remove task inf_type

This commit is contained in:
Xuan Son Nguyen 2024-12-07 19:33:40 +01:00
parent e721f4c6b4
commit 090a113417

View file

@ -54,7 +54,10 @@ enum server_state {
};
enum server_task_type {
SERVER_TASK_TYPE_INFERENCE,
SERVER_TASK_TYPE_COMPLETION,
SERVER_TASK_TYPE_EMBEDDING,
SERVER_TASK_TYPE_RERANK,
SERVER_TASK_TYPE_INFILL,
SERVER_TASK_TYPE_CANCEL,
SERVER_TASK_TYPE_NEXT_RESPONSE,
SERVER_TASK_TYPE_METRICS,
@ -64,13 +67,6 @@ enum server_task_type {
SERVER_TASK_TYPE_SET_LORA,
};
enum server_task_inf_type {
SERVER_TASK_INF_TYPE_COMPLETION,
SERVER_TASK_INF_TYPE_EMBEDDING,
SERVER_TASK_INF_TYPE_RERANK,
SERVER_TASK_INF_TYPE_INFILL,
};
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type {
ERROR_TYPE_INVALID_REQUEST,
@ -163,8 +159,7 @@ struct server_task {
int id = -1; // to be filled by server_queue
int index = -1; // used when there are multiple prompts (batch request)
server_task_type type;
server_task_inf_type inf_type;
server_task_type type;
// used by SERVER_TASK_TYPE_CANCEL
int id_target = -1;
@ -185,9 +180,7 @@ struct server_task {
// used by SERVER_TASK_TYPE_METRICS
bool metrics_reset_bucket = false;
server_task(
server_task_type type,
server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION) : type(type), inf_type(inf_type) {}
server_task(server_task_type type) : type(type) {}
static slot_params params_from_json_cmpl(
const llama_model * model,
@ -893,6 +886,9 @@ struct server_slot {
int id;
int id_task = -1;
// only used for completion/embedding/infill/rerank
server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
llama_batch batch_spec = {};
llama_context * ctx = nullptr;
@ -931,8 +927,6 @@ struct server_slot {
llama_tokens cache_tokens;
std::vector<completion_token_output> generated_token_probs;
server_task_inf_type inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
bool has_next_token = true;
bool has_new_line = false;
bool truncated = false;
@ -972,11 +966,15 @@ struct server_slot {
n_past = 0;
n_sent_text = 0;
n_sent_token_probs = 0;
inf_type = SERVER_TASK_INF_TYPE_COMPLETION;
task_type = SERVER_TASK_TYPE_COMPLETION;
generated_token_probs.clear();
}
bool is_non_causal() const {
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
}
bool has_budget(const common_params & global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
@ -1088,6 +1086,7 @@ struct server_slot {
{"n_ctx", n_ctx},
{"speculative", can_speculate()},
{"is_processing", is_processing()},
{"non_causal", is_non_causal()},
{"params", params.to_json()},
{"prompt", common_detokenize(ctx, prompt_tokens)},
{"next_token",
@ -1653,8 +1652,8 @@ struct server_context {
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
slot.reset();
slot.id_task = task.id;
slot.inf_type = task.inf_type;
slot.index = task.index;
slot.task_type = task.type;
slot.params = std::move(task.params);
slot.prompt_tokens = std::move(task.prompt_tokens);
@ -2120,7 +2119,10 @@ struct server_context {
void process_single_task(server_task task) {
switch (task.type) {
case SERVER_TASK_TYPE_INFERENCE:
case SERVER_TASK_TYPE_COMPLETION:
case SERVER_TASK_TYPE_INFILL:
case SERVER_TASK_TYPE_EMBEDDING:
case SERVER_TASK_TYPE_RERANK:
{
const int id_slot = task.id_selected_slot;
@ -2462,7 +2464,7 @@ struct server_context {
continue;
}
if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
if (slot.is_non_causal()) {
if (slot.n_prompt_tokens > n_ubatch) {
slot.release();
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
@ -2577,7 +2579,7 @@ struct server_context {
}
// non-causal tasks require to fit the entire prompt in the physical batch
if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING || slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
if (slot.is_non_causal()) {
// cannot fit the prompt in the current batch - will try next iter
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
continue;
@ -2585,10 +2587,7 @@ struct server_context {
}
// check that we are in the right batch_type, if not defer the slot
const bool slot_type =
slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING ||
slot.inf_type == SERVER_TASK_INF_TYPE_RERANK ? 1 : 0;
int slot_type = slot.is_non_causal();
if (batch_type == -1) {
batch_type = slot_type;
} else if (batch_type != slot_type) {
@ -2705,7 +2704,7 @@ struct server_context {
}
if (slot.state == SLOT_STATE_DONE_PROMPT) {
if (slot.inf_type == SERVER_TASK_INF_TYPE_EMBEDDING) {
if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
// prompt evaluated for embedding
send_embedding(slot, batch_view);
slot.release();
@ -2713,7 +2712,7 @@ struct server_context {
continue; // continue loop of slots
}
if (slot.inf_type == SERVER_TASK_INF_TYPE_RERANK) {
if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
send_rerank(slot, batch_view);
slot.release();
slot.i_batch = -1;
@ -3352,11 +3351,13 @@ int main(int argc, char ** argv) {
// handle completion-like requests (completion, chat, infill)
// we can optionally provide a custom format for partial results and final results
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
server_task_inf_type inf_type,
server_task_type type,
json & data,
httplib::Response & res,
bool oaicompat = false,
bool oaicompat_chat = false) {
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
if (ctx_server.params_base.embedding) {
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
return;
@ -3369,7 +3370,8 @@ int main(int argc, char ** argv) {
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
tasks.reserve(tokenized_prompts.size());
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
server_task task = server_task(SERVER_TASK_TYPE_INFERENCE, inf_type);
server_task task = server_task(type);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
@ -3450,7 +3452,7 @@ int main(int argc, char ** argv) {
const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
json data = json::parse(req.body);
return handle_completions_generic(
SERVER_TASK_INF_TYPE_COMPLETION,
SERVER_TASK_TYPE_COMPLETION,
data,
res,
/* oaicompat */ false,
@ -3504,7 +3506,7 @@ int main(int argc, char ** argv) {
}
data["input_extra"] = input_extra; // default to empty array if it's not exist
return handle_completions_generic(SERVER_TASK_INF_TYPE_INFILL, data, res);
return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
};
const auto handle_chat_completions = [&ctx_server, &params, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
@ -3515,7 +3517,7 @@ int main(int argc, char ** argv) {
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
return handle_completions_generic(
SERVER_TASK_INF_TYPE_COMPLETION,
SERVER_TASK_TYPE_COMPLETION,
data,
res,
/* oaicompat */ true,
@ -3616,7 +3618,7 @@ int main(int argc, char ** argv) {
std::vector<server_task> tasks;
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, /* add_special */ false, true);
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
server_task task = server_task(SERVER_TASK_TYPE_INFERENCE, SERVER_TASK_INF_TYPE_EMBEDDING);
server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = std::move(tokenized_prompts[i]);
@ -3698,7 +3700,7 @@ int main(int argc, char ** argv) {
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
tasks.reserve(tokenized_docs.size());
for (size_t i = 0; i < tokenized_docs.size(); i++) {
server_task task = server_task(SERVER_TASK_TYPE_INFERENCE, SERVER_TASK_INF_TYPE_RERANK);
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
task.id = ctx_server.queue_tasks.get_new_id();
task.index = i;
task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);