33,7 @@ BUILD_TARGETS = \
llama-save-load-state \
llama-server \
llama-simple \
llama-simple-chat \
llama-speculative \
llama-tokenize \
llama-vdot \
@ -55,7 +55,6 @@ TEST_TARGETS = \
tests/test-llama-grammar \
tests/test-log \
tests/test-model-load-cancel \
tests/test-opt \
tests/test-quantize-fns \
tests/test-quantize-perf \
tests/test-rope \
@ -63,6 +62,7 @@ TEST_TARGETS = \
tests/test-tokenizer-0 \
tests/test-tokenizer-1-bpe \
tests/test-tokenizer-1-spm
# tests/test-opt \
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
@ -915,6 +915,7 @@ endif # GGML_METAL
OBJ_GGML += \
ggml/src/ggml.o \
ggml/src/ggml-cpu.o \
ggml/src/ggml-alloc.o \
ggml/src/ggml-backend.o \
ggml/src/ggml-quants.o \
@ -935,7 +936,6 @@ OBJ_COMMON = \
common/console.o \
common/ngram-cache.o \
common/sampling.o \
common/train.o \
common/build-info.o \
common/json-schema-to-grammar.o
@ -1047,6 +1047,12 @@ ggml/src/ggml.o: \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@
ggml/src/ggml-cpu.o: \
ggml/src/ggml-cpu.c \
ggml/include/ggml.h \
ggml/src/ggml-common.h
$(CC) $(CFLAGS) -c $< -o $@
ggml/src/ggml-alloc.o: \
ggml/src/ggml-alloc.c \
ggml/include/ggml.h \
@ -1212,11 +1218,6 @@ common/json-schema-to-grammar.o: \
common/json-schema-to-grammar.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/train.o: \
common/train.cpp \
common/train.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/ngram-cache.o: \
common/ngram-cache.cpp \
common/ngram-cache.h
@ -1287,6 +1288,11 @@ llama-simple: examples/simple/simple.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-simple-chat: examples/simple-chat/simple-chat.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-tokenize: examples/tokenize/tokenize.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
@ -1384,11 +1390,6 @@ llama-bench: examples/llama-bench/llama-bench.cpp \
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-baby-llama: examples/baby-llama/baby-llama.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
llama-export-lora: examples/export-lora/export-lora.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)

View file

@ -10,6 +10,7 @@ var sources = [
"src/unicode.cpp",
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-cpu.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-quants.c",

View file

@ -17,7 +17,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- **Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669**
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
----

164
ci/run.sh
View file

@ -326,36 +326,36 @@ function gg_run_open_llama_7b_v2 {
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -460,34 +460,34 @@ function gg_run_pythia_1_4b {
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -591,36 +591,36 @@ function gg_run_pythia_2_8b {
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@ -706,8 +706,8 @@ function gg_run_embd_bge_small {
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@ -752,7 +752,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029

View file

@ -0,0 +1,16 @@
set( CMAKE_SYSTEM_NAME Darwin )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-apple-darwin-macho )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )
set( arch_c_flags "-march=armv8.4-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )

View file

@ -66,8 +66,6 @@ add_library(${TARGET} STATIC
ngram-cache.h
sampling.cpp
sampling.h
train.cpp
train.h
)
if (BUILD_SHARED_LIBS)

View file

@ -943,13 +943,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sparams.min_p = std::stof(value);
}
).set_sparam());
add_opt(common_arg(
{"--tfs"}, "N",
string_format("tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)params.sparams.tfs_z),
[](common_params & params, const std::string & value) {
params.sparams.tfs_z = std::stof(value);
}
).set_sparam());
add_opt(common_arg(
{"--xtc-probability"}, "N",
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sparams.xtc_probability),
@ -1074,7 +1067,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_sparam());
add_opt(common_arg(
{"--mirostat"}, "N",
string_format("use Mirostat sampling.\nTop K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sparams.mirostat),
[](common_params & params, int value) {
params.sparams.mirostat = value;

View file

@ -1003,6 +1003,9 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
@ -1951,6 +1954,8 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
ggml_cpu_init(); // some ARM features are detected at runtime
const auto & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
@ -2090,7 +2095,6 @@ void yaml_dump_non_result_info(FILE * stream, const common_params & params, cons
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);

View file

@ -88,7 +88,7 @@ enum common_sampler_type {
COMMON_SAMPLER_TYPE_TOP_K = 2,
COMMON_SAMPLER_TYPE_TOP_P = 3,
COMMON_SAMPLER_TYPE_MIN_P = 4,
COMMON_SAMPLER_TYPE_TFS_Z = 5,
//COMMON_SAMPLER_TYPE_TFS_Z = 5,
COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
COMMON_SAMPLER_TYPE_XTC = 8,
@ -113,7 +113,6 @@ struct common_sampler_params {
float min_p = 0.05f; // 0.0 = disabled
float xtc_probability = 0.00f; // 0.0 = disabled
float xtc_threshold = 0.10f; // > 0.5 disables XTC
float tfs_z = 1.00f; // 1.0 = disabled
float typ_p = 1.00f; // typical_p, 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
@ -139,7 +138,6 @@ struct common_sampler_params {
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_DRY,
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TFS_Z,
COMMON_SAMPLER_TYPE_TYPICAL_P,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_MIN_P,
@ -157,7 +155,7 @@ struct common_sampler_params {
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_ctx = 4096; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt

View file

@ -131,11 +131,11 @@ std::string common_sampler_params::print() const {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
top_k, tfs_z, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
mirostat, mirostat_eta, mirostat_tau);
return std::string(result);
@ -199,9 +199,6 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TFS_Z:
llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
@ -373,7 +370,6 @@ char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY: return 'd';
case COMMON_SAMPLER_TYPE_TOP_K: return 'k';
case COMMON_SAMPLER_TYPE_TFS_Z: return 'f';
case COMMON_SAMPLER_TYPE_TYPICAL_P: return 'y';
case COMMON_SAMPLER_TYPE_TOP_P: return 'p';
case COMMON_SAMPLER_TYPE_MIN_P: return 'm';
@ -388,7 +384,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY: return "dry";
case COMMON_SAMPLER_TYPE_TOP_K: return "top_k";
case COMMON_SAMPLER_TYPE_TFS_Z: return "tfs_z";
case COMMON_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
case COMMON_SAMPLER_TYPE_TOP_P: return "top_p";
case COMMON_SAMPLER_TYPE_MIN_P: return "min_p";
@ -406,7 +401,6 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "top_p", COMMON_SAMPLER_TYPE_TOP_P },
{ "typ_p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min_p", COMMON_SAMPLER_TYPE_MIN_P },
{ "tfs_z", COMMON_SAMPLER_TYPE_TFS_Z },
{ "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
{ "xtc", COMMON_SAMPLER_TYPE_XTC },
{ "infill", COMMON_SAMPLER_TYPE_INFILL },
@ -423,8 +417,6 @@ std::vector<common_sampler_type> common_sampler_types_from_names(const std::vect
{ "typ-p", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "typ", COMMON_SAMPLER_TYPE_TYPICAL_P },
{ "min-p", COMMON_SAMPLER_TYPE_MIN_P },
{ "tfs-z", COMMON_SAMPLER_TYPE_TFS_Z },
{ "tfs", COMMON_SAMPLER_TYPE_TFS_Z },
{ "temp", COMMON_SAMPLER_TYPE_TEMPERATURE },
};
@ -452,7 +444,6 @@ std::vector<common_sampler_type> common_sampler_types_from_chars(const std::stri
std::unordered_map<char, common_sampler_type> sampler_name_map = {
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY), COMMON_SAMPLER_TYPE_DRY },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K), COMMON_SAMPLER_TYPE_TOP_K },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TFS_Z), COMMON_SAMPLER_TYPE_TFS_Z },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P), COMMON_SAMPLER_TYPE_TYPICAL_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P), COMMON_SAMPLER_TYPE_TOP_P },
{ common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P), COMMON_SAMPLER_TYPE_MIN_P },

File diff suppressed because it is too large Load diff

View file

@ -1,233 +0,0 @@
// Various helper functions and utilities for training
#pragma once
#include <string>
#include <random>
#include <vector>
#include "ggml.h"
#include "llama.h"
#define LLAMA_TRAIN_MAX_NODES 16384
typedef std::string mt19937_state;
struct train_state {
struct ggml_opt_context * opt;
uint64_t train_its;
uint64_t train_samples;
uint64_t train_tokens;
uint64_t train_epochs;
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
mt19937_state shuffle_rng_state_current;
mt19937_state shuffle_rng_state_next;
size_t shuffle_sample_count;
size_t shuffle_next_sample;
};
struct train_params_common {
const char * fn_train_data;
const char * fn_checkpoint_in;
const char * fn_checkpoint_out;
const char * pattern_fn_it;
const char * fn_latest;
bool print_usage;
int save_every;
uint32_t seed;
int n_ctx;
int n_threads;
int n_batch;
int n_gradient_accumulation;
int n_epochs;
int n_gpu_layers;
bool custom_n_ctx;
bool use_flash;
bool use_checkpointing;
std::string sample_start;
bool include_sample_start;
bool escape;
bool overlapping_samples;
bool fill_with_next_samples;
bool separate_with_eos;
bool separate_with_bos;
bool sample_random_offsets;
bool force_reshuffle;
int warmup;
int cos_decay_steps;
float cos_decay_restart;
float cos_decay_min;
bool enable_restart;
int opt_past;
float opt_delta;
int opt_max_no_improvement;
int adam_n_iter;
float adam_alpha;
float adam_min_alpha;
float adam_decay;
int adam_decay_min_ndim;
float adam_beta1;
float adam_beta2;
float adam_gclip;
float adam_eps_f;
};
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
struct train_opt_callback_data {
struct train_params_common * params;
struct train_state * train;
save_train_files_callback save_cb;
void * save_data;
struct llama_context * lctx;
int last_save_iter;
llama_token * tokens_data;
size_t tokens_size;
size_t * samples_begin;
size_t * samples_size;
size_t * shuffled_samples_offs;
size_t * shuffled_samples_begin;
size_t * shuffled_samples_size;
size_t samples_count;
struct ggml_tensor * tokens_input;
struct ggml_tensor * target_probs;
int first_iter;
int first_epoch;
int iter_at_last_epoch;
int64_t last_time;
double millis_per_iter;
};
struct train_state * init_train_state();
void free_train_state(struct train_state * state);
struct train_params_common get_default_train_params_common();
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
void finish_processing_train_args(struct train_params_common * params);
struct random_normal_distribution;
struct random_uniform_distribution;
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
void free_random_normal_distribution (struct random_normal_distribution * rnd);
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
// generate random float in interval [0,1)
float frand();
float frand_normal (struct random_normal_distribution * rnd);
float frand_uniform(struct random_uniform_distribution * rnd);
int clamp (const int v, const int min, const int max);
float fclamp(const float v, const float min, const float max);
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
size_t tokenize_file(
struct llama_context * lctx,
const char * filename,
const std::string & sample_start,
bool include_sample_start,
bool overlapping_samples,
unsigned context_length,
std::vector<llama_token> & out_tokens,
std::vector<size_t> & out_samples_begin,
std::vector<size_t> & out_samples_size);
int64_t get_example_targets_batch(
struct llama_context * lctx,
struct ggml_tensor * tokens_input,
struct ggml_tensor * target_probs,
int64_t example_id,
const size_t * samples_offs,
const size_t * samples_begin,
const size_t * samples_size,
size_t samples_count,
const llama_token * train_data,
size_t n_train_data,
bool separate_with_eos,
bool separate_with_bos,
bool fill_with_next_samples,
bool sample_random_offsets);
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
mt19937_state mt19937_get_state(const std::mt19937& rng);
mt19937_state mt19937_seed_to_state(unsigned seed);
mt19937_state shuffle_samples(
const mt19937_state & rng_state,
size_t * shuffled_offs,
size_t * shuffled_begins,
size_t * shuffled_sizes,
const size_t * begins,
const size_t * sizes,
size_t count);
size_t hash_combine(size_t h1, size_t h2);
size_t compute_samples_hash(
const char* fn,
const size_t* samples_begin,
const size_t* samples_size,
size_t sample_count);
std::string replace_str(const char * s, const char * needle, const char * replacement);
void print_duration(double milliseconds);
float cosine_decay(
int64_t step,
int64_t decay_steps,
float minimum);
float cosine_decay_restart(
int64_t step,
int64_t decay_steps,
float minimum,
float restart_step_mult);
float learning_schedule(
int64_t step,
int64_t warmup_steps,
int64_t decay_steps,
float learning_rate,
float overall_minimum,
float cos_decay_minimum,
float cos_decay_restart_step_mult,
bool enable_restart);
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);

View file

@ -72,7 +72,8 @@ class Model:
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
@ -87,7 +88,7 @@ class Model:
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
@ -1541,6 +1542,17 @@ class LlamaModel(Model):
special_vocab._set_special_token("eot", 32010)
special_vocab.add_to_gguf(self.gguf_writer)
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
# Apply to granite small models only
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
@ -1557,17 +1569,6 @@ class LlamaModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
# Apply to granite small models only
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:

View file

@ -12,6 +12,7 @@ import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig
import torch
@ -230,7 +231,7 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface PEFT LoRA adapter to a GGML compatible file")
description="Convert a Hugging Face PEFT LoRA adapter to a GGUF file")
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
@ -256,17 +257,23 @@ def parse_args() -> argparse.Namespace:
help="only print out what will be done, without writing any new files",
)
parser.add_argument(
"--base", type=Path, required=True,
help="directory containing base model file",
"--base", type=Path,
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
)
parser.add_argument(
"lora_path", type=Path,
help="directory containing LoRA adapter file",
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
)
return parser.parse_args()
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
# normally, adapter does not come with base model config, we need to load it from AutoConfig
config = AutoConfig.from_pretrained(hf_model_id)
return config.to_dict()
if __name__ == '__main__':
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
@ -281,7 +288,7 @@ if __name__ == '__main__':
ftype = ftype_map[args.outtype]
dir_base_model: Path = args.base
dir_base_model: Path | None = args.base
dir_lora: Path = args.lora_path
lora_config = dir_lora / "adapter_config.json"
input_model = dir_lora / "adapter_model.safetensors"
@ -301,9 +308,29 @@ if __name__ == '__main__':
input_model = os.path.join(dir_lora, "adapter_model.bin")
lora_model = torch.load(input_model, map_location="cpu", weights_only=True)
# load LoRA config
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
# load base model
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
if dir_base_model is None:
if "base_model_name_or_path" in lparams:
model_id = lparams["base_model_name_or_path"]
logger.info(f"Loading base model from Hugging Face: {model_id}")
try:
hparams = load_hparams_from_hf(model_id)
except OSError as e:
logger.error(f"Failed to load base model config: {e}")
logger.error("Please try downloading the base model and add its path to --base")
sys.exit(1)
else:
logger.error("'base_model_name_or_path' is not found in adapter_config.json")
logger.error("Base model config is required. Please download the base model and add its path to --base")
sys.exit(1)
else:
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = Model.load_hparams(dir_base_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
@ -323,13 +350,15 @@ if __name__ == '__main__':
self.dir_model_card = dir_lora_model
self.lora_alpha = float(lora_alpha)
def set_vocab(self):
pass
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.ADAPTER)
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
@ -350,7 +379,7 @@ if __name__ == '__main__':
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
logger.error("Hint: if you are using TRL, make sure not to call setup_chat_format()")
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
sys.exit(1)
if base_name in tensor_map:
@ -384,9 +413,6 @@ if __name__ == '__main__':
yield (dest_name + ".lora_a", lora_a)
yield (dest_name + ".lora_b", lora_b)
with open(lora_config, "r") as f:
lparams: dict[str, Any] = json.load(f)
alpha: float = lparams["lora_alpha"]
model_instance = LoraModel(
@ -399,6 +425,7 @@ if __name__ == '__main__':
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
hparams=hparams,
)
logger.info("Exporting model...")

View file

@ -377,7 +377,7 @@ found 2 SYCL devices:
|Chosen Device ID|Setting|
|-|-|
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"` or no action|
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:0"` or no action|
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|

View file

@ -13,7 +13,6 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(cvector-generator)
add_subdirectory(baby-llama)
add_subdirectory(batched-bench)
add_subdirectory(batched)
add_subdirectory(convert-llama2c-to-ggml)
@ -49,6 +48,7 @@ else()
endif()
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(simple-chat)
add_subdirectory(speculative)
add_subdirectory(tokenize)
endif()

View file

@ -1,5 +0,0 @@
set(TARGET llama-baby-llama)
add_executable(${TARGET} baby-llama.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

File diff suppressed because it is too large Load diff

View file

@ -21,12 +21,6 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "ggml-cuda.h"
#include "ggml-sycl.h"
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
@ -82,95 +76,27 @@ static T stdev(const std::vector<T> & v) {
}
static std::string get_cpu_info() {
std::string id;
#ifdef __linux__
FILE * f = fopen("/proc/cpuinfo", "r");
if (f) {
char buf[1024];
while (fgets(buf, sizeof(buf), f)) {
if (strncmp(buf, "model name", 10) == 0) {
char * p = strchr(buf, ':');
if (p) {
p++;
while (std::isspace(*p)) {
p++;
}
while (std::isspace(p[strlen(p) - 1])) {
p[strlen(p) - 1] = '\0';
}
id = p;
break;
}
}
}
fclose(f);
}
#elif defined(_WIN32)
HKEY hKey;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
0,
KEY_READ,
&hKey) != ERROR_SUCCESS) {
// fail to open registry key
return "";
}
char cpu_brand[256];
DWORD cpu_brand_size = sizeof(cpu_brand);
if (RegQueryValueExA(hKey,
TEXT("ProcessorNameString"),
NULL,
NULL,
(LPBYTE)cpu_brand,
&cpu_brand_size) == ERROR_SUCCESS) {
id.assign(cpu_brand, cpu_brand_size);
if (id.find('\0') != std::string::npos) {
id.resize(id.find('\0'));
std::vector<std::string> cpu_list;
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
auto * dev = ggml_backend_dev_get(i);
auto dev_type = ggml_backend_dev_type(dev);
if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
cpu_list.push_back(ggml_backend_dev_description(dev));
}
}
RegCloseKey(hKey);
#endif
// TODO: other platforms
return id;
return join(cpu_list, ", ");
}
static std::string get_gpu_info() {
std::string id;
#ifdef GGML_USE_CUDA
int count = ggml_backend_cuda_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
std::vector<std::string> gpu_list;
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
auto * dev = ggml_backend_dev_get(i);
auto dev_type = ggml_backend_dev_type(dev);
if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
gpu_list.push_back(ggml_backend_dev_description(dev));
}
}
#endif
#ifdef GGML_USE_SYCL
int count = ggml_backend_sycl_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_backend_sycl_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
#ifdef GGML_USE_CANN
uint32_t count = ggml_backend_cann_get_device_count();
for (uint32_t i = 0; i < count; i++) {
char buf[128];
ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
// TODO: other backends
return id;
return join(gpu_list, ", ");
}
// command line params
@ -938,29 +864,15 @@ struct test {
}
static std::string get_backend() {
if (cuda) {
return GGML_CUDA_NAME;
std::vector<std::string> backends;
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
auto * reg = ggml_backend_reg_get(i);
std::string name = ggml_backend_reg_name(reg);
if (name != "CPU") {
backends.push_back(ggml_backend_reg_name(reg));
}
}
if (vulkan) {
return "Vulkan";
}
if (kompute) {
return "Kompute";
}
if (metal) {
return "Metal";
}
if (sycl) {
return GGML_SYCL_NAME;
}
if (gpu_blas) {
return "GPU BLAS";
}
if (blas) {
return "BLAS";
}
return "CPU";
return backends.empty() ? "CPU" : join(backends, ",");
}
static const std::vector<std::string> & get_fields() {

View file

@ -4,6 +4,7 @@
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"

View file

@ -235,14 +235,6 @@ The Min-P sampling method was designed as an alternative to Top-P, and aims to e
Example usage: `--min-p 0.05`
### Tail-Free Sampling (TFS)
- `--tfs N`: Enable tail free sampling with parameter z (default: 1.0, 1.0 = disabled).
Tail-free sampling (TFS) is a text generation technique that aims to reduce the impact of less likely tokens, which may be less relevant, less coherent, or nonsensical, on the output. Similar to Top-P it tries to determine the bulk of the most likely tokens dynamically. But TFS filters out logits based on the second derivative of their probabilities. Adding tokens is stopped after the sum of the second derivatives reaches the parameter z. In short: TFS looks at how quickly the probabilities of the tokens decrease and cuts off the tail of unlikely tokens using the parameter z. Typical values for z are in the range of 0.9 to 0.95. A value of 1.0 would include all tokens and thus disables the effect of TFS.
Example usage: `--tfs 0.95`
### Locally Typical Sampling
- `--typical N`: Enable locally typical sampling with parameter p (default: 1.0, 1.0 = disabled).
@ -341,6 +333,15 @@ These options help improve the performance and memory usage of the LLaMA models.
For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-and-quantize).
## LoRA (Low-Rank Adaptation) adapters
- `--lora FNAME`: Optional path to a LoRA adapter to use with scaling of 1.0. Can be mixed with `--lora-scaled` and can be repeated to use multiple adapters.
- `--lora-scaled FNAME`: Optional path to a LoRA adapter with user-defined scaling. Can be mixed with `--lora` and can repeated to use multiple adapters.
You can add LoRA adapters using `--lora` or `--lora-scaled`. For example: `--lora my_adapter_1.gguf --lora my_adapter_2.gguf ...` or `--lora-scaled lora_task_A.gguf 0.5 --lora-scaled lora_task_B.gguf 0.5`.
LoRA adapters should be in GGUF format. To convert from Hugging Face format use the `convert-lora-to-gguf.py` script. LoRA adapters are loaded separately and applied during inference - they are not merged with the main model. This means that mmap model loading is fully supported when using LoRA adapters. The old `--lora-base` flag has been removed now that merging is no longer performed.
## Additional Options
These options provide extra functionality and customization when running the LLaMA models:
@ -349,6 +350,4 @@ These options provide extra functionality and customization when running the LLa
- `--verbose-prompt`: Print the prompt before generating text.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.

View file

@ -1,3 +1,5 @@
#include "ggml-cpu.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

View file

@ -99,7 +99,7 @@ The project is under active development, and we are [looking for feedback and co
| Argument | Explanation |
| -------- | ----------- |
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;tfs_z;typ_p;top_p;min_p;temperature) |
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;typ_p;top_p;min_p;temperature) |
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for -1) |
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) |
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
@ -108,7 +108,6 @@ The project is under active development, and we are [looking for feedback and co
| `--top-k N` | top-k sampling (default: 40, 0 = disabled) |
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
| `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) |
| `--tfs N` | tail free sampling, parameter z (default: 1.0, 1.0 = disabled) |
| `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
| `--repeat-last-n N` | last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
| `--repeat-penalty N` | penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
@ -121,7 +120,7 @@ The project is under active development, and we are [looking for feedback and co
| `--dry-sequence-breaker STRING` | add sequence breaker for DRY sampling, clearing out default breakers (`['\n', ':', '"', '*']`) in the process; use `"none"` to not use any sequence breakers
| `--dynatemp-range N` | dynamic temperature range (default: 0.0, 0.0 = disabled) |
| `--dynatemp-exp N` | dynamic temperature exponent (default: 1.0) |
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
| `--mirostat-lr N` | Mirostat learning rate, parameter eta (default: 0.1) |
| `--mirostat-ent N` | Mirostat target entropy, parameter tau (default: 5.0) |
| `-l, --logit-bias TOKEN_ID(+/-)BIAS` | modifies the likelihood of token appearing in the completion,<br/>i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',<br/>or `--logit-bias 15043-1` to decrease likelihood of token ' Hello' |
@ -360,8 +359,6 @@ node index.js
`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration. Default: `[]`
`tfs_z`: Enable tail free sampling with parameter z. Default: `1.0`, which is disabled.
`typical_p`: Enable locally typical sampling with parameter p. Default: `1.0`, which is disabled.
`repeat_penalty`: Control the repetition of token sequences in the generated text. Default: `1.1`
@ -412,7 +409,7 @@ node index.js
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `false`
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "tfs_z", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.
**Response format**
@ -695,7 +692,10 @@ Given a ChatML-formatted json description in `messages`, it returns the predicte
### GET `/slots`: Returns the current slots processing state
This endpoint can be disabled with `--no-slots`
> [!WARNING]
> This endpoint is intended for debugging and may be modified in future versions. For security reasons, we strongly advise against enabling it in production environments.
This endpoint is disabled by default and can be enabled with `--slots`
If query param `?fail_on_no_slot=1` is set, this endpoint will respond with status code 503 if there is no available slots.
@ -712,6 +712,7 @@ Example:
"grammar": "",
"id": 0,
"ignore_eos": false,
"is_processing": false,
"logit_bias": [],
"min_p": 0.05000000074505806,
"mirostat": 0,
@ -738,21 +739,18 @@ Example:
"repeat_penalty": 1.100000023841858,
"samplers": [
"top_k",
"tfs_z",
"typical_p",
"top_p",
"min_p",
"temperature"
],
"seed": 42,
"state": 1,
"stop": [
"\n"
],
"stream": false,
"task_id": 0,
"temperature": 0.0,
"tfs_z": 1.0,
"top_k": 40,
"top_p": 0.949999988079071,
"typical_p": 1.0
@ -760,10 +758,6 @@ Example:
]
```
Possible values for `slot[i].state` are:
- `0`: SLOT_STATE_IDLE
- `1`: SLOT_STATE_PROCESSING
### GET `/metrics`: Prometheus compatible metrics exporter
This endpoint is only accessible if `--metrics` is set.

View file

@ -49,7 +49,6 @@
min_p: 0.05, // 0 = disabled; recommended for non-english: ~ 0.4
xtc_probability: 0.0, // 0 = disabled;
xtc_threshold: 0.1, // > 0.5 disables XTC;
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled
frequency_penalty: 0.0, // 0.0 = disabled
@ -847,7 +846,6 @@ return html`
${FloatField({ label: "DRY Base", title: "Set the DRY repetition penalty base value. Default is 1.75", max: 3.0, min: 1.0, name: "dry_base", step: 0.01, value: params.value.dry_base })}
${IntField({ label: "DRY Allowed Length", title: "Tokens that extend repetition beyond this receive exponentially increasing penalty. Default is 2", max: 10, min: 1, step: 1, name: "dry_allowed_length", value: params.value.dry_allowed_length })}
${IntField({ label: "DRY Penalty Last N", title: "How many tokens to scan for repetitions. Default is -1, where 0 is disabled and -1 is context size", max: 2048, min: -1, step: 16, name: "dry_penalty_last_n", value: params.value.dry_penalty_last_n })}
${FloatField({ label: "TFS-Z", title: "Activates tail-free sampling, a method used to limit the prediction of tokens that are too frequent. The parameter z controls the strength of this limitation. A value of 1.0 means that this function is deactivated.", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z })}
${IntField({ label: "Min Keep", title: "If greater than 0, samplers are forced to return N possible tokens at minimum. Default is 0", max: 10, min: 0, name: "min_keep", value: params.value.min_keep })}
</fieldset>
@ -1147,7 +1145,6 @@ document.addEventListener('DOMContentLoaded', (event) => {
xtc_probability: { snapValue: 0.0, snapRangeMultiplier: 4 },
xtc_threshold: { snapValue: 0.5, snapRangeMultiplier: 4 },
top_p: { snapValue: 1.0, snapRangeMultiplier: 4 },
tfs_z: { snapValue: 1.0, snapRangeMultiplier: 4 },
typical_p: { snapValue: 1.0, snapRangeMultiplier: 4 },
repeat_penalty: { snapValue: 1.0, snapRangeMultiplier: 4 },
presence_penalty: { snapValue: 0.0, snapRangeMultiplier: 4 },

View file

@ -313,7 +313,6 @@
min_p: 0.05, // 0 = disabled
xtc_probability: 0.0, // 0 = disabled;
xtc_threshold: 0.1, // > 0.5 disables XTC;
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled
frequency_penalty: 0.0, // 0.0 = disabled
@ -1015,7 +1014,6 @@
<details>
<summary>More options</summary>
<fieldset class="two">
${FloatField({ label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z })}
${FloatField({ label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
${FloatField({ label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty })}
${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}

View file

@ -247,6 +247,7 @@ struct server_slot {
if (is_processing()) {
SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
t_last_used = ggml_time_us();
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
state = SLOT_STATE_IDLE;
callback_on_release(id);
@ -377,8 +378,8 @@ struct server_queue {
std::condition_variable condition_tasks;
// callback functions
std::function<void(server_task&)> callback_new_task;
std::function<void(void)> callback_update_slots;
std::function<void(server_task)> callback_new_task;
std::function<void(void)> callback_update_slots;
// Add a new task to the end of the queue
int post(server_task task, bool front = false) {
@ -430,7 +431,7 @@ struct server_queue {
}
// Register function to process a new task
void on_new_task(std::function<void(server_task &)> callback) {
void on_new_task(std::function<void(server_task)> callback) {
callback_new_task = std::move(callback);
}
@ -480,7 +481,7 @@ struct server_queue {
lock.unlock();
QUE_DBG("processing task, id = %d\n", task.id);
callback_new_task(task);
callback_new_task(std::move(task));
}
// all tasks in the current loop is processed, slots data is now ready
@ -643,17 +644,12 @@ struct server_context {
bool load_model(const common_params & params_) {
params = params_;
// reserve one extra sequence (seq_id == 0) for extra features
params.n_parallel += 1;
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model;
ctx = llama_init.context;
loras = llama_init.lora_adapters;
params.n_parallel -= 1; // but be sneaky about it
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params.model.c_str());
return false;
@ -725,12 +721,12 @@ struct server_context {
return nullptr;
}
server_slot * get_available_slot(const std::string & prompt) {
server_slot * get_available_slot(const server_task & task) {
server_slot * ret = nullptr;
// find the slot that has at least n% prompt similarity
if (ret == nullptr && slot_prompt_similarity != 0.0f && !prompt.empty()) {
int max_lcp_len = 0;
if (ret == nullptr && slot_prompt_similarity != 0.0f) {
int lcs_len = 0;
float similarity = 0;
for (server_slot & slot : slots) {
@ -740,25 +736,26 @@ struct server_context {
}
// skip the slot if it does not contains cached tokens
if (slot.prompt_tokens.empty()) {
if (slot.cache_tokens.empty()) {
continue;
}
// length of the Longest Common Prefix between the current slot's prompt and the input prompt
int lcp_len = longest_common_prefix(slot.cache_tokens, slot.prompt_tokens);
// length of the Longest Common Subsequence between the current slot's prompt and the input prompt
int cur_lcs_len = longest_common_subsequence(slot.cache_tokens, task.prompt_tokens);
// fraction of the common substring length compared to the current slot's prompt length
similarity = static_cast<float>(lcp_len) / static_cast<int>(slot.prompt_tokens.size());
// fraction of the common subsequence length compared to the current slot's prompt length
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
// select the current slot if the criteria match
if (lcp_len > max_lcp_len && similarity > slot_prompt_similarity) {
max_lcp_len = lcp_len;
if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
lcs_len = cur_lcs_len;
similarity = cur_similarity;
ret = &slot;
}
}
if (ret != nullptr) {
SLT_DBG(*ret, "selected slot by lcp similarity, max_lcp_len = %d, similarity = %f\n", max_lcp_len, similarity);
SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
}
}
@ -809,7 +806,6 @@ struct server_context {
slot.sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot.sparams.xtc_probability = json_value(data, "xtc_probability", default_sparams.xtc_probability);
slot.sparams.xtc_threshold = json_value(data, "xtc_threshold", default_sparams.xtc_threshold);
slot.sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot.sparams.typ_p = json_value(data, "typical_p", default_sparams.typ_p);
slot.sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot.sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
@ -1149,7 +1145,6 @@ struct server_context {
{"min_p", slot.sparams.min_p},
{"xtc_probability", slot.sparams.xtc_probability},
{"xtc_threshold", slot.sparams.xtc_threshold},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typ_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
@ -1288,16 +1283,16 @@ struct server_context {
void send_embedding(const server_slot & slot, const llama_batch & batch) {
server_task_result res;
res.id = slot.id_task;
res.error = false;
res.stop = true;
res.id = slot.id_task;
res.error = false;
res.stop = true;
const int n_embd = llama_n_embd(model);
std::vector<float> embd_res(n_embd, 0.0f);
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
continue;
}
@ -1332,12 +1327,12 @@ struct server_context {
void send_rerank(const server_slot & slot, const llama_batch & batch) {
server_task_result res;
res.id = slot.id_task;
res.error = false;
res.stop = true;
res.id = slot.id_task;
res.error = false;
res.stop = true;
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id + 1) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
continue;
}
@ -1510,24 +1505,13 @@ struct server_context {
// Functions to process the task
//
void process_single_task(const server_task & task) {
void process_single_task(server_task task) {
switch (task.type) {
case SERVER_TASK_TYPE_INFERENCE:
{
const int id_slot = json_value(task.data, "id_slot", -1);
server_slot * slot;
if (id_slot != -1) {
slot = get_slot_by_id(id_slot);
} else {
std::string prompt;
if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
prompt = json_value(task.data, "prompt", std::string());
}
slot = get_available_slot(prompt);
}
server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
if (slot == nullptr) {
// if no slot is available, we defer this task for processing later
@ -1577,11 +1561,11 @@ struct server_context {
for (server_slot & slot : slots) {
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["id_task"] = slot.id_task;
slot_data["state"] = slot.state;
slot_data["prompt"] = common_detokenize(ctx, slot.prompt_tokens);
slot_data["next_token"] = {
slot_data["id"] = slot.id;
slot_data["id_task"] = slot.id_task;
slot_data["is_processing"] = slot.is_processing();
slot_data["prompt"] = common_detokenize(ctx, slot.prompt_tokens);
slot_data["next_token"] = {
{"has_next_token", slot.has_next_token},
{"has_new_line", slot.has_new_line},
{"n_remain", slot.n_remaining},
@ -1592,10 +1576,10 @@ struct server_context {
{"stopping_word", slot.stopping_word},
};
if (slot_data["state"] == SLOT_STATE_IDLE) {
n_idle_slots++;
} else {
if (slot.is_processing()) {
n_processing_slots++;
} else {
n_idle_slots++;
}
slots_data.push_back(slot_data);
@ -1657,7 +1641,7 @@ struct server_context {
std::string filename = task.data.at("filename");
std::string filepath = task.data.at("filepath");
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), token_count);
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
const int64_t t_end = ggml_time_us();
const double t_save_ms = (t_end - t_start) / 1000.0;
@ -1699,7 +1683,7 @@ struct server_context {
slot->cache_tokens.resize(slot->n_ctx);
size_t token_count = 0;
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id + 1, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
if (nread == 0) {
slot->cache_tokens.resize(0);
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
@ -1742,7 +1726,7 @@ struct server_context {
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_cache_seq_rm(ctx, slot->id + 1, -1, -1);
llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
slot->cache_tokens.clear();
server_task_result result;
@ -1819,8 +1803,8 @@ struct server_context {
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id + 1, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id + 1, n_keep + n_discard, slot.n_past, -n_discard);
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
@ -1847,7 +1831,7 @@ struct server_context {
slot.i_batch = batch.n_tokens;
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id + 1 }, true);
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
slot.n_past += 1;
@ -1994,8 +1978,8 @@ struct server_context {
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_cache_seq_rm (ctx, slot.id + 1, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id + 1, head_c, -1, kv_shift);
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
@ -2044,9 +2028,9 @@ struct server_context {
}
// keep only the common part
if (!llama_kv_cache_seq_rm(ctx, slot.id + 1, slot.n_past, -1)) {
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id + 1, -1, -1);
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
// there is no common part left
slot.n_past = 0;
@ -2059,7 +2043,7 @@ struct server_context {
// add prompt tokens for processing in the current batch
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id + 1 }, false);
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, false);
if (slot.params.cache_prompt) {
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
@ -2716,8 +2700,8 @@ int main(int argc, char ** argv) {
};
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](server_task_inf_type inf_type, json & data, httplib::Response & res) {
if (ctx_server.params.embedding || ctx_server.params.reranking) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings` or `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
if (ctx_server.params.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
@ -2822,8 +2806,8 @@ int main(int argc, char ** argv) {
// TODO: maybe merge this function with "handle_completions_generic"
const auto handle_chat_completions = [&ctx_server, &params, &res_error, &res_ok, verbose](const httplib::Request & req, httplib::Response & res) {
if (ctx_server.params.embedding || ctx_server.params.reranking) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings` or `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
if (ctx_server.params.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
@ -2948,11 +2932,6 @@ int main(int argc, char ** argv) {
};
const auto handle_embeddings = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
// TODO: somehow clean up this checks in the future
if (!ctx_server.params.embedding || ctx_server.params.reranking) {
res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings` and without `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
const json body = json::parse(req.body);
bool is_openai = false;
@ -3004,10 +2983,11 @@ int main(int argc, char ** argv) {
};
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
if (!ctx_server.params.reranking) {
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
if (!ctx_server.params.reranking || ctx_server.params.embedding) {
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
return;
}
const json body = json::parse(req.body);
// TODO: implement
@ -3261,7 +3241,7 @@ int main(int argc, char ** argv) {
ctx_server.queue_tasks.terminate();
};
LOG_INF("%s: server is listening on %s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
ctx_server.queue_tasks.start_loop();

View file

@ -260,13 +260,13 @@ async def step_wait_for_server_status(context, expecting_status: Literal['health
async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
match expected_slot_status_string:
case 'idle':
expected_slot_status = 0
expected_slot_status = False
case 'busy':
expected_slot_status = 1
expected_slot_status = True
case _:
assert False, "unknown status"
expected_slots = [{'id': slot_id, 'state': expected_slot_status}
expected_slots = [{'id': slot_id, 'is_processing': expected_slot_status}
for slot_id in range(context.n_slots)]
await request_slots_status(context, expected_slots)
@ -1354,8 +1354,8 @@ async def wait_for_slots_status(context,
if status_code == 503 and status_code == expected_http_status_code:
return
if status_code == 200 and status_code == expected_http_status_code:
n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots)
n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots)
n_slots_idle = sum(1 if not slot["is_processing"] else 0 for slot in slots)
n_slots_processing = sum(1 if slot["is_processing"] else 0 for slot in slots)
if ((slots_idle is None or slots_idle == n_slots_idle)
and (slots_processing is None or slots_processing == n_slots_processing)):
return

View file

@ -226,7 +226,6 @@
top_k: 40, // <= 0 to use vocab size
top_p: 0.95, // 1.0 = disabled
min_p: 0.05, // 0 = disabled
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled
frequency_penalty: 0.0, // 0.0 = disabled
@ -788,7 +787,6 @@
<details>
<summary>More options</summary>
<fieldset class="two">
${FloatField({ label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z })}
${FloatField({ label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
${FloatField({ label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty })}
${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}

View file

@ -229,7 +229,6 @@
top_k: 40, // <= 0 to use vocab size
top_p: 0.95, // 1.0 = disabled
min_p: 0.05, // 0 = disabled
tfs_z: 1.0, // 1.0 = disabled
typical_p: 1.0, // 1.0 = disabled
presence_penalty: 0.0, // 0.0 = disabled
frequency_penalty: 0.0, // 0.0 = disabled
@ -791,7 +790,6 @@
<details>
<summary>More options</summary>
<fieldset class="two">
${FloatField({ label: "TFS-Z", max: 1.0, min: 0.0, name: "tfs_z", step: 0.01, value: params.value.tfs_z })}
${FloatField({ label: "Typical P", max: 1.0, min: 0.0, name: "typical_p", step: 0.01, value: params.value.typical_p })}
${FloatField({ label: "Presence penalty", max: 1.0, min: 0.0, name: "presence_penalty", step: 0.01, value: params.value.presence_penalty })}
${FloatField({ label: "Frequency penalty", max: 1.0, min: 0.0, name: "frequency_penalty", step: 0.01, value: params.value.frequency_penalty })}

View file

@ -439,18 +439,60 @@ static std::string gen_chatcmplid() {
// other common utils
//
static size_t longest_common_prefix(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
static size_t longest_common_prefix(const llama_tokens & a, const llama_tokens & b) {
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
return i;
}
static size_t longest_common_prefix(const std::string & a, const std::string & b) {
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
static size_t longest_common_subsequence(const llama_tokens & a, const llama_tokens & b) {
// check for empty sequences
if (a.empty() || b.empty()) {
return 0;
}
return i;
// get the lengths of the input sequences
size_t a_len = a.size();
size_t b_len = b.size();
// initialize the maximum length of the longest common subsequence (LCS)
size_t max_length = 0;
// use two rows instead of a 2D matrix to optimize space
std::vector<size_t> prev_row(b_len + 1, 0);
std::vector<size_t> curr_row(b_len + 1, 0);
// iterate through the elements of a
for (size_t i = 1; i <= a_len; i++) {
// iterate through the elements of b
for (size_t j = 1; j <= b_len; j++) {
// if elements at the current positions match
if (a[i - 1] == b[j - 1]) {
// if it's the first element of either sequences, set LCS length to 1
if (i == 1 || j == 1) {
curr_row[j] = 1;
} else {
// increment LCS length by 1 compared to the previous element
curr_row[j] = prev_row[j - 1] + 1;
}
// update max_length if necessary
if (curr_row[j] > max_length) {
max_length = curr_row[j];
}
} else {
// reset LCS length if elements don't match
curr_row[j] = 0;
}
}
// update the previous row for the next iteration
prev_row = curr_row;
}
// return the maximum length of the LCS
return max_length;
}
static bool ends_with(const std::string & str, const std::string & suffix) {
@ -607,7 +649,7 @@ static json oaicompat_completion_params_parse(
}
// Copy remaining properties to llama_params
// This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
// This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
for (const auto & item : body.items()) {
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"

View file

@ -0,0 +1,5 @@
set(TARGET llama-simple-chat)
add_executable(${TARGET} simple-chat.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,7 @@
# llama.cpp/example/simple-chat
The purpose of this example is to demonstrate a minimal usage of llama.cpp to create a simple chat program using the chat template from the GGUF file.
```bash
./llama-simple-chat -m Meta-Llama-3.1-8B-Instruct.gguf -c 2048
...

View file

@ -0,0 +1,197 @@
#include "llama.h"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
std::string model_path;
int ngl = 99;
int n_ctx = 2048;
// parse command line arguments
for (int i = 1; i < argc; i++) {
try {
if (strcmp(argv[i], "-m") == 0) {
if (i + 1 < argc) {
model_path = argv[++i];
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-c") == 0) {
if (i + 1 < argc) {
n_ctx = std::stoi(argv[++i]);
} else {
print_usage(argc, argv);
return 1;
}
} else if (strcmp(argv[i], "-ngl") == 0) {
if (i + 1 < argc) {
ngl = std::stoi(argv[++i]);
} else {
print_usage(argc, argv);
return 1;
}
} else {
print_usage(argc, argv);
return 1;
}
} catch (std::exception & e) {
fprintf(stderr, "error: %s\n", e.what());
print_usage(argc, argv);
return 1;
}
}
if (model_path.empty()) {
print_usage(argc, argv);
return 1;
}
// only print errors
llama_log_set([](enum ggml_log_level level, const char * text, void * /* user_data */) {
if (level >= GGML_LOG_LEVEL_ERROR) {
fprintf(stderr, "%s", text);
}
}, nullptr);
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
llama_model * model = llama_load_model_from_file(model_path.c_str(), model_params);
if (!model) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (!ctx) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
// initialize the sampler
llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params());
llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1));
llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f));
llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED));
// helper function to evaluate a prompt and generate a response
auto generate = [&](const std::string & prompt) {
std::string response;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(model, prompt.c_str(), prompt.size(), NULL, 0, true, true);
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
if (llama_tokenize(model, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_token new_token_id;
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
exit(0);
}
if (llama_decode(ctx, batch)) {
GGML_ABORT("failed to decode\n");
}
// sample the next token
new_token_id = llama_sampler_sample(smpl, ctx, -1);
// is it an end of generation?
if (llama_token_is_eog(model, new_token_id)) {
break;
}
// convert the token to a string, print it and add it to the response
char buf[256];
int n = llama_token_to_piece(model, new_token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
GGML_ABORT("failed to convert token to piece\n");
}
std::string piece(buf, n);
printf("%s", piece.c_str());
fflush(stdout);
response += piece;
// prepare the next batch with the sampled token
batch = llama_batch_get_one(&new_token_id, 1);
}
return response;
};
std::vector<llama_chat_message> messages;
std::vector<char> formatted(llama_n_ctx(ctx));
int prev_len = 0;
while (true) {
// get user input
printf("\033[32m> \033[0m");
std::string user;
std::getline(std::cin, user);
if (user.empty()) {
break;
}
// add the user input to the message list and format it
messages.push_back({"user", strdup(user.c_str())});
int new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
if (new_len > (int)formatted.size()) {
formatted.resize(new_len);
new_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), true, formatted.data(), formatted.size());
}
if (new_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
return 1;
}
// remove previous messages to obtain the prompt to generate the response
std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len);
// generate a response
printf("\033[33m");
std::string response = generate(prompt);
printf("\n\033[0m");
// add the response to the messages
messages.push_back({"assistant", strdup(response.c_str())});
prev_len = llama_chat_apply_template(model, nullptr, messages.data(), messages.size(), false, nullptr, 0);
if (prev_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
return 1;
}
}
// free resources
for (auto & msg : messages) {
free(const_cast<char *>(msg.content));
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
return 0;
}

20
flake.lock generated
View file

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1727826117,
"narHash": "sha256-K5ZLCyfO/Zj9mPFldf3iwS6oZStJcU4tSpiXTMYaaL0=",
"lastModified": 1730504689,
"narHash": "sha256-hgmguH29K2fvs9szpq2r3pz2/8cJd2LPS+b4tfNFCwE=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "3d04084d54bedc3d6b8b736c70ef449225c361b1",
"rev": "506278e768c2a08bec68eb62932193e341f55c90",
"type": "github"
},
"original": {
@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1729256560,
"narHash": "sha256-/uilDXvCIEs3C9l73JTACm4quuHUsIHcns1c+cHUJwA=",
"lastModified": 1730200266,
"narHash": "sha256-l253w0XMT8nWHGXuXqyiIC/bMvh1VRszGXgdpQlfhvU=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "4c2fcb090b1f3e5b47eaa7bd33913b574a11e0a0",
"rev": "807e9154dcb16384b1b765ebe9cd2bba2ac287fd",
"type": "github"
},
"original": {
@ -36,14 +36,14 @@
},
"nixpkgs-lib": {
"locked": {
"lastModified": 1727825735,
"narHash": "sha256-0xHYkMkeLVQAMa7gvkddbPqpxph+hDzdu1XdGPJR+Os=",
"lastModified": 1730504152,
"narHash": "sha256-lXvH/vOfb4aGYyvFmZK/HlsNsr/0CVWlwYvo2rxJk3s=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/fb192fec7cc7a4c26d51779e9bab07ce6fa5597a.tar.gz"
"url": "https://github.com/NixOS/nixpkgs/archive/cc2f28000298e1269cea6612cd06ec9979dd5d7f.tar.gz"
},
"original": {
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/fb192fec7cc7a4c26d51779e9bab07ce6fa5597a.tar.gz"
"url": "https://github.com/NixOS/nixpkgs/archive/cc2f28000298e1269cea6612cd06ec9979dd5d7f.tar.gz"
}
},
"root": {

View file

@ -114,11 +114,12 @@ extern "C" {
//
enum ggml_backend_dev_type {
// CPU device using system memory
GGML_BACKEND_DEVICE_TYPE_CPU,
// GPU device using dedicated memory
GGML_BACKEND_DEVICE_TYPE_GPU,
// devices with full capabilities (excludes backends such as BLAS that only support matrix multiplication)
GGML_BACKEND_DEVICE_TYPE_CPU_FULL,
GGML_BACKEND_DEVICE_TYPE_GPU_FULL
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
GGML_BACKEND_DEVICE_TYPE_ACCEL
};
// functionality supported by the device
@ -167,10 +168,14 @@ extern "C" {
GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
// Common functions that may be obtained using ggml_backend_reg_get_proc_address
// Functions that may be obtained using ggml_backend_reg_get_proc_address
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(const float *);
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t, int);
// Split buffer type for tensor parallelism
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
// Set the number of threads for the backend
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
// Get additional buffer types provided by the device (returns a NULL-terminated array)
typedef ggml_backend_buffer_type_t * (*ggml_backend_dev_get_extra_bufts_t)(ggml_backend_dev_t device);
//
// Backend registry
@ -192,7 +197,7 @@ extern "C" {
GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
// = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
// = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU_FULL) OR ggml_backend_dev_by_type(CPU_FULL), NULL)
// = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU) OR ggml_backend_dev_by_type(CPU), NULL)
GGML_API ggml_backend_t ggml_backend_init_best(void);
//
@ -300,27 +305,10 @@ extern "C" {
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
// Create a backend buffer from an existing pointer
// CPU buffer types are always available
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
#ifdef __cplusplus
}
#endif

38
ggml/include/ggml-cpp.h Normal file
View file

@ -0,0 +1,38 @@
#pragma once
#ifndef __cplusplus
#error "This header is for C++ only"
#endif
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include <memory>
// Smart pointers for ggml types
// ggml
struct ggml_context_deleter { void operator()(ggml_context * ctx) { ggml_free(ctx); } };
struct gguf_context_deleter { void operator()(gguf_context * ctx) { gguf_free(ctx); } };
typedef std::unique_ptr<ggml_context, ggml_context_deleter> ggml_context_ptr;
typedef std::unique_ptr<gguf_context, gguf_context_deleter> gguf_context_ptr;
// ggml-alloc
struct ggml_gallocr_deleter { void operator()(ggml_gallocr_t galloc) { ggml_gallocr_free(galloc); } };
typedef std::unique_ptr<ggml_gallocr_t, ggml_gallocr_deleter> ggml_gallocr_ptr;
// ggml-backend
struct ggml_backend_deleter { void operator()(ggml_backend_t backend) { ggml_backend_free(backend); } };
struct ggml_backend_buffer_deleter { void operator()(ggml_backend_buffer_t buffer) { ggml_backend_buffer_free(buffer); } };
struct ggml_backend_event_deleter { void operator()(ggml_backend_event_t event) { ggml_backend_event_free(event); } };
struct ggml_backend_sched_deleter { void operator()(ggml_backend_sched_t sched) { ggml_backend_sched_free(sched); } };
typedef std::unique_ptr<ggml_backend, ggml_backend_deleter> ggml_backend_ptr;
typedef std::unique_ptr<ggml_backend_buffer, ggml_backend_buffer_deleter> ggml_backend_buffer_ptr;
typedef std::unique_ptr<ggml_backend_event, ggml_backend_event_deleter> ggml_backend_event_ptr;
typedef std::unique_ptr<ggml_backend_sched, ggml_backend_sched_deleter> ggml_backend_sched_ptr;

150
ggml/include/ggml-cpu.h Normal file
View file

@ -0,0 +1,150 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
// Scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// Threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
GGML_NUMA_STRATEGY_ISOLATE = 2,
GGML_NUMA_STRATEGY_NUMACTL = 3,
GGML_NUMA_STRATEGY_MIRROR = 4,
GGML_NUMA_STRATEGY_COUNT
};
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
// TODO: move to backend interface
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
// get the sve vector length in bytes
GGML_API int ggml_cpu_get_sve_cnt(void);
// Internal types and functions exposed for tests and benchmarks
typedef void (*ggml_from_float_to_mat_t)
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
struct ggml_type_traits_cpu {
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
int64_t ncols; // number of columns to process simultaneously
ggml_gemv_t gemv;
ggml_gemm_t gemm;
};
GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
GGML_API void ggml_cpu_init(void);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
#ifdef __cplusplus
}
#endif

View file

@ -28,7 +28,7 @@ GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);

View file

@ -11,6 +11,8 @@
extern "C" {
#endif
#define GGML_KOMPUTE_MAX_DEVICES 16
struct ggml_vk_device {
int index;
int type; // same as VkPhysicalDeviceType
@ -41,6 +43,8 @@ GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
GGML_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
#ifdef __cplusplus
}
#endif

View file

@ -217,7 +217,6 @@
#define GGML_MAX_DIMS 4
#define GGML_MAX_PARAMS 2048
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 10
#define GGML_MAX_N_THREADS 512
#define GGML_MAX_OP_PARAMS 64
@ -510,7 +509,7 @@ extern "C" {
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV,
GGML_OP_RWKV_WKV6,
GGML_OP_UNARY,
@ -559,10 +558,10 @@ extern "C" {
enum ggml_log_level {
GGML_LOG_LEVEL_NONE = 0,
GGML_LOG_LEVEL_INFO = 1,
GGML_LOG_LEVEL_WARN = 2,
GGML_LOG_LEVEL_ERROR = 3,
GGML_LOG_LEVEL_DEBUG = 4,
GGML_LOG_LEVEL_DEBUG = 1,
GGML_LOG_LEVEL_INFO = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_ERROR = 4,
GGML_LOG_LEVEL_CONT = 5, // continue previous log
};
@ -574,6 +573,13 @@ extern "C" {
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
@ -619,66 +625,6 @@ extern "C" {
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
// Scheduling priorities
enum ggml_sched_priority {
GGML_SCHED_PRIO_NORMAL,
GGML_SCHED_PRIO_MEDIUM,
GGML_SCHED_PRIO_HIGH,
GGML_SCHED_PRIO_REALTIME
};
// Threadpool params
// Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
struct ggml_threadpool_params {
bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
int n_threads; // number of threads
enum ggml_sched_priority prio; // thread priority
uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
bool strict_cpu; // strict cpu placement
bool paused; // start in paused state
};
struct ggml_threadpool; // forward declaration, see ggml.c
typedef struct ggml_threadpool * ggml_threadpool_t;
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
struct ggml_threadpool * threadpool;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
// scratch buffer
struct ggml_scratch {
size_t offs;
size_t size;
void * data;
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
GGML_NUMA_STRATEGY_ISOLATE = 2,
GGML_NUMA_STRATEGY_NUMACTL = 3,
GGML_NUMA_STRATEGY_MIRROR = 4,
GGML_NUMA_STRATEGY_COUNT
};
//
// GUID
@ -701,9 +647,6 @@ extern "C" {
// accepts a UTF-8 path, even on Windows
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
@ -760,12 +703,12 @@ extern "C" {
// main
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
GGML_API void ggml_free(struct ggml_context * ctx);
GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
GGML_API void ggml_reset(struct ggml_context * ctx);
GGML_API void ggml_free (struct ggml_context * ctx);
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
@ -805,8 +748,7 @@ extern "C" {
int64_t ne2,
int64_t ne3);
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
@ -816,35 +758,25 @@ extern "C" {
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
// Converts a flat index into coordinates
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
GGML_ATTRIBUTE_FORMAT(2, 3)
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
// Tensor flags
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
//
// operations on tensors with backpropagation
//
@ -1887,7 +1819,7 @@ extern "C" {
struct ggml_tensor * pw,
struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_rwkv_wkv(
GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
@ -2060,9 +1992,6 @@ extern "C" {
// automatic differentiation
//
GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
@ -2094,27 +2023,6 @@ extern "C" {
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
@ -2285,6 +2193,8 @@ extern "C" {
} lbfgs;
};
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
// optimize the function defined by the tensor f
@ -2316,12 +2226,6 @@ extern "C" {
ggml_opt_callback callback,
void * callback_data);
//
// tensor flags
//
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
//
// quantization
//
@ -2490,8 +2394,6 @@ extern "C" {
GGML_API int ggml_cpu_has_avx512_bf16(void);
GGML_API int ggml_cpu_has_amx_int8 (void);
GGML_API int ggml_cpu_has_fma (void);
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_arm_fma (void);
GGML_API int ggml_cpu_has_metal (void);
GGML_API int ggml_cpu_has_f16c (void);
@ -2508,17 +2410,9 @@ extern "C" {
GGML_API int ggml_cpu_has_sycl (void);
GGML_API int ggml_cpu_has_rpc (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
GGML_API int ggml_cpu_has_cann (void);
GGML_API int ggml_cpu_has_llamafile (void);
// get the sve vector length in bytes
GGML_API int ggml_cpu_get_sve_cnt(void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
@ -2527,14 +2421,6 @@ extern "C" {
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_to_mat_t)
(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
const void * GGML_RESTRICT y, int nr, int nc);
struct ggml_type_traits {
const char * type_name;
@ -2545,13 +2431,6 @@ extern "C" {
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_ref;
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously
int64_t ncols; // number of columns to process simultaneously
ggml_gemv_t gemv;
ggml_gemm_t gemm;
};
GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);

View file

@ -800,6 +800,7 @@ if (GGML_KOMPUTE)
kompute-shaders/op_mul_mat_q8_0.comp
kompute-shaders/op_mul_mat_q4_0.comp
kompute-shaders/op_mul_mat_q4_1.comp
kompute-shaders/op_mul_mat_q4_k.comp
kompute-shaders/op_mul_mat_q6_k.comp
kompute-shaders/op_getrows_f32.comp
kompute-shaders/op_getrows_f16.comp
@ -833,6 +834,7 @@ if (GGML_KOMPUTE)
shaderop_mul_mat_q8_0.h
shaderop_mul_mat_q4_0.h
shaderop_mul_mat_q4_1.h
shaderop_mul_mat_q4_k.h
shaderop_mul_mat_q6_k.h
shaderop_getrows_f32.h
shaderop_getrows_f16.h
@ -1364,9 +1366,12 @@ endif()
add_library(ggml
../include/ggml.h
../include/ggml-cpu.h
../include/ggml-alloc.h
../include/ggml-backend.h
../include/ggml-cpp.h
ggml.c
ggml-cpu.c
ggml-alloc.c
ggml-backend.cpp
ggml-quants.c
@ -1391,7 +1396,7 @@ if (EMSCRIPTEN)
endif()
target_compile_definitions(ggml PUBLIC ${GGML_CDEF_PUBLIC})
target_include_directories(ggml PUBLIC ../include)
target_include_directories(ggml PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)
target_include_directories(ggml PRIVATE . ${GGML_EXTRA_INCLUDES})
target_link_directories (ggml PRIVATE ${GGML_EXTRA_LIBDIRS})
target_compile_features (ggml PRIVATE c_std_11) # don't bump
@ -1400,7 +1405,7 @@ list(APPEND GGML_EXTRA_LIBS_PRIVATE Threads::Threads)
find_library(MATH_LIBRARY m)
if (MATH_LIBRARY)
if (NOT WIN32 OR NOT GGML_SYCL)
if (NOT WIN32 OR NOT DEFINED ENV{ONEAPI_ROOT})
list(APPEND GGML_EXTRA_LIBS_PRIVATE m)
endif()
endif()

View file

@ -7,6 +7,7 @@
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "ggml-cpu-impl.h"
#include <math.h>
@ -991,6 +992,73 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
}
}
return;
#elif defined(__riscv_v_intrinsic)
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
vfloat32m1_t sumf = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
for (int l = 0; l < nb; l++) {
const int64_t a0 = *(const int64_t *)&a_ptr[l].qs[0];
const int64_t a1 = *(const int64_t *)&a_ptr[l].qs[8];
const int64_t a2 = *(const int64_t *)&a_ptr[l].qs[16];
const int64_t a3 = *(const int64_t *)&a_ptr[l].qs[24];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a0, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a1, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a2, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(a3, vl / 4));
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_hi_m));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
// vector version needs Zvfhmin extension
const float a_scale = GGML_FP16_TO_FP32(a_ptr[l].d);
const float b_scales[8] = {
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
GGML_FP16_TO_FP32(b_ptr[l].d[7])
};
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
sumf = __riscv_vfmacc_vv_f32m1(sumf, tmp1, b_scales_vec, vl / 4);
}
__riscv_vse32_v_f32m1(s + x * ncols_interleaved, sumf, vl / 4);
}
return;
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
{
float sumf[8];
@ -3171,6 +3239,207 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * restrict s, size_t bs, const void *
}
}
}
return;
}
#elif defined(__riscv_v_intrinsic)
if (__riscv_vlenb() >= QK4_0) {
const size_t vl = QK4_0;
for (int y = 0; y < nr / 4; y++) {
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
vfloat32m1_t sumf0 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf1 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf2 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
vfloat32m1_t sumf3 = __riscv_vfmv_v_f_f32m1(0.0, vl / 4);
for (int l = 0; l < nb; l++) {
const vint8m4_t rhs_raw_vec = __riscv_vle8_v_i8m4((const int8_t *)b_ptr[l].qs, vl * 4);
const vint8m4_t rhs_vec_lo = __riscv_vsra_vx_i8m4(__riscv_vsll_vx_i8m4(rhs_raw_vec, 4, vl * 4), 4, vl * 4);
const vint8m4_t rhs_vec_hi = __riscv_vsra_vx_i8m4(rhs_raw_vec, 4, vl * 4);
const vint8m2_t rhs_vec_lo_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 0);
const vint8m2_t rhs_vec_lo_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_lo, 1);
const vint8m2_t rhs_vec_hi_0 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 0);
const vint8m2_t rhs_vec_hi_1 = __riscv_vget_v_i8m4_i8m2(rhs_vec_hi, 1);
// vector version needs Zvfhmin extension
const float a_scales[4] = {
GGML_FP16_TO_FP32(a_ptr[l].d[0]),
GGML_FP16_TO_FP32(a_ptr[l].d[1]),
GGML_FP16_TO_FP32(a_ptr[l].d[2]),
GGML_FP16_TO_FP32(a_ptr[l].d[3])
};
const float b_scales[8] = {
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
GGML_FP16_TO_FP32(b_ptr[l].d[7])
};
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
const int64_t A0 = *(const int64_t *)&a_ptr[l].qs[0];
const int64_t A4 = *(const int64_t *)&a_ptr[l].qs[32];
const int64_t A8 = *(const int64_t *)&a_ptr[l].qs[64];
const int64_t Ac = *(const int64_t *)&a_ptr[l].qs[96];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l0;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A0, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A4, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A8, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ac, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l0 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l0));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[0], vl / 4);
sumf0 = __riscv_vfmacc_vv_f32m1(sumf0, tmp1, b_scales_vec, vl / 4);
}
const int64_t A1 = *(const int64_t *)&a_ptr[l].qs[8];
const int64_t A5 = *(const int64_t *)&a_ptr[l].qs[40];
const int64_t A9 = *(const int64_t *)&a_ptr[l].qs[72];
const int64_t Ad = *(const int64_t *)&a_ptr[l].qs[104];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l1;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A1, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A5, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A9, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ad, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l1 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l1));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[1], vl / 4);
sumf1 = __riscv_vfmacc_vv_f32m1(sumf1, tmp1, b_scales_vec, vl / 4);
}
const int64_t A2 = *(const int64_t *)&a_ptr[l].qs[16];
const int64_t A6 = *(const int64_t *)&a_ptr[l].qs[48];
const int64_t Aa = *(const int64_t *)&a_ptr[l].qs[80];
const int64_t Ae = *(const int64_t *)&a_ptr[l].qs[112];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l2;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A2, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A6, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Aa, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ae, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l2 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l2));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[2], vl / 4);
sumf2 = __riscv_vfmacc_vv_f32m1(sumf2, tmp1, b_scales_vec, vl / 4);
}
const int64_t A3 = *(const int64_t *)&a_ptr[l].qs[24];
const int64_t A7 = *(const int64_t *)&a_ptr[l].qs[56];
const int64_t Ab = *(const int64_t *)&a_ptr[l].qs[88];
const int64_t Af = *(const int64_t *)&a_ptr[l].qs[120];
__asm__ __volatile__("" ::: "memory"); // prevent gcc from emitting fused vlse64, violating alignment
vint16m4_t sumi_l3;
{
const vint8m2_t lhs_0_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A3, vl / 4));
const vint8m2_t lhs_1_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(A7, vl / 4));
const vint8m2_t lhs_2_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Ab, vl / 4));
const vint8m2_t lhs_3_8 =__riscv_vreinterpret_v_i64m2_i8m2(__riscv_vmv_v_x_i64m2(Af, vl / 4));
const vint16m4_t sumi_lo_0 = __riscv_vwmul_vv_i16m4(rhs_vec_lo_0, lhs_0_8, vl * 2);
const vint16m4_t sumi_lo_1 = __riscv_vwmacc_vv_i16m4(sumi_lo_0, rhs_vec_lo_1, lhs_1_8, vl * 2);
const vint16m4_t sumi_hi_0 = __riscv_vwmacc_vv_i16m4(sumi_lo_1, rhs_vec_hi_0, lhs_2_8, vl * 2);
const vint16m4_t sumi_hi_m = __riscv_vwmacc_vv_i16m4(sumi_hi_0, rhs_vec_hi_1, lhs_3_8, vl * 2);
sumi_l3 = sumi_hi_m;
}
{
const vuint32m4_t sumi_i32 = __riscv_vreinterpret_v_i32m4_u32m4(__riscv_vreinterpret_v_i16m4_i32m4(sumi_l3));
const vuint16m2_t sumi_h2_0 = __riscv_vnsrl_wx_u16m2(sumi_i32, 0, vl);
const vuint16m2_t sumi_h2_1 = __riscv_vnsrl_wx_u16m2(sumi_i32, 16, vl);
const vuint16m2_t sumi_h2 = __riscv_vadd_vv_u16m2(sumi_h2_0, sumi_h2_1, vl);
const vuint32m2_t sumi_h2_i32 = __riscv_vreinterpret_v_u16m2_u32m2(sumi_h2);
const vuint16m1_t sumi_h4_0 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 0, vl / 2);
const vuint16m1_t sumi_h4_1 = __riscv_vnsrl_wx_u16m1(sumi_h2_i32, 16, vl / 2);
const vuint16m1_t sumi_h4 = __riscv_vadd_vv_u16m1(sumi_h4_0, sumi_h4_1, vl / 2);
const vuint32m1_t sumi_h4_i32 = __riscv_vreinterpret_v_u16m1_u32m1(sumi_h4);
const vint16mf2_t sumi_h8_0 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 0, vl / 4));
const vint16mf2_t sumi_h8_1 = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vnsrl_wx_u16mf2(sumi_h4_i32, 16, vl / 4));
const vint32m1_t sumi_h8 = __riscv_vwadd_vv_i32m1(sumi_h8_0, sumi_h8_1, vl / 4);
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scales[3], vl / 4);
sumf3 = __riscv_vfmacc_vv_f32m1(sumf3, tmp1, b_scales_vec, vl / 4);
}
}
__riscv_vse32_v_f32m1(&s[(y * 4 + 0) * bs + x * ncols_interleaved], sumf0, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 1) * bs + x * ncols_interleaved], sumf1, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 2) * bs + x * ncols_interleaved], sumf2, vl / 4);
__riscv_vse32_v_f32m1(&s[(y * 4 + 3) * bs + x * ncols_interleaved], sumf3, vl / 4);
}
}
return;
}
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)

View file

@ -16,12 +16,6 @@
#if defined(__AMX_INT8__)
// AMX buffer interface
static const char * ggml_backend_amx_buffer_get_name(ggml_backend_buffer_t buffer) {
return "AMX";
GGML_UNUSED(buffer);
}
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
free(buffer->context);
}
@ -72,7 +66,6 @@ static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
}
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
/* .get_name = */ ggml_backend_amx_buffer_get_name,
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
/* .get_base = */ ggml_backend_amx_buffer_get_base,
/* .init_tensor = */ NULL, // no initialization required
@ -121,14 +114,14 @@ static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
/* .iface = */ {
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
},
/* .device = */ NULL,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_amx_reg(), 0),
/* .context = */ NULL,
};
@ -149,12 +142,6 @@ static void ggml_backend_amx_free(ggml_backend_t backend) {
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_amx_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_amx_buffer_type();
GGML_UNUSED(backend);
}
static enum ggml_status ggml_backend_amx_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
ggml_backend_amx_context * ctx = (ggml_backend_amx_context *)backend->context;
@ -187,7 +174,6 @@ static enum ggml_status ggml_backend_amx_graph_compute(ggml_backend_t backend, s
static struct ggml_backend_i ggml_backend_amx_i = {
/* .get_name = */ ggml_backend_amx_name,
/* .free = */ ggml_backend_amx_free,
/* .get_default_buffer_type = */ ggml_backend_amx_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
@ -197,9 +183,6 @@ static struct ggml_backend_i ggml_backend_amx_i = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_amx_graph_compute,
/* .supports_op = */ NULL,
/* .supports_buft = */ NULL,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
@ -279,7 +262,7 @@ static void ggml_backend_amx_device_get_memory(ggml_backend_dev_t dev, size_t *
}
static enum ggml_backend_dev_type ggml_backend_amx_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_CPU;
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}

View file

@ -22,7 +22,7 @@ extern "C" {
size_t (*get_max_size) (ggml_backend_buffer_type_t buft);
// (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes)
size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
// (optional) check if tensor data is in host memory (defaults to false)
// (optional) check if tensor data is in host memory and uses standard ggml tensor layout (defaults to false)
bool (*is_host) (ggml_backend_buffer_type_t buft);
};
@ -37,7 +37,6 @@ extern "C" {
//
struct ggml_backend_buffer_i {
const char * (*get_name) (ggml_backend_buffer_t buffer);
// (optional) free the buffer
void (*free_buffer) (ggml_backend_buffer_t buffer);
// base address of the buffer
@ -88,19 +87,16 @@ extern "C" {
void (*free)(ggml_backend_t backend);
// Will be moved to the device interface
// buffer allocation
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations
// (optional) complete all pending operations (required if the backend supports async operations)
void (*synchronize)(ggml_backend_t backend);
// (optional) compute graph with a plan (not used currently)
// (optional) graph plans (not used currently)
// compute graph with a plan
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
@ -111,13 +107,6 @@ extern "C" {
// compute graph (always async if supported by the backend)
enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
// IMPORTANT: these functions have been moved to the device interface and will be removed from the backend interface
// new backends should implement the device interface instead
// These functions are being moved to the device interface
bool (*supports_op) (ggml_backend_t backend, const struct ggml_tensor * op);
bool (*supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
bool (*offload_op) (ggml_backend_t backend, const struct ggml_tensor * op);
// (optional) event synchronization
// record an event on this stream
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);

File diff suppressed because it is too large Load diff

View file

@ -224,12 +224,6 @@ static void ggml_backend_blas_free(ggml_backend_t backend) {
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
}
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
@ -265,7 +259,6 @@ static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend,
static struct ggml_backend_i blas_backend_i = {
/* .get_name = */ ggml_backend_blas_get_name,
/* .free = */ ggml_backend_blas_free,
/* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
@ -275,9 +268,6 @@ static struct ggml_backend_i blas_backend_i = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_blas_graph_compute,
/* .supports_op = */ NULL,
/* .supports_buft = */ NULL,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
@ -356,7 +346,7 @@ static void ggml_backend_blas_device_get_memory(ggml_backend_dev_t dev, size_t *
}
static enum ggml_backend_dev_type ggml_backend_blas_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_CPU;
return GGML_BACKEND_DEVICE_TYPE_ACCEL;
GGML_UNUSED(dev);
}
@ -374,7 +364,7 @@ static void ggml_backend_blas_device_get_props(ggml_backend_dev_t dev, struct gg
};
}
static ggml_backend_t ggml_backend_blas_device_init(ggml_backend_dev_t dev, const char * params) {
static ggml_backend_t ggml_backend_blas_device_init_backend(ggml_backend_dev_t dev, const char * params) {
return ggml_backend_blas_init();
GGML_UNUSED(dev);
@ -387,7 +377,7 @@ static ggml_backend_buffer_type_t ggml_backend_blas_device_get_buffer_type(ggml_
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
static ggml_backend_buffer_t ggml_backend_blas_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
GGML_UNUSED(dev);
@ -456,10 +446,10 @@ static const struct ggml_backend_device_i ggml_backend_blas_device_i = {
/* .get_memory = */ ggml_backend_blas_device_get_memory,
/* .get_type = */ ggml_backend_blas_device_get_type,
/* .get_props = */ ggml_backend_blas_device_get_props,
/* .init_backend = */ ggml_backend_blas_device_init,
/* .init_backend = */ ggml_backend_blas_device_init_backend,
/* .get_buffer_type = */ ggml_backend_blas_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_ptr,
/* .buffer_from_host_ptr = */ ggml_backend_blas_device_buffer_from_host_ptr,
/* .supports_op = */ ggml_backend_blas_device_supports_op,
/* .supports_buft = */ ggml_backend_blas_device_supports_buft,
/* .offload_op = */ NULL,

View file

@ -489,23 +489,6 @@ struct ggml_backend_cann_buffer_context {
~ggml_backend_cann_buffer_context() { ACL_CHECK(aclrtFree(dev_ptr)); }
};
/**
* @brief Retrieve the name associated with a CANN buffer.
*
* This function returns the name of a CANN buffer, which is stored in the
* context of the buffer.
*
* @param buffer The CANN buffer whose name is to be retrieved.
* @return A pointer to a C-string containing the name of the buffer.
*/
static const char* ggml_backend_cann_buffer_get_name(
ggml_backend_buffer_t buffer) {
return "CANN";
GGML_UNUSED(buffer);
}
/**
* @brief Check if a buffer is a CANN buffer.
*
@ -515,9 +498,10 @@ static const char* ggml_backend_cann_buffer_get_name(
* @param buffer The buffer to check.
* @return true if the buffer is a CANN buffer, false otherwise.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft);
static bool ggml_backend_buffer_is_cann(
ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cann_buffer_get_name;
return ggml_backend_buft_is_cann(buffer->buft);
}
/**
@ -965,7 +949,6 @@ static void ggml_backend_cann_buffer_clear(
* on a CANN buffer within the backend.
*/
static const ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
/* .get_name = */ ggml_backend_cann_buffer_get_name,
/* .free_buffer = */ ggml_backend_cann_buffer_free_buffer,
/* .get_base = */ ggml_backend_cann_buffer_get_base,
/* .init_tensor = */ ggml_backend_cann_buffer_init_tensor,
@ -999,9 +982,10 @@ struct ggml_backend_cann_buffer_type_context {
*/
static const char* ggml_backend_cann_buffer_type_name(
ggml_backend_buffer_type_t buft) {
return "CANN";
ggml_backend_cann_buffer_type_context* buft_ctx =
(ggml_backend_cann_buffer_type_context*)buft->context;
GGML_UNUSED(buft);
return buft_ctx->name.c_str();
}
/**
@ -1243,7 +1227,6 @@ static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggm
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(hostPtr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_cann_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_cann_host_buffer_free;
return buffer;
@ -1465,24 +1448,6 @@ static void ggml_backend_cann_free(ggml_backend_t backend) {
delete backend;
}
/**
* @brief Retrieves the default buffer type associated with the CANN backend.
*
* This function returns the buffer type specific to the device associated
* with the CANN backend. It is used to allocate buffers for computations
* performed by the backend.
*
* @param backend Pointer to the CANN backend structure.
* @return Pointer to the buffer type structure for the CANN backend.
*/
static ggml_backend_buffer_type_t
ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
return ggml_backend_cann_buffer_type(cann_ctx->device);
}
/**
* @brief Sets tensor data asynchronously in the CANN backend.
*
@ -1863,7 +1828,6 @@ static void ggml_backend_cann_event_wait(ggml_backend_t backend,
static const ggml_backend_i ggml_backend_cann_interface = {
/* .get_name = */ ggml_backend_cann_name,
/* .free = */ ggml_backend_cann_free,
/* .get_default_buffer_type = */ ggml_backend_cann_get_default_buffer_type,
/* .set_tensor_async = */ ggml_backend_cann_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cann_get_tensor_async,
/* .cpy_tensor_async = */ ggml_backend_cann_cpy_tensor_async,
@ -1873,9 +1837,6 @@ static const ggml_backend_i ggml_backend_cann_interface = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cann_graph_compute,
/* .supports_op = */ NULL, // moved to device
/* .supports_buft = */ NULL, // moved to device
/* .offload_op = */ NULL, // moved to device
/* .event_record = */ ggml_backend_cann_event_record,
/* .event_wait = */ ggml_backend_cann_event_wait,
};
@ -1918,7 +1879,7 @@ static void ggml_backend_cann_device_get_memory(ggml_backend_dev_t dev, size_t *
static enum ggml_backend_dev_type ggml_backend_cann_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_cann_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {

13834
ggml/src/ggml-cpu.c Normal file

File diff suppressed because it is too large Load diff

View file

@ -36,7 +36,7 @@
#include "ggml-cuda/tsembd.cuh"
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/rwkv-wkv.cuh"
#include "ggml-cuda/wkv6.cuh"
#include <algorithm>
#include <array>
@ -421,20 +421,15 @@ struct ggml_backend_cuda_buffer_context {
}
};
static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->name.c_str();
}
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
}
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
}
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
return buffer->iface.free_buffer == ggml_backend_cuda_buffer_free_buffer;
}
static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
return ctx->dev_ptr;
@ -515,7 +510,6 @@ static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
}
static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
@ -548,8 +542,6 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
ggml_cuda_set_device(buft_ctx->device);
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
void * dev_ptr;
cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
if (err != cudaSuccess) {
@ -657,7 +649,9 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl
}
struct ggml_backend_cuda_split_buffer_type_context {
int main_device;
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
std::string name;
};
struct ggml_backend_cuda_split_buffer_context {
@ -680,16 +674,6 @@ struct ggml_backend_cuda_split_buffer_context {
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
};
static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Split";
GGML_UNUSED(buffer);
}
static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
}
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
@ -833,7 +817,6 @@ static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, u
}
static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
/* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
@ -848,9 +831,9 @@ static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
// cuda split buffer type
static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_CUDA_NAME "_Split";
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
GGML_UNUSED(buft);
return ctx->name.c_str();
}
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
@ -915,11 +898,11 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_inte
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
static std::map<std::pair<int, std::array<float, GGML_CUDA_MAX_DEVICES>>, struct ggml_backend_buffer_type> buft_map;
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
@ -937,18 +920,23 @@ ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * ten
}
}
auto it = buft_map.find(tensor_split_arr);
auto it = buft_map.find({main_device, tensor_split_arr});
if (it != buft_map.end()) {
return &it->second;
}
auto * ctx = new ggml_backend_cuda_split_buffer_type_context{
main_device,
tensor_split_arr,
GGML_CUDA_NAME + std::to_string(main_device) + "_Split",
};
struct ggml_backend_buffer_type buft {
/* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
/* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), main_device),
/* .context = */ ctx,
};
auto result = buft_map.emplace(tensor_split_arr, buft);
auto result = buft_map.emplace(std::make_pair(main_device, tensor_split_arr), buft);
return &result.first->second;
}
@ -960,12 +948,6 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
GGML_UNUSED(buft);
}
static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
return GGML_CUDA_NAME "_Host";
GGML_UNUSED(buffer);
}
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
@ -998,7 +980,6 @@ static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggm
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
return buffer;
@ -1316,11 +1297,17 @@ static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
if (err != cudaErrorPeerAccessAlreadyEnabled) {
CUDA_CHECK(err);
} else {
// reset the error
cudaGetLastError();
}
} else {
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
if (err != cudaErrorPeerAccessNotEnabled) {
CUDA_CHECK(err);
} else {
// reset the error
cudaGetLastError();
}
}
}
@ -1400,7 +1387,7 @@ static void ggml_cuda_op_mul_mat(
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
GGML_ASSERT(!(split && ne02 > 1));
GGML_ASSERT(!(split && ne03 > 1));
GGML_ASSERT(!(split && ne02 < ne12));
@ -1890,7 +1877,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
@ -2017,7 +2004,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
cudaStream_t stream = ctx.stream();
@ -2150,7 +2137,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
// why is this here instead of mul_mat?
if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
if (dst->src[0] != nullptr && ggml_backend_buft_is_cuda_split(dst->src[0]->buffer->buft)) {
ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
}
@ -2332,8 +2319,8 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
case GGML_OP_RWKV_WKV:
ggml_cuda_op_rwkv_wkv(ctx, dst);
case GGML_OP_RWKV_WKV6:
ggml_cuda_op_rwkv_wkv6(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
ggml_cuda_cross_entropy_loss_back(ctx, dst);
@ -2371,12 +2358,6 @@ static void ggml_backend_cuda_free(ggml_backend_t backend) {
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
}
static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
@ -2582,7 +2563,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
continue;
}
if (node->src[0] && node->src[0]->buffer && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
@ -2669,7 +2650,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
}
}
#endif
@ -2762,7 +2744,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
if (stat == cudaErrorGraphExecUpdateFailure) {
#ifndef NDEBUG
GGML_LOG_ERROR("%s: CUDA graph update failed\n", __func__);
GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
#endif
// The pre-existing graph exec cannot be updated due to violated constraints
// so instead clear error and re-instantiate
@ -2811,7 +2793,6 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
static const ggml_backend_i ggml_backend_cuda_interface = {
/* .get_name = */ ggml_backend_cuda_get_name,
/* .free = */ ggml_backend_cuda_free,
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
@ -2821,9 +2802,6 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .supports_op = */ NULL, // moved to device
/* .supports_buft = */ NULL, // moved to device
/* .offload_op = */ NULL, // moved to device
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
};
@ -2913,7 +2891,7 @@ static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t *
static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
@ -2937,7 +2915,7 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
};
}
static ggml_backend_t ggml_backend_cuda_device_init(ggml_backend_dev_t dev, const char * params) {
static ggml_backend_t ggml_backend_cuda_device_init_backend(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
return ggml_backend_cuda_init(ctx->device);
@ -2953,18 +2931,29 @@ static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(
return ggml_backend_cuda_host_buffer_type();
}
static ggml_backend_buffer_t ggml_backend_cuda_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
GGML_UNUSED(dev);
GGML_UNUSED(ptr);
GGML_UNUSED(size);
GGML_UNUSED(max_tensor_size);
return nullptr;
}
// TODO: move these functions here
static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
// split buffers can only be used with GGML_OP_MUL_MAT
if (op->op != GGML_OP_MUL_MAT) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda_split(op->src[i]->buffer->buft)) {
return false;
}
}
}
// check if all the sources are allocated on this device
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda(op->src[i]->buffer->buft)) {
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)op->src[i]->buffer->buft->context;
if (buft_ctx->device != dev_ctx->device) {
return false;
}
}
}
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
@ -3124,18 +3113,20 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
return false;
} break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_ADD:
case GGML_OP_ADD1:
case GGML_OP_SUB:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
@ -3162,7 +3153,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
case GGML_OP_RWKV_WKV:
case GGML_OP_RWKV_WKV6:
return true;
case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE
@ -3190,24 +3181,27 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
if (ggml_backend_buft_is_cuda_split(buft)) {
return true;
}
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
}
if (ggml_backend_buft_is_cuda(buft)) {
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
return buft_ctx->device == dev_ctx->device;
static int64_t get_op_batch_size(const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_GET_ROWS:
return 0;
case GGML_OP_MUL_MAT:
return op->ne[1];
case GGML_OP_MUL_MAT_ID:
case GGML_OP_ROPE:
return op->ne[2];
default:
return ggml_nrows(op);
}
return false;
}
static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
return get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
}
@ -3248,10 +3242,10 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
/* .get_memory = */ ggml_backend_cuda_device_get_memory,
/* .get_type = */ ggml_backend_cuda_device_get_type,
/* .get_props = */ ggml_backend_cuda_device_get_props,
/* .init_backend = */ ggml_backend_cuda_device_init,
/* .init_backend = */ ggml_backend_cuda_device_init_backend,
/* .get_buffer_type = */ ggml_backend_cuda_device_get_buffer_type,
/* .get_host_buffer_type = */ ggml_backend_cuda_device_get_host_buffer_type,
/* .buffer_from_host_ptr = */ ggml_backend_cuda_device_buffer_from_host_ptr,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_cuda_device_supports_op,
/* .supports_buft = */ ggml_backend_cuda_device_supports_buft,
/* .offload_op = */ ggml_backend_cuda_device_offload_op,

View file

@ -1,5 +0,0 @@
#include "common.cuh"
#define CUDA_WKV_BLOCK_SIZE 64
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -1,5 +1,5 @@
#include "common.cuh"
#include "rwkv-wkv.cuh"
#include "wkv6.cuh"
static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) {
const int tid = threadIdx.x;
@ -64,7 +64,7 @@ static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const
}
}
void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float * k_d = (const float *)dst->src[0]->data;
const float * v_d = (const float *)dst->src[1]->data;
const float * r_d = (const float *)dst->src[2]->data;
@ -83,7 +83,7 @@ void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE);
GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE); // The current cuda kernel is designed for RWKV6, HEAD_SIZE == 64
rwkv_wkv_f32<<<B * H, C / H, 0, stream>>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d);
}

View file

@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_WKV_BLOCK_SIZE 64
void ggml_cuda_op_rwkv_wkv6(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View file

@ -8,6 +8,7 @@
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
@ -36,6 +37,20 @@ extern "C" {
#endif
#endif
static inline int ggml_up32(int n) {
return (n + 31) & ~31;
}
//static inline int ggml_up64(int n) {
// return (n + 63) & ~63;
//}
static inline int ggml_up(int n, int m) {
// assert m is a power of 2
GGML_ASSERT((m & (m - 1)) == 0);
return (n + m - 1) & ~(m - 1);
}
//
// logging
//
@ -51,6 +66,74 @@ void ggml_log_callback_default(enum ggml_log_level level, const char * text, voi
#define GGML_LOG_DEBUG(...) ggml_log_internal(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define GGML_LOG_CONT(...) ggml_log_internal(GGML_LOG_LEVEL_CONT , __VA_ARGS__)
#define GGML_DEBUG 0
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) GGML_LOG_DEBUG(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) GGML_LOG_DEBUG(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) GGML_LOG_DEBUG(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
// tensor params
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
assert(params_size <= GGML_MAX_OP_PARAMS);
memcpy(tensor->op_params, params, params_size);
}
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
return ((const int32_t *)(tensor->op_params))[i];
}
static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
return ((const float *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value;
}
static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
((float *)(tensor->op_params))[i] = value;
}
struct ggml_map_custom1_op_params {
ggml_custom1_op_t fun;
int n_tasks;
void * userdata;
};
struct ggml_map_custom2_op_params {
ggml_custom2_op_t fun;
int n_tasks;
void * userdata;
};
struct ggml_map_custom3_op_params {
ggml_custom3_op_t fun;
int n_tasks;
void * userdata;
};
// bitset
typedef uint32_t ggml_bitset_t;
@ -204,6 +287,10 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
void * ggml_aligned_malloc(size_t size);
void ggml_aligned_free(void * ptr, size_t size);
// TODO: move to threading file
void ggml_critical_section_start(void);
void ggml_critical_section_end(void);
#ifdef __cplusplus
}
#endif

View file

@ -20,6 +20,7 @@
#include "shaderop_mul_mat_q8_0.h"
#include "shaderop_mul_mat_q4_0.h"
#include "shaderop_mul_mat_q4_1.h"
#include "shaderop_mul_mat_q4_k.h"
#include "shaderop_mul_mat_q6_k.h"
#include "shaderop_mul_mat_mat_f32.h"
#include "shaderop_getrows_f32.h"
@ -42,6 +43,7 @@
#include <cstring>
#include <iostream>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <unordered_map>
@ -273,18 +275,9 @@ static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t mem
return results;
}
// public API returns a C-style array
ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
auto devices = ggml_vk_available_devices_internal(memoryRequired);
*count = devices.size();
if (devices.empty()) {
return nullptr;
}
size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
memcpy(arr, devices.data(), nbytes);
return arr;
static std::vector<ggml_vk_device>& ggml_vk_available_devices() {
static std::vector<ggml_vk_device> devices = ggml_vk_available_devices_internal(0);
return devices;
}
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
@ -341,7 +334,7 @@ ggml_vk_device ggml_vk_current_device() {
if (!komputeManager()->hasDevice())
return ggml_vk_device();
auto devices = ggml_vk_available_devices_internal(0);
auto devices = ggml_vk_available_devices();
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
GGML_ASSERT(!devices.empty());
return devices.front();
@ -1075,6 +1068,40 @@ static void ggml_vk_mul_mat_q8_0(Args&&... args) {
ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
}
static void ggml_vk_mul_mat_q4_k(
kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
const std::shared_ptr<kp::Tensor>& inB,
const std::shared_ptr<kp::Tensor>& out,
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne10,
int32_t ne11, int32_t ne12, int32_t ne13, int32_t ne0,
int32_t ne1, int32_t r2, int32_t r3
) {
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_k_comp_spv,
kp::shader_data::op_mul_mat_q4_k_comp_spv_len);
struct PushConstants {
uint32_t inAOff, inBOff, outOff;
int32_t ne00, ne10, ne0, ne1, ne01, ne02, ne12, r2, r3;
} pushConsts {
0, 0, 0,
ne00, ne10, ne0, ne1, ne01, ne02, ne12, r2, r3
};
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
if (!komputeManager()->hasAlgorithm(__func__)) {
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)}, {}, {pushConsts});
} else {
s_algo = komputeManager()->getAlgorithm(__func__);
s_algo->setTensors({inA, inB, out});
s_algo->setWorkgroup({unsigned((ne01 + 3)/4), unsigned(ne11), unsigned(ne12) * unsigned(ne13)});
s_algo->setPushConstants<PushConstants>({pushConsts});
s_algo->updateDescriptors(s_kompute_context->pool.get());
}
seq.record<kp::OpAlgoDispatch>(s_algo);
}
static void ggml_vk_mul_mat_q6_k(
kp::Sequence& seq,
const std::shared_ptr<kp::Tensor>& inA,
@ -1323,17 +1350,7 @@ static void ggml_vk_cpy_f16_f32(Args&&... args) {
ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
}
static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
switch (op->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
break;
default:
return false;
}
static bool ggml_backend_kompute_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
@ -1402,6 +1419,7 @@ static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_K:
return true;
default:
;
@ -1410,6 +1428,8 @@ static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
;
}
return false;
GGML_UNUSED(dev);
}
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
@ -1458,11 +1478,6 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
any_commands_recorded = true;
if (!ggml_vk_supports_op(dst)) {
fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
GGML_ABORT("unsupported op");
}
const int32_t ne00 = src0 ? src0->ne[0] : 0;
const int32_t ne01 = src0 ? src0->ne[1] : 0;
const int32_t ne02 = src0 ? src0->ne[2] : 0;
@ -1656,6 +1671,12 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
);
break;
case GGML_TYPE_Q4_K:
ggml_vk_mul_mat_q4_k(
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, ne12/ne02, ne13/ne03
);
break;
case GGML_TYPE_Q6_K:
ggml_vk_mul_mat_q6_k(
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
@ -1820,11 +1841,6 @@ static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
}
}
static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
return ctx->name.c_str();
}
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
auto * memory = (ggml_vk_memory *)buffer->context;
if (ggml_vk_has_device()) {
@ -1868,7 +1884,6 @@ static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint
}
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
/* .get_name = */ ggml_backend_kompute_buffer_get_name,
/* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
/* .get_base = */ ggml_backend_kompute_buffer_get_base,
/* .init_tensor = */ NULL,
@ -1913,25 +1928,31 @@ static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
};
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
static std::vector<ggml_backend_buffer_type> bufts = []() {
std::vector<ggml_backend_buffer_type> vec;
auto devices = ggml_vk_available_devices_internal(0);
vec.reserve(devices.size());
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
for (const auto & dev : devices) {
vec.push_back({
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
/* .device = */ nullptr,
/* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
});
auto devices = ggml_vk_available_devices();
int32_t device_count = (int32_t) devices.size();
GGML_ASSERT(device < device_count);
GGML_ASSERT(devices.size() <= GGML_KOMPUTE_MAX_DEVICES);
static ggml_backend_buffer_type
ggml_backend_kompute_buffer_types[GGML_KOMPUTE_MAX_DEVICES];
static bool ggml_backend_kompute_buffer_type_initialized = false;
if (!ggml_backend_kompute_buffer_type_initialized) {
for (int32_t i = 0; i < device_count; i++) {
ggml_backend_kompute_buffer_types[i] = {
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), i),
/* .context = */ new ggml_backend_kompute_buffer_type_context{ i, devices[i].bufferAlignment, devices[i].maxAlloc },
};
}
return vec;
}();
ggml_backend_kompute_buffer_type_initialized = true;
}
auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
});
return it < bufts.end() ? &*it : nullptr;
return &ggml_backend_kompute_buffer_types[device];
}
// backend
@ -1953,31 +1974,15 @@ static void ggml_backend_kompute_free(ggml_backend_t backend) {
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
return ggml_backend_kompute_buffer_type(ctx->device);
}
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
ggml_vk_graph_compute(ctx, cgraph);
return GGML_STATUS_SUCCESS;
}
static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
GGML_UNUSED(backend);
return ggml_vk_supports_op(op);
}
static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
GGML_UNUSED(backend);
return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name;
}
static struct ggml_backend_i kompute_backend_i = {
/* .get_name = */ ggml_backend_kompute_name,
/* .free = */ ggml_backend_kompute_free,
/* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
@ -1987,9 +1992,6 @@ static struct ggml_backend_i kompute_backend_i = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
/* .supports_op = */ ggml_backend_kompute_supports_op,
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
@ -2006,7 +2008,7 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
ggml_backend_t kompute_backend = new ggml_backend {
/* .guid = */ ggml_backend_kompute_guid(),
/* .interface = */ kompute_backend_i,
/* .device = */ nullptr,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_kompute_reg(), device),
/* .context = */ s_kompute_context,
};
@ -2016,3 +2018,167 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
bool ggml_backend_is_kompute(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
}
static size_t ggml_backend_kompute_get_device_count() {
auto devices = ggml_vk_available_devices();
return devices.size();
}
static void ggml_backend_kompute_get_device_description(int device, char * description, size_t description_size) {
auto devices = ggml_vk_available_devices();
GGML_ASSERT((size_t) device < devices.size());
snprintf(description, description_size, "%s", devices[device].name);
}
static void ggml_backend_kompute_get_device_memory(int device, size_t * free, size_t * total) {
auto devices = ggml_vk_available_devices();
GGML_ASSERT((size_t) device < devices.size());
*total = devices[device].heapSize;
*free = devices[device].heapSize;
}
//////////////////////////
struct ggml_backend_kompute_device_context {
int device;
std::string name;
std::string description;
};
static const char * ggml_backend_kompute_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
return ctx->name.c_str();
}
static const char * ggml_backend_kompute_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
return ctx->description.c_str();
}
static void ggml_backend_kompute_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
ggml_backend_kompute_get_device_memory(ctx->device, free, total);
}
static ggml_backend_buffer_type_t ggml_backend_kompute_device_get_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
return ggml_backend_kompute_buffer_type(ctx->device);
}
static bool ggml_backend_kompute_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
if (buft->iface.get_name != ggml_backend_kompute_buffer_type_get_name) {
return false;
}
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
ggml_backend_kompute_buffer_type_context * buft_ctx = (ggml_backend_kompute_buffer_type_context *)buft->context;
return buft_ctx->device == ctx->device;
}
static enum ggml_backend_dev_type ggml_backend_kompute_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_kompute_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_kompute_device_get_name(dev);
props->description = ggml_backend_kompute_device_get_description(dev);
props->type = ggml_backend_kompute_device_get_type(dev);
ggml_backend_kompute_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* async = */ false,
/* host_buffer = */ false,
/* .buffer_from_host_ptr = */ false,
/* events = */ false,
};
}
static ggml_backend_t ggml_backend_kompute_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
ggml_backend_kompute_device_context * ctx = (ggml_backend_kompute_device_context *)dev->context;
return ggml_backend_kompute_init(ctx->device);
}
static bool ggml_backend_kompute_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
GGML_UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_kompute_device_i = {
/* .get_name = */ ggml_backend_kompute_device_get_name,
/* .get_description = */ ggml_backend_kompute_device_get_description,
/* .get_memory = */ ggml_backend_kompute_device_get_memory,
/* .get_type = */ ggml_backend_kompute_device_get_type,
/* .get_props = */ ggml_backend_kompute_device_get_props,
/* .init_backend = */ ggml_backend_kompute_device_init,
/* .get_buffer_type = */ ggml_backend_kompute_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_kompute_device_supports_op,
/* .supports_buft = */ ggml_backend_kompute_device_supports_buft,
/* .offload_op = */ ggml_backend_kompute_device_offload_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
static const char * ggml_backend_kompute_reg_get_name(ggml_backend_reg_t reg) {
GGML_UNUSED(reg);
return "Kompute";
}
static size_t ggml_backend_kompute_reg_get_device_count(ggml_backend_reg_t reg) {
GGML_UNUSED(reg);
return ggml_backend_kompute_get_device_count();
}
static ggml_backend_dev_t ggml_backend_kompute_reg_get_device(ggml_backend_reg_t reg, size_t device) {
static std::vector<ggml_backend_dev_t> devices;
static bool initialized = false;
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
for (size_t i = 0; i < ggml_backend_kompute_get_device_count(); i++) {
ggml_backend_kompute_device_context * ctx = new ggml_backend_kompute_device_context;
char desc[256];
ggml_backend_kompute_get_device_description(i, desc, sizeof(desc));
ctx->device = i;
ctx->name = "Kompute" + std::to_string(i);
ctx->description = desc;
devices.push_back(new ggml_backend_device {
/* .iface = */ ggml_backend_kompute_device_i,
/* .reg = */ reg,
/* .context = */ ctx,
});
}
initialized = true;
}
}
GGML_ASSERT(device < devices.size());
return devices[device];
}
static const struct ggml_backend_reg_i ggml_backend_kompute_reg_i = {
/* .get_name = */ ggml_backend_kompute_reg_get_name,
/* .get_device_count = */ ggml_backend_kompute_reg_get_device_count,
/* .get_device = */ ggml_backend_kompute_reg_get_device,
/* .get_proc_address = */ NULL,
};
ggml_backend_reg_t ggml_backend_kompute_reg() {
static ggml_backend_reg reg = {
/* .iface = */ ggml_backend_kompute_reg_i,
/* .context = */ nullptr,
};
return &reg;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -4,7 +4,7 @@
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu-impl.h"
#include "ggml-cpu.h"
#include <math.h>
#include <string.h>
@ -9104,10 +9104,8 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
#elif defined __AVX__
const __m128i m4 = _mm_set1_epi8(0xF);
const __m128i m3 = _mm_set1_epi8(3);
const __m128i m32s = _mm_set1_epi8(32);
const __m128i m2 = _mm_set1_epi8(2);
const __m128i m15 = _mm_set1_epi8(15);
__m256 acc = _mm256_setzero_ps();
@ -9119,12 +9117,20 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const uint8_t * restrict qh = x[i].qh;
const int8_t * restrict q8 = y[i].qs;
// handle the q6_k -32 offset separately using bsums
const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)y[i].bsums);
const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)y[i].bsums + 1);
const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
const __m128i scales_16_0 = _mm_cvtepi8_epi16(scales);
const __m128i scales_16_1 = _mm_cvtepi8_epi16(_mm_bsrli_si128(scales, 8));
const __m128i q8sclsub_0 = _mm_slli_epi32(_mm_madd_epi16(q8sums_0, scales_16_0), 5);
const __m128i q8sclsub_1 = _mm_slli_epi32(_mm_madd_epi16(q8sums_1, scales_16_1), 5);
__m128i sumi_0 = _mm_setzero_si128();
__m128i sumi_1 = _mm_setzero_si128();
__m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
int is = 0;
for (int j = 0; j < QK_K/128; ++j) {
const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
@ -9132,26 +9138,26 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(12)), 2);
const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(12)), 2);
const __m128i q4h_4 = _mm_and_si128(q4bitsH_0, _mm_set1_epi8(48));
const __m128i q4h_5 = _mm_and_si128(q4bitsH_1, _mm_set1_epi8(48));
const __m128i q4h_6 = _mm_srli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(-64)), 2);
const __m128i q4h_7 = _mm_srli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(-64)), 2);
const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m15), q4h_0);
const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m15), q4h_1);
const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m15), q4h_2);
const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m15), q4h_3);
const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m15), q4h_4);
const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m15), q4h_5);
const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m15), q4h_6);
const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m15), q4h_7);
const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
@ -9162,15 +9168,6 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
__m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
__m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
__m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
__m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
__m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
__m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
__m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
__m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
__m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
__m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
__m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
@ -9180,32 +9177,20 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
__m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
__m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
p16_0 = _mm_sub_epi16(p16_0, q8s_0);
p16_1 = _mm_sub_epi16(p16_1, q8s_1);
p16_2 = _mm_sub_epi16(p16_2, q8s_2);
p16_3 = _mm_sub_epi16(p16_3, q8s_3);
p16_4 = _mm_sub_epi16(p16_4, q8s_4);
p16_5 = _mm_sub_epi16(p16_5, q8s_5);
p16_6 = _mm_sub_epi16(p16_6, q8s_6);
p16_7 = _mm_sub_epi16(p16_7, q8s_7);
const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
shuffle = _mm_add_epi8(shuffle, m2);
const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
shuffle = _mm_add_epi8(shuffle, m2);
const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
shuffle = _mm_add_epi8(shuffle, m2);
const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
shuffle = _mm_add_epi8(shuffle, m2);
const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
is += 4;
p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_0, 8)), p16_1);
p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_1, 8)), p16_3);
p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_2, 8)), p16_5);
p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_3, 8)), p16_7);
sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
@ -9214,8 +9199,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r
}
__m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
sumi_0 = _mm_sub_epi32(sumi_0, q8sclsub_0);
sumi_1 = _mm_sub_epi32(sumi_1, q8sclsub_1);
const __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi)), acc);
}
*s = hsum_float_8(acc);

View file

@ -178,7 +178,6 @@ struct ggml_backend_rpc_buffer_context {
std::shared_ptr<socket_t> sock;
std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
uint64_t remote_ptr;
std::string name;
};
// RPC helper functions
@ -409,11 +408,6 @@ static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
return sock;
}
static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
return ctx->name.c_str();
}
static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
rpc_msg_free_buffer_req request = {ctx->remote_ptr};
@ -524,7 +518,6 @@ static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t
}
static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
/* .get_name = */ ggml_backend_rpc_buffer_get_name,
/* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
/* .get_base = */ ggml_backend_rpc_buffer_get_base,
/* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
@ -551,7 +544,7 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
if (response.remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr, "RPC[" + std::string(buft_ctx->endpoint) + "]"},
new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr},
response.remote_size);
return buffer;
} else {
@ -609,11 +602,6 @@ static void ggml_backend_rpc_free(ggml_backend_t backend) {
delete backend;
}
static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
}
static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
UNUSED(backend);
// this is no-op because we don't have any async operations
@ -670,7 +658,6 @@ static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, g
static ggml_backend_i ggml_backend_rpc_interface = {
/* .get_name = */ ggml_backend_rpc_name,
/* .free = */ ggml_backend_rpc_free,
/* .get_default_buffer_type = */ ggml_backend_rpc_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
@ -680,9 +667,6 @@ static ggml_backend_i ggml_backend_rpc_interface = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_rpc_graph_compute,
/* .supports_op = */ NULL,
/* .supports_buft = */ NULL,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
@ -1278,7 +1262,7 @@ static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t *
static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
// TODO: obtain value from the server
return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
return GGML_BACKEND_DEVICE_TYPE_GPU;
UNUSED(dev);
}
@ -1312,13 +1296,6 @@ static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_b
UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_rpc_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
UNUSED(dev);
UNUSED(max_tensor_size);
}
static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
UNUSED(dev);
UNUSED(op);
@ -1344,7 +1321,7 @@ static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
/* .init_backend = */ ggml_backend_rpc_device_init,
/* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_rpc_device_buffer_from_ptr,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_rpc_device_supports_op,
/* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
/* .offload_op = */ NULL,

File diff suppressed because it is too large Load diff

View file

@ -26,5 +26,8 @@
#include "softmax.hpp"
#include "tsembd.hpp"
#include "im2col.hpp"
#include "wkv6.hpp"
#include "outprod.hpp"
#include "element_wise.hpp"
#endif // GGML_SYCL_BACKEND_HPP

View file

@ -62,3 +62,43 @@ int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block
}
return sycl_down_blk_size;
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op) try {
const int64_t nrows0 = ggml_nrows(src0);
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
// dd = data device
float * src0_ddf = (float *) src0->data;
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;
float * dst_ddf = (float *) dst->data;
ggml_sycl_pool_alloc<float> src0_f(ctx.pool());
ggml_sycl_pool_alloc<float> src1_f(ctx.pool());
ggml_sycl_pool_alloc<float> dst_f(ctx.pool());
ggml_sycl_set_device(ctx.device);
queue_ptr main_stream = ctx.stream();
// GGML_SYCL_DEBUG("ctx.device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
// ctx.device, main_stream, src0_on_device, src1_on_device, dst_on_device);
// do the computation
op(ctx, src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
// print_ggml_tensor("tensor", dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}

View file

@ -404,4 +404,262 @@ static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1,
ggml_tensor *dst, const float *src0_dd,
const float *src1_dd, float *dst_dd,
const queue_ptr &main_stream);
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
item_ct1.get_local_id(1));
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) /
ne3;
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
item_ct1.get_local_id(0)) %
ne3;
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
for (int i0 = i0s; i0 < ne0;
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
}
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
int ne0, int ne1, int ne2, int ne3,
int ne10, int ne11, int ne12, int ne13,
/*int s0, */ int s1, int s2, int s3,
/*int s10,*/ int s11, int s12, int s13,
const sycl::nd_item<3> &item_ct1) {
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
item_ct1.get_local_id(2);
const int i3 = i/(ne2*ne1*ne0);
const int i2 = (i/(ne1*ne0)) % ne2;
const int i1 = (i/ne0) % ne1;
const int i0 = i % ne0;
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
return;
}
const int i11 = i1 % ne11;
const int i12 = i2 % ne12;
const int i13 = i3 % ne13;
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
const size_t i_dst = i_src0;
const src0_t * src0_row = src0 + i_src0;
const src1_t * src1_row = src1 + i_src1;
dst_t * dst_row = dst + i_dst;
const int i10 = i0 % ne10;
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
}
template<float (*bin_op)(const float, const float)>
struct bin_bcast_sycl {
template <typename src0_t, typename src1_t, typename dst_t>
void operator()(ggml_backend_sycl_context & ctx,
const struct ggml_tensor *src0,
const struct ggml_tensor *src1, struct ggml_tensor *dst,
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
queue_ptr stream) {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
int nr3 = ne13/ne3;
int nr[4] = { nr0, nr1, nr2, nr3 };
// collapse dimensions until first broadcast dimension
int64_t cne0[] = {ne0, ne1, ne2, ne3};
int64_t cne1[] = {ne10, ne11, ne12, ne13};
size_t cnb0[] = {nb0, nb1, nb2, nb3};
size_t cnb1[] = {nb10, nb11, nb12, nb13};
auto collapse = [](int64_t cne[]) {
cne[0] *= cne[1];
cne[1] = cne[2];
cne[2] = cne[3];
cne[3] = 1;
};
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
cnb[1] *= cne[1];
cnb[2] *= cne[2];
cnb[3] *= cne[3];
};
for (int i = 0; i < 4; i++) {
if (nr[i] != 1) {
break;
}
if (i > 0) {
collapse_nb(cnb0, cne0);
collapse_nb(cnb1, cne1);
collapse(cne0);
collapse(cne1);
}
}
{
int64_t ne0 = cne0[0];
int64_t ne1 = cne0[1];
int64_t ne2 = cne0[2];
int64_t ne3 = cne0[3];
int64_t ne10 = cne1[0];
int64_t ne11 = cne1[1];
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
size_t nb0 = cnb0[0];
size_t nb1 = cnb0[1];
size_t nb2 = cnb0[2];
size_t nb3 = cnb0[3];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
size_t s0 = nb0 / sizeof(dst_t);
size_t s1 = nb1 / sizeof(dst_t);
size_t s2 = nb2 / sizeof(dst_t);
size_t s3 = nb3 / sizeof(dst_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
int64_t hne0 = std::max(ne0/2LL, 1LL);
sycl::range<3> block_dims(1, 1, 1);
block_dims[2] = std::min<unsigned int>(hne0, block_size);
block_dims[1] = std::min<unsigned int>(
ne1, block_size / (unsigned int)block_dims[2]);
block_dims[0] = std::min(
std::min<unsigned int>(
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
(unsigned int)block_dims[1]),
64U);
sycl::range<3> block_nums(
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
(ne1 + block_dims[1] - 1) / block_dims[1],
(hne0 + block_dims[2] - 1) / block_dims[2]);
if (block_nums[0] > 65535) {
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
sycl::range<3>(1, 1, block_size),
sycl::range<3>(1, 1, block_size)),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast_unravel<bin_op>(
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
s13, item_ct1);
});
}
} else {
/*
DPCT1049:16: The work-group size passed to the SYCL kernel may
exceed the limit. To get the device limit, query
info::device::max_work_group_size. Adjust the work-group size if
needed.
*/
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
ne2, ne3, ne10, ne11, ne12, ne13,
s1, s2, s3, s11, s12, s13,
item_ct1);
});
}
}
}
};
template <class op>
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const float *src0_dd, const float *src1_dd,
float *dst_dd,
const queue_ptr &main_stream) {
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
(sycl::half *)dst_dd, main_stream);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
main_stream);
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
main_stream);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ABORT("fatal error");
}
}
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op);
#endif // GGML_SYCL_COMMON_HPP

View file

@ -106,6 +106,7 @@ static void concat_f32_sycl(const float *x, const float *y, float *dst,
concat_f32_dim1(x, y, dst, ne0, ne01, item_ct1);
});
break;
// dim >=2 will be dispatched to the default path
default:
stream->parallel_for(
sycl::nd_range<3>(gridDim *

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,76 @@
#ifndef GGML_SYCL_ELEMENTWISE_HPP
#define GGML_SYCL_ELEMENTWISE_HPP
#include "common.hpp"
static __dpct_inline__ float op_repeat(const float a, const float b) {
return b;
GGML_UNUSED(a);
}
static __dpct_inline__ float op_add(const float a, const float b) {
return a + b;
}
static __dpct_inline__ float op_sub(const float a, const float b) {
return a - b;
}
static __dpct_inline__ float op_mul(const float a, const float b) {
return a * b;
}
static __dpct_inline__ float op_div(const float a, const float b) {
return a / b;
}
void ggml_sycl_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sin(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_cos(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_acc(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_silu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_exp(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_log(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_neg(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_step(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_pad(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_add(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_sub(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_mul(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
void ggml_sycl_div(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
#endif // GGML_SYCL_ELEMENTWISE_HPP

View file

@ -0,0 +1,55 @@
#include <sycl/sycl.hpp>
#include "outprod.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_TENSOR_BINARY_OP_LOCALS
// Get SYCL queue
dpct::queue_ptr stream = ctx.stream();
// Dimension checks
GGML_ASSERT(ne01 == ne11); // Inner dimensions must match
GGML_ASSERT(ne0 == ne00); // Output rows match src0 rows
GGML_ASSERT(ne1 == ne10); // Output cols match src1 cols
// Get data pointers
const float* src0_d = (const float*)src0->data;
const float* src1_d = (const float*)src1->data;
float* dst_d = (float*)dst->data;
// GEMM parameters
const float alpha = 1.0f;
const float beta = 0.0f;
// Handle transposition of src1
const bool src1_T = ggml_is_transposed(src1);
const oneapi::mkl::transpose src1_op =
src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
try {
// Perform matrix multiplication using oneMKL GEMM
oneapi::mkl::blas::gemm(*stream,
oneapi::mkl::transpose::nontrans, src1_op,
ne0, ne1, ne01,
alpha,
src0_d, ne00,
src1_d, ldb,
beta,
dst_d, ne0);
}
catch (sycl::exception const& exc) {
std::cerr << exc.what() << std::endl;
GGML_ASSERT(false);
}
}

View file

@ -0,0 +1,11 @@
#ifndef GGML_SYCL_OUTPROD_HPP
#define GGML_SYCL_OUTPROD_HPP
#include "common.hpp"
void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst);
#endif // GGML_SYCL_OUTPROD_HPP

View file

@ -25,6 +25,11 @@
#define SYCL_RELU_BLOCK_SIZE 256
#define SYCL_HARDSIGMOID_BLOCK_SIZE 256
#define SYCL_HARDSWISH_BLOCK_SIZE 256
#define SYCL_EXP_BLOCK_SIZE 256
#define SYCL_NEG_BLOCK_SIZE 256
#define SYCL_SIGMOID_BLOCK_SIZE 256
#define SYCL_SQRT_BLOCK_SIZE 256
#define SYCL_SIN_BLOCK_SIZE 256
#define SYCL_SQR_BLOCK_SIZE 256
#define SYCL_CPY_BLOCK_SIZE 32
#define SYCL_SCALE_BLOCK_SIZE 256
@ -41,6 +46,7 @@
#define SYCL_ACC_BLOCK_SIZE 256
#define SYCL_IM2COL_BLOCK_SIZE 256
#define SYCL_POOL2D_BLOCK_SIZE 256
#define SYCL_ARGMAX_BLOCK_SIZE 256
#define SYCL_CONV_TRANPOSE_1D_BLOCK_SIZE 256
#define SYCL_TIMESTEP_EMBEDDING_BLOCK_SIZE 256

138
ggml/src/ggml-sycl/wkv6.cpp Normal file
View file

@ -0,0 +1,138 @@
#include <sycl/sycl.hpp>
#include "wkv6.hpp"
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
// Helper function for the main kernel
static void rwkv_wkv_f32_kernel(
const int B, const int T, const int C, const int H,
const float* k, const float* v, const float* r,
const float* tf, const float* td, const float* s,
float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
const int tid = item_ct1.get_local_id(2);
const int bid = item_ct1.get_group(2);
const int head_size = WKV_BLOCK_SIZE;
const int batch_i = bid / H;
const int head_i = bid % H;
const int state_size = C * head_size;
const int n_seq_tokens = T / B;
// Set up shared memory pointers
float* _k = shared_mem;
float* _r = _k + head_size;
float* _tf = _r + head_size;
float* _td = _tf + head_size;
// Local state array
float state[WKV_BLOCK_SIZE];
// Load initial state
#pragma unroll
for (int i = 0; i < head_size; i++) {
state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
}
// Sync threads before shared memory operations
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load time-mixing parameters
_tf[tid] = tf[head_i * head_size + tid];
item_ct1.barrier(sycl::access::fence_space::local_space);
// Main sequence processing loop
for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
t += C) {
item_ct1.barrier(sycl::access::fence_space::local_space);
// Load current timestep data to shared memory
_k[tid] = k[t];
_r[tid] = r[t];
_td[tid] = td[t];
item_ct1.barrier(sycl::access::fence_space::local_space);
const float _v = v[t];
float y = 0;
// Process in chunks of 4 for better vectorization
sycl::float4 k4, r4, tf4, td4, s4, kv4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
// Load data in vec4 chunks
k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
// Compute key-value product
sycl::float4 kv4 = k4 * _v;
// Accumulate weighted sum
y += sycl::dot(r4, tf4 * kv4 + s4);
// Update state
s4 = s4 * td4 + kv4;
// Store updated state
state[j] = s4.x();
state[j+1] = s4.y();
state[j+2] = s4.z();
state[j+3] = s4.w();
}
dst[t] = y;
}
// Save final state
#pragma unroll
for (int i = 0; i < head_size; i++) {
dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
}
}
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,
const ggml_tensor* src1, ggml_tensor* dst) {
const float* k_d = (const float*)dst->src[0]->data;
const float* v_d = (const float*)dst->src[1]->data;
const float* r_d = (const float*)dst->src[2]->data;
const float* tf_d = (const float*)dst->src[3]->data;
const float* td_d = (const float*)dst->src[4]->data;
const float* s_d = (const float*)dst->src[5]->data;
float* dst_d = (float*)dst->data;
const int64_t B = dst->src[5]->ne[1];
const int64_t T = dst->src[0]->ne[3];
const int64_t C = dst->ne[0];
const int64_t H = dst->src[0]->ne[2];
GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
GGML_ASSERT(C % H == 0);
GGML_ASSERT(C / H == WKV_BLOCK_SIZE); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
dpct::queue_ptr stream = ctx.stream();
// Calculate execution configuration
const size_t shared_mem_size = WKV_BLOCK_SIZE * 4 * sizeof(float); // For k, r, tf, td
sycl::range<3> block_dims(1, 1, C / H);
sycl::range<3> grid_dims(1, 1, B * H);
// Submit kernel
stream->submit([&](sycl::handler& cgh) {
sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
cgh.parallel_for(
sycl::nd_range<3>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1) {
rwkv_wkv_f32_kernel(
B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
item_ct1, shared_mem_acc.get_pointer()
);
});
});
}

View file

@ -0,0 +1,10 @@
#ifndef GGML_SYCL_WKV6_HPP
#define GGML_SYCL_WKV6_HPP
#include "common.hpp"
void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor * dst);
#endif // GGML_SYCL_WKV6_HPP

View file

@ -213,6 +213,7 @@ struct vk_device_struct {
vk_pipeline pipeline_sum_rows_f32;
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
vk_pipeline pipeline_timestep_embedding_f32;
vk_pipeline pipeline_pool2d_f32;
std::unordered_map<std::string, vk_pipeline_ref> pipelines;
std::unordered_map<std::string, uint64_t> pipeline_descriptor_set_requirements;
@ -403,6 +404,17 @@ struct vk_op_timestep_embedding_push_constants {
uint32_t max_period;
};
struct vk_op_pool2d_push_constants {
uint32_t IW; uint32_t IH;
uint32_t OW; uint32_t OH;
uint32_t OC;
uint32_t pelements;
uint32_t op;
int32_t k0; int32_t k1;
int32_t s0; int32_t s1;
int32_t p0; int32_t p1;
};
// Allow pre-recording command buffers
struct vk_staging_memcpy {
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
@ -1035,7 +1047,6 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
return buf;
}
buf->size = size;
vk::BufferCreateInfo buffer_create_info{
vk::BufferCreateFlags(),
size,
@ -1063,7 +1074,6 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
if (memory_type_index == UINT32_MAX) {
device->device.destroyBuffer(buf->buffer);
buf->size = 0;
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
}
@ -1080,13 +1090,11 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
}
catch (const vk::SystemError& e) {
device->device.destroyBuffer(buf->buffer);
buf->size = 0;
throw e;
}
} else {
// Out of Host/Device memory, clean up buffer
device->device.destroyBuffer(buf->buffer);
buf->size = 0;
throw e;
}
}
@ -1099,6 +1107,7 @@ static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::Memor
device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
buf->device = device;
buf->size = size;
#ifdef GGML_VULKAN_MEMORY_DEBUG
device->memory_logger->log_allocation(buf, size);
@ -1803,6 +1812,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1);
for (auto &c : compiles) {
c.wait();
}
@ -4234,6 +4245,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_timestep_embedding_f32;
}
return nullptr;
case GGML_OP_POOL_2D:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_pool2d_f32;
}
return nullptr;
case GGML_OP_LEAKY_RELU:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_leaky_relu_f32;
@ -4464,6 +4480,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
uint32_t half_ceil = (dim + 1) / 2;
elements = { half_ceil, (uint32_t)src0->ne[0], 1 };
} break;
case GGML_OP_POOL_2D:
{
const uint32_t N = dst->ne[3];
const uint32_t OC = dst->ne[2];
const uint32_t OH = dst->ne[1];
const uint32_t OW = dst->ne[0];
elements = { N * OC * OH * OW, 1, 1};
} break;
case GGML_OP_ADD:
case GGML_OP_DIV:
case GGML_OP_MUL:
@ -4914,6 +4938,34 @@ static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context
}, dryrun);
}
static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
uint32_t op = static_cast<uint32_t>(dst->op_params[0]);
const int32_t k1 = dst->op_params[1];
const int32_t k0 = dst->op_params[2];
const int32_t s1 = dst->op_params[3];
const int32_t s0 = dst->op_params[4];
const int32_t p1 = dst->op_params[5];
const int32_t p0 = dst->op_params[6];
const uint32_t IH = src0->ne[1];
const uint32_t IW = src0->ne[0];
const uint32_t N = dst->ne[3];
const uint32_t OC = dst->ne[2];
const uint32_t OH = dst->ne[1];
const uint32_t OW = dst->ne[0];
const uint32_t parallel_elements = N * OC * OH * OW;
ggml_vk_op_f32<vk_op_pool2d_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_POOL_2D, {
IW, IH, OW, OH, OC,
parallel_elements,
op,
k0, k1, s0, s1, p0, p1,
}, dryrun);
}
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
const float * op_params = (const float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
@ -5792,6 +5844,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_SUM_ROWS:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_LEAKY_RELU:
break;
default:
@ -5927,6 +5980,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_POOL_2D:
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
break;
case GGML_OP_LEAKY_RELU:
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
@ -6018,6 +6075,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
case GGML_OP_SUM_ROWS:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_LEAKY_RELU:
case GGML_OP_REPEAT:
buf = tensor->buffer;
@ -6186,13 +6244,8 @@ static void ggml_vk_get_device_description(int device, char * description, size_
// device backend
static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
return ctx->name.c_str();
}
static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
return buffer->buft->iface.get_name == ggml_backend_vk_buffer_type_name;
}
static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@ -6256,7 +6309,6 @@ static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t v
}
static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
/* .get_name = */ ggml_backend_vk_buffer_get_name,
/* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
/* .get_base = */ ggml_backend_vk_buffer_get_base,
/* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
@ -6352,7 +6404,6 @@ static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.get_name = ggml_backend_vk_host_buffer_name;
buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
return buffer;
@ -6585,7 +6636,6 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
static ggml_backend_i ggml_backend_vk_interface = {
/* .get_name = */ ggml_backend_vk_name,
/* .free = */ ggml_backend_vk_free,
/* .get_default_buffer_type = */ ggml_backend_vk_get_default_buffer_type,
/* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
/* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async,
/* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
@ -6595,9 +6645,6 @@ static ggml_backend_i ggml_backend_vk_interface = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_vk_graph_compute,
/* .supports_op = */ NULL,
/* .supports_buft = */ NULL,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
@ -6656,7 +6703,7 @@ void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total
//////////////////////////
struct ggml_backend_vk_device_context {
int device;
size_t device;
std::string name;
std::string description;
};
@ -6688,7 +6735,7 @@ static ggml_backend_buffer_type_t ggml_backend_vk_device_get_host_buffer_type(gg
static enum ggml_backend_dev_type ggml_backend_vk_device_get_type(ggml_backend_dev_t dev) {
UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
@ -6697,9 +6744,10 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
props->type = ggml_backend_vk_device_get_type(dev);
ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* async */ false,
/* host_buffer */ true,
/* events */ false,
/* .async = */ false,
/* .host_buffer = */ true,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
@ -6821,6 +6869,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_SUM_ROWS:
case GGML_OP_IM2COL:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_POOL_2D:
case GGML_OP_LEAKY_RELU:
return true;
default:
@ -6887,7 +6936,7 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
for (size_t i = 0; i < ggml_backend_vk_get_device_count(); i++) {
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
char desc[256];
ggml_backend_vk_get_device_description(i, desc, sizeof(desc));
@ -7334,6 +7383,16 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
const int32_t dim = tensor->op_params[0];
const int32_t max_period = tensor->op_params[1];
tensor_clone = ggml_timestep_embedding(ggml_ctx, src0_clone, dim, max_period);
} else if (tensor->op == GGML_OP_POOL_2D) {
enum ggml_op_pool op = static_cast<ggml_op_pool>(dst->op_params[0]);
const int32_t k0 = tensor->op_params[1];
const int32_t k1 = tensor->op_params[2];
const int32_t s0 = tensor->op_params[3];
const int32_t s1 = tensor->op_params[4];
const int32_t p0 = tensor->op_params[5];
const int32_t p1 = tensor->op_params[6];
tensor_clone = ggml_pool_2d(ggml_ctx, src0_clone, op, k0, k1, s0, s1, p0, p1);
} else if (tensor->op == GGML_OP_LEAKY_RELU) {
const float * op_params = (const float *)tensor->op_params;
tensor_clone = ggml_leaky_relu(ggml_ctx, src0_clone, op_params[0], false);

File diff suppressed because it is too large Load diff

View file

@ -15,6 +15,7 @@
#define TWOPI_F 6.283185307179586f
#define QK_K 256
#define K_SCALE_SIZE 12
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
@ -64,6 +65,14 @@ mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
return reg;
}
#define sizeof_block_q4_k 144
struct block_q4_k {
float16_t d;
float16_t dmin;
uint8_t scales[K_SCALE_SIZE];
uint8_t qs[QK_K/2];
};
#define sizeof_block_q6_k 210
struct block_q6_k {
uint8_t ql[QK_K/2]; // quants, lower 4 bits

View file

@ -0,0 +1,133 @@
#version 450
#include "common.comp"
#define N_DST 4
#define SIZE_OF_BLOCK sizeof_block_q4_k
layout(local_size_x = 4) in;
layout(local_size_y = 8) in;
layout(local_size_z = 1) in;
layout (binding = 0) readonly buffer tensorInA { block_q4_k inA[]; };
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
layout (push_constant) uniform parameter {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int ne10;
int ne0;
int ne1;
int ne01;
int ne02;
int ne12;
int r2;
int r3;
} pcs;
void main() {
const uint16_t kmask1 = uint16_t(0x3f3f);
const uint16_t kmask2 = uint16_t(0x0f0f);
const uint16_t kmask3 = uint16_t(0xc0c0);
const uint ix = gl_SubgroupInvocationID/8; // 0...3
const uint it = gl_SubgroupInvocationID%8; // 0...7
const uint iq = it/4; // 0 or 1
const uint ir = it%4; // 0...3
const uint nb = pcs.ne00/QK_K;
const uint r0 = gl_WorkGroupID.x;
const uint r1 = gl_WorkGroupID.y;
const uint im = gl_WorkGroupID.z;
const uint first_row = r0 * N_DST;
const uint ib_row = first_row * nb;
const uint i12 = im%pcs.ne12;
const uint i13 = im/pcs.ne12;
const uint offset0 = (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
const uint xblk = ib_row + offset0 + pcs.inAOff;
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff;
float yl[16];
float yh[16];
float sumf[N_DST] = {0.f, 0.f, 0.f, 0.f};
float all_sum = 0.f;
uint y4 = y + ix * QK_K + 64 * iq + 8 * ir;
for (uint ib = ix; ib < nb; ib += 4) {
const uint blk_idx = ib + xblk;
float sumy[4] = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+0] = inB[y4+i+ 0]; sumy[0] += yl[i+0];
yl[i+8] = inB[y4+i+ 32]; sumy[1] += yl[i+8];
yh[i+0] = inB[y4+i+128]; sumy[2] += yh[i+0];
yh[i+8] = inB[y4+i+160]; sumy[3] += yh[i+8];
}
for (int row = 0; row < N_DST; row++) {
uint row_idx = row * nb;
uint16_t sc_0 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 0);
uint16_t sc_1 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 2);
uint16_t sc_2 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 4);
uint16_t sc_3 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 6);
uint16_t sc_4 = u8BufToU16(inA[blk_idx + row_idx].scales, iq * 2 + 8);
uint16_t sc16[4];
sc16[0] = sc_0 & kmask1;
sc16[1] = sc_2 & kmask1;
sc16[2] = ((sc_4 >> 0) & kmask2) | ((sc_0 & kmask3) >> 2);
sc16[3] = ((sc_4 >> 4) & kmask2) | ((sc_2 & kmask3) >> 2);
float acc1[4] = {0.f, 0.f, 0.f, 0.f};
float acc2[4] = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
uint16_t q1 = u8BufToU16(inA[blk_idx + row_idx].qs, 32 * iq + 8 * ir + i);
uint16_t q2 = u8BufToU16(inA[blk_idx + row_idx].qs, 64 + 32 * iq + 8 * ir + i);
acc1[0] += yl[i+0] * (q1 & 0x000F);
acc1[1] += yl[i+1] * (q1 & 0x0F00);
acc1[2] += yl[i+8] * (q1 & 0x00F0);
acc1[3] += yl[i+9] * (q1 & 0xF000);
acc2[0] += yh[i+0] * (q2 & 0x000F);
acc2[1] += yh[i+1] * (q2 & 0x0F00);
acc2[2] += yh[i+8] * (q2 & 0x00F0);
acc2[3] += yh[i+9] * (q2 & 0xF000);
}
uint8_t sc8_0 = uint8_t(sc16[0] & 0xFF);
uint8_t sc8_1 = uint8_t(sc16[0] >> 8 );
uint8_t sc8_2 = uint8_t(sc16[1] & 0xFF);
uint8_t sc8_3 = uint8_t(sc16[1] >> 8 );
uint8_t sc8_4 = uint8_t(sc16[2] & 0xFF);
uint8_t sc8_5 = uint8_t(sc16[2] >> 8 );
uint8_t sc8_6 = uint8_t(sc16[3] & 0xFF);
uint8_t sc8_7 = uint8_t(sc16[3] >> 8 );
float dall = float(inA[blk_idx + row_idx].d);
float dmin = float(inA[blk_idx + row_idx].dmin);
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8_0 +
(acc1[2] + 1.f/256.f * acc1[3]) * sc8_1 * 1.f/16.f +
(acc2[0] + 1.f/256.f * acc2[1]) * sc8_4 +
(acc2[2] + 1.f/256.f * acc2[3]) * sc8_5 * 1.f/16.f) -
dmin * (sumy[0] * sc8_2 + sumy[1] * sc8_3 + sumy[2] * sc8_6 + sumy[3] * sc8_7);
}
y4 += 4 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = subgroupAdd(sumf[row]);
if (subgroupElect()) {
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = all_sum;
}
}
}

View file

@ -0,0 +1,74 @@
#version 450
#include "types.comp"
#extension GL_EXT_shader_16bit_storage : require
layout(push_constant) uniform parameter {
uint IW; uint IH;
uint OW; uint OH;
uint OC;
uint pelements;
uint op;
int k0; int k1;
int s0; int s1;
int p0; int p1;
} p;
#define BLOCK_SIZE 512
#define FLT_MAX 3.402823466e+38F
#define OP_POOL_MAX 0u
#define OP_POOL_AVG 1u
layout (local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout(binding = 0) readonly buffer X {A_TYPE data_a[];};
layout(binding = 1) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint idx = gl_GlobalInvocationID.x;
if (idx >= p.pelements) {
return;
}
const uint O_HW = p.OW * p.OH;
const uint nc = idx / O_HW;
const uint cur_oh = (idx % O_HW) / p.OW;
const uint cur_ow = (idx % O_HW) % p.OW;
const int start_h = int(cur_oh) * p.s0 - p.p0;
const uint bh = max(start_h, 0);
const uint eh = min(start_h + p.k0, p.IH);
const int start_w = int(cur_ow) * p.s1 - p.p1;
const uint bw = max(start_w, 0);
const uint ew = min(start_w + p.k1, p.IW);
const float scale = 1.0 / float(p.k0 * p.k1);
float res;
if (p.op == OP_POOL_AVG) {
res = 0.0;
} else if (p.op == OP_POOL_MAX) {
res = -FLT_MAX;
} else {
return;
}
#pragma unroll
for (uint i = bh; i < eh; i++) {
#pragma unroll
for (uint j = bw; j < ew; j++) {
const float cur = D_TYPE(data_a[nc * p.IH * p.IW + i * p.IW + j]);
if (p.op == OP_POOL_AVG) {
res += cur * scale;
} else if (p.op == OP_POOL_MAX) {
res = max(res, cur);
}
}
}
data_d[nc * O_HW + cur_oh * p.OW + cur_ow] = res;
}

View file

@ -493,6 +493,10 @@ void process_shaders(std::vector<std::future<void>>& tasks) {
tasks.push_back(std::async(std::launch::async, [=] {
string_to_spv("timestep_embedding_f32", "timestep_embedding.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
}));
tasks.push_back(std::async(std::launch::async, [=] {
string_to_spv("pool2d_f32", "pool2d.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
}));
}
void write_output_files() {

View file

@ -2,6 +2,7 @@
#define LLAMA_H
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
#include <stddef.h>
@ -205,7 +206,7 @@ extern "C" {
enum llama_split_mode {
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
};
// TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
@ -274,10 +275,7 @@ extern "C" {
int32_t n_gpu_layers; // number of layers to store in VRAM
enum llama_split_mode split_mode; // how to split the model across multiple GPUs
// main_gpu interpretation depends on split_mode:
// LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model
// LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results
// LLAMA_SPLIT_MODE_LAYER: ignored
// the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
int32_t main_gpu;
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
@ -1087,9 +1085,6 @@ extern "C" {
/// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);

View file

@ -11,6 +11,7 @@
#include <type_traits>
#include <ggml.h>
#include <ggml-cpu.h>
constexpr int kVecSize = 1 << 16;
@ -136,7 +137,7 @@ int main(int argc, char** argv) {
auto ggml_type = type == 0 ? GGML_TYPE_Q4_0 : GGML_TYPE_Q4_1;
const auto * funcs = ggml_get_type_traits(ggml_type);
const auto * funcs = ggml_get_type_traits_cpu(ggml_type);
Stat simple, ggml;

View file

@ -9,6 +9,7 @@
#include <array>
#include <ggml.h>
#include <ggml-cpu.h>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@ -236,7 +237,8 @@ int main(int argc, char** argv) {
int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64);
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64);
const auto * funcs = useQ4_1 ? ggml_get_type_traits(GGML_TYPE_Q4_1) : ggml_get_type_traits(GGML_TYPE_Q4_0);
const auto * funcs = ggml_get_type_traits(useQ4_1 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q4_0);
const auto * funcs_cpu = ggml_get_type_traits_cpu(useQ4_1 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q4_0);
std::vector<block_q4_0> q40;
std::vector<block_q4_1> q41;
@ -282,10 +284,10 @@ int main(int argc, char** argv) {
dot_q4_q8(kVecSize, &result, q40.data(), q8.data());
}
else {
const auto * vdot = ggml_get_type_traits(funcs->vec_dot_type);
const auto * vdot = ggml_get_type_traits(funcs_cpu->vec_dot_type);
vdot->from_float(y1.data(), q8.data(), kVecSize);
if (useQ4_1) funcs->vec_dot(kVecSize, &result, 0, q41.data(), 0, q8.data(), 0, 1);
else funcs->vec_dot(kVecSize, &result, 0, q40.data(), 0, q8.data(), 0, 1);
if (useQ4_1) funcs_cpu->vec_dot(kVecSize, &result, 0, q41.data(), 0, q8.data(), 0, 1);
else funcs_cpu->vec_dot(kVecSize, &result, 0, q40.data(), 0, q8.data(), 0, 1);
}
sumq += result;
t2 = std::chrono::high_resolution_clock::now();

View file

@ -20,7 +20,7 @@ logger = logging.getLogger("compare-llama-bench")
# Properties by which to differentiate results per commit:
KEY_PROPERTIES = [
"cpu_info", "gpu_info", "n_gpu_layers", "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas",
"blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "embeddings", "n_threads",
"blas", "model_filename", "model_type", "n_batch", "n_ubatch", "embeddings", "n_threads",
"type_k", "type_v", "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen"
]

View file

@ -20,7 +20,7 @@ CLI_ARGS_LLAMA_CLI_PERPLEXITY = [
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "repeat-last-n",
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
"simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
"simple-io", "tensor-split", "threads", "temp", "top-k", "top-p", "typical",
"verbose-prompt"
]

View file

@ -1 +1 @@
162e232411ee98ceb0cccfa84886118d917d2123
a099cb514d6687e436a5a423d1fb0448be0feb20

1
spm-headers/ggml-cpp.h Symbolic link
View file

@ -0,0 +1 @@
../ggml/include/ggml-cpp.h

1
spm-headers/ggml-cpu.h Symbolic link
View file

@ -0,0 +1 @@
../ggml/include/ggml-cpu.h

View file

@ -113,7 +113,7 @@ static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) {
}
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
// TODO: move bucket sort to separate function so that top_p/typical/softmax first is equally fast
// if (k >= (int32_t)cur_p->size) {
// return;
// }
@ -733,101 +733,6 @@ struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
};
}
// tail-free
struct llama_sampler_tail_free {
const float z;
const size_t min_keep;
};
static const char * llama_sampler_tail_free_name(const struct llama_sampler * /*smpl*/) {
return "tail-free";
}
static void llama_sampler_tail_free_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_tail_free *) smpl->ctx;
if (ctx->z >= 1.0f || cur_p->size <= 2) {
return;
}
llama_sampler_softmax_impl(cur_p);
// Compute the first and second derivatives
std::vector<float> first_derivatives(cur_p->size - 1);
std::vector<float> second_derivatives(cur_p->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = cur_p->data[i].p - cur_p->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = std::abs(second_derivatives[i]);
}
// Normalize the second derivatives
{
const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
if (second_derivatives_sum > 1e-6f) {
for (float & value : second_derivatives) {
value /= second_derivatives_sum;
}
} else {
for (float & value : second_derivatives) {
value = 1.0f / second_derivatives.size();
}
}
}
float cum_sum = 0.0f;
size_t last_idx = cur_p->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if (cum_sum > ctx->z && i >= ctx->min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
cur_p->size = last_idx;
}
static struct llama_sampler * llama_sampler_tail_free_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_tail_free *) smpl->ctx;
return llama_sampler_init_tail_free(ctx->z, ctx->min_keep);
}
static void llama_sampler_tail_free_free(struct llama_sampler * smpl) {
delete (llama_sampler_tail_free *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_tail_free_i = {
/* .name = */ llama_sampler_tail_free_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_tail_free_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_tail_free_clone,
/* .free = */ llama_sampler_tail_free_free,
};
struct llama_sampler * llama_sampler_init_tail_free(float z, size_t min_keep) {
return new llama_sampler {
/* .iface = */ &llama_sampler_tail_free_i,
/* .ctx = */ new llama_sampler_tail_free {
/* .z = */ z,
/*. min_keep = */ min_keep,
},
};
}
// typical
struct llama_sampler_typical {

File diff suppressed because it is too large Load diff

View file

@ -16,6 +16,7 @@
#include <ggml.h>
#include <ggml-cpu.h>
#include <ggml-alloc.h>
#include <ggml-backend.h>
@ -1613,8 +1614,8 @@ struct test_ssm_scan : public test_case {
}
};
// GGML_OP_RWKV_WKV
struct test_rwkv_wkv : public test_case {
// GGML_OP_RWKV_WKV6
struct test_rwkv_wkv6 : public test_case {
const ggml_type type;
const int64_t head_count;
@ -1626,7 +1627,7 @@ struct test_rwkv_wkv : public test_case {
return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
}
test_rwkv_wkv(ggml_type type = GGML_TYPE_F32,
test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
: type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
@ -1638,7 +1639,7 @@ struct test_rwkv_wkv : public test_case {
ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
ggml_tensor * td = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ 1, head_size, head_count, n_tokens }.data());
ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
ggml_tensor * out = ggml_rwkv_wkv(ctx, k, v, r, tf, td, s);
ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
return out;
}
};
@ -3498,10 +3499,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 1, 1));
test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 1));
test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 32, 4));
test_cases.emplace_back(new test_rwkv_wkv(GGML_TYPE_F32, 32, 64, 128, 4));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
#if 1
for (ggml_type type_a : base_types) {
@ -3598,7 +3599,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (int n_mats : {4}) {
for (int n_used : {2}) {
for (bool b : {false}) {
for (int n : {1}) {
for (int n : {1, 32}) {
int m = 512;
int k = 256;
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));

View file

@ -1,4 +1,5 @@
#include "ggml.h"
#include "ggml-cpu.h"
#include "ggml-backend.h"
#include <chrono>

View file

@ -65,6 +65,8 @@ int main(void) {
u8"{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}",
// DeepSeek-V2
"{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
// ibm-granite/granite-3.0-8b-instruct
"{%- if tools %}\n {{- '<|start_of_role|>available_tools<|end_of_role|>\n' }}\n {%- for tool in tools %}\n {{- tool | tojson(indent=4) }}\n {%- if not loop.last %}\n {{- '\n\n' }}\n {%- endif %}\n {%- endfor %}\n {{- '<|end_of_text|>\n' }}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n {{- '<|start_of_role|>system<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'user' %}\n {{- '<|start_of_role|>user<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'assistant' %}\n {{- '<|start_of_role|>assistant<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'assistant_tool_call' %}\n {{- '<|start_of_role|>assistant<|end_of_role|><|tool_call|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- elif message['role'] == 'tool_response' %}\n {{- '<|start_of_role|>tool_response<|end_of_role|>' + message['content'] + '<|end_of_text|>\n' }}\n {%- endif %}\n {%- if loop.last and add_generation_prompt %}\n {{- '<|start_of_role|>assistant<|end_of_role|>' }}\n {%- endif %}\n{%- endfor %}",
};
std::vector<std::string> expected_output = {
// teknium/OpenHermes-2.5-Mistral-7B
@ -109,6 +111,8 @@ int main(void) {
u8"You are a helpful assistant<用户>Hello<AI>Hi there<用户>Who are you<AI>I am an assistant<用户>Another question<AI>",
// DeepSeek-V2
u8"You are a helpful assistant\n\nUser: Hello\n\nAssistant: Hi there<end▁of▁sentence>User: Who are you\n\nAssistant: I am an assistant <end▁of▁sentence>User: Another question\n\nAssistant:",
// ibm-granite/granite-3.0-8b-instruct
"<|start_of_role|>system<|end_of_role|>You are a helpful assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Hello<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>Hi there<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Who are you<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|> I am an assistant <|end_of_text|>\n<|start_of_role|>user<|end_of_role|>Another question<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>\n",
};
std::vector<char> formatted_chat(1024);
int32_t res;

View file

@ -1,5 +1,6 @@
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
#include "ggml.h"
#include "ggml-cpu.h"
#include <cfloat>
#include <cmath>

View file

@ -1,6 +1,7 @@
// Unit tests for quantization specific functions - quantize, dequantize and dot product
#include "ggml.h"
#include "ggml-cpu.h"
#undef NDEBUG
#include <assert.h>
@ -78,18 +79,18 @@ static float dot_product(const float * a1, const float * a2, size_t test_size) {
// Total dot product error
static float dot_product_error(
const ggml_type_traits * qfns, size_t test_size, const float * test_data1, const float *test_data2
const ggml_type_traits * qfns, const ggml_type_traits_cpu * qfns_cpu, size_t test_size, const float * test_data1, const float *test_data2
) {
std::vector<uint8_t> tmp_q1(2*test_size);
std::vector<uint8_t> tmp_q2(2*test_size);
const auto * vdot = ggml_get_type_traits(qfns->vec_dot_type);
const auto * vdot = ggml_get_type_traits(qfns_cpu->vec_dot_type);
qfns->from_float(test_data1, tmp_q1.data(), test_size);
vdot->from_float(test_data2, tmp_q2.data(), test_size);
float result = INFINITY;
qfns->vec_dot(test_size, &result, 0, tmp_q1.data(), 0, tmp_q2.data(), 0, 1);
qfns_cpu->vec_dot(test_size, &result, 0, tmp_q1.data(), 0, tmp_q2.data(), 0, 1);
const float dot_ref = dot_product(test_data1, test_data2, test_size);
@ -132,6 +133,7 @@ int main(int argc, char * argv[]) {
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
const auto * qfns = ggml_get_type_traits(type);
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
// deprecated - skip
if (qfns->blck_size == 0) {
@ -166,7 +168,7 @@ int main(int argc, char * argv[]) {
printf("%5s reference implementation error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], reference_error);
}
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
const float vec_dot_error = dot_product_error(qfns, qfns_cpu, test_size, test_data.data(), test_data2.data());
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
type == GGML_TYPE_IQ3_XXS || type == GGML_TYPE_IQ3_S || type == GGML_TYPE_IQ2_S
? MAX_DOT_PRODUCT_ERROR_LOWBIT

View file

@ -1,6 +1,7 @@
// Benchmark quantization specific functions on synthetic data
#include "ggml.h"
#include "ggml-cpu.h"
#undef NDEBUG
#include <algorithm>
@ -271,6 +272,7 @@ int main(int argc, char * argv[]) {
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
const auto * qfns = ggml_get_type_traits(type);
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
continue;
}
@ -328,7 +330,7 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void) -> float {
const auto * vdot = ggml_get_type_traits(qfns->vec_dot_type);
const auto * vdot = ggml_get_type_traits(qfns_cpu->vec_dot_type);
vdot->from_float(test_data1, test_q1, size);
return test_q1[0];
};
@ -346,7 +348,7 @@ int main(int argc, char * argv[]) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void) -> float {
float result;
qfns->vec_dot(size, &result, 0, test_q1, 0, test_q2, 0, 1);
qfns_cpu->vec_dot(size, &result, 0, test_q1, 0, test_q2, 0, 1);
return result;
};
size_t quantized_size = ggml_row_size(type, size);

View file

@ -1,4 +1,5 @@
#include "ggml.h"
#include "ggml-cpu.h"
#include <cmath>
#include <cstdio>

View file

@ -105,16 +105,6 @@ static void test_top_p(const std::vector<float> & probs, const std::vector<float
tester.check();
}
static void test_tfs(const std::vector<float> & probs, const std::vector<float> & probs_expected, float z) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_tail_free(z, 1));
DUMP(&tester.cur_p);
tester.check();
}
static void test_min_p(const std::vector<float> & probs, const std::vector<float> & probs_expected, float p) {
sampler_tester tester(probs, probs_expected);
@ -202,7 +192,6 @@ static void test_sampler_queue(const size_t n_vocab, const std::string & sampler
for (auto s : samplers_sequence) {
switch (s){
case 'k': tester.apply(llama_sampler_init_top_k(top_k)); break;
case 'f': GGML_ABORT("tail_free test not implemented");
case 'y': GGML_ABORT("typical test not implemented");
case 'p': tester.apply(llama_sampler_init_top_p(top_p, 1)); break;
case 'm': tester.apply(llama_sampler_init_min_p(min_p, 1)); break;
@ -299,12 +288,11 @@ static void test_perf() {
data.emplace_back(llama_token_data{i, logit, 0.0f});
}
BENCH(llama_sampler_init_top_k (40), data, 32);
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
BENCH(llama_sampler_init_tail_free(0.5f, 1), data, 32);
BENCH(llama_sampler_init_typical (0.5f, 1), data, 32);
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
BENCH(llama_sampler_init_top_k (40), data, 32);
BENCH(llama_sampler_init_top_p (0.8f, 1), data, 32);
BENCH(llama_sampler_init_min_p (0.2f, 1), data, 32);
BENCH(llama_sampler_init_typical(0.5f, 1), data, 32);
BENCH(llama_sampler_init_xtc (1.0f, 0.1f, 1, 1), data, 32);
}
int main(void) {
@ -343,10 +331,6 @@ int main(void) {
printf("XTC should not:\n");
test_xtc({0.4f, 0.3f, 0.2f, 0.1f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0.99f, 0.39f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);