From 0ea069b87bd296c556824e57455433b6c0357340 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 13 Jan 2024 19:31:26 +0200 Subject: [PATCH 01/71] server : fix prompt caching with system prompt (#4914) --- examples/server/server.cpp | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 79eacf828..93f999298 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1180,8 +1180,9 @@ struct llama_server_context return slot.images.size() > 0; } - void send_error(task_server& task, std::string error) + void send_error(task_server& task, const std::string &error) { + LOG_TEE("task %i - error: %s\n", task.id, error.c_str()); std::unique_lock lock(mutex_results); task_result res; res.id = task.id; @@ -1570,12 +1571,22 @@ struct llama_server_context LOG_TEE("slot unavailable\n"); // send error result send_error(task, "slot unavailable"); - return; + break; } if (task.data.contains("system_prompt")) { + if (!all_slots_are_idle) { + send_error(task, "system prompt can only be updated when all slots are idle"); + break; + } process_system_prompt_data(task.data["system_prompt"]); + + // reset cache_tokens for all slots + for (llama_client_slot &slot : slots) + { + slot.cache_tokens.clear(); + } } slot->reset(); @@ -1652,8 +1663,7 @@ struct llama_server_context // attend tasks process_tasks(); - // update the system prompt wait until all slots are idle state - if (system_need_update && all_slots_are_idle) + if (system_need_update) { LOG_TEE("updating system prompt\n"); update_system_prompt(); From 4be5ef556de830c5c4f6e45c05ef4427823fe607 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sat, 13 Jan 2024 20:45:45 +0200 Subject: [PATCH 02/71] metal : remove old API (#4919) ggml-ci --- Makefile | 9 -- examples/CMakeLists.txt | 3 - examples/metal/CMakeLists.txt | 4 - examples/metal/metal.cpp | 103 ------------- ggml-metal.h | 55 +------ ggml-metal.m | 276 +++------------------------------- llama.cpp | 4 +- 7 files changed, 27 insertions(+), 427 deletions(-) delete mode 100644 examples/metal/CMakeLists.txt delete mode 100644 examples/metal/metal.cpp diff --git a/Makefile b/Makefile index 05fe9a0f6..995b89f7a 100644 --- a/Makefile +++ b/Makefile @@ -43,10 +43,6 @@ ifeq ($(UNAME_S),Darwin) endif endif -ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))' -BUILD_TARGETS += metal -endif - default: $(BUILD_TARGETS) test: $(TEST_TARGETS) @@ -671,11 +667,6 @@ lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS) $(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -ifdef LLAMA_METAL -metal: examples/metal/metal.cpp ggml.o $(OBJS) - $(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS) -endif - ifeq ($(UNAME_S),Darwin) swift: examples/batched.swift (cd examples/batched.swift; make build) diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index fa127a3aa..f67d74c55 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -37,9 +37,6 @@ else() add_subdirectory(lookup) add_subdirectory(train-text-from-scratch) add_subdirectory(imatrix) - if (LLAMA_METAL) - add_subdirectory(metal) - endif() if (LLAMA_BUILD_SERVER) add_subdirectory(server) endif() diff --git a/examples/metal/CMakeLists.txt b/examples/metal/CMakeLists.txt deleted file mode 100644 index f16d49165..000000000 --- a/examples/metal/CMakeLists.txt +++ /dev/null @@ -1,4 +0,0 @@ -set(TEST_TARGET metal) -add_executable(${TEST_TARGET} metal.cpp) -install(TARGETS ${TARGET} RUNTIME) -target_link_libraries(${TEST_TARGET} PRIVATE ggml) diff --git a/examples/metal/metal.cpp b/examples/metal/metal.cpp deleted file mode 100644 index 16c1146f9..000000000 --- a/examples/metal/metal.cpp +++ /dev/null @@ -1,103 +0,0 @@ -// Evaluate a statically exported ggml computation graph with Metal -// -// - First, export a LLaMA graph: -// -// $ ./bin/main -m ../models/7B/ggml-model-q4_0.gguf --export -// -// - Run this tool to evaluate the exported graph: -// -// $ ./bin/metal llama.ggml -// -// The purpose of this tool is mostly for debugging and demonstration purposes. -// The main limitation of exporting computation graphs is that their sizes are static which often -// can be a problem for real-world applications. -// - -#include "ggml.h" -#include "ggml-metal.h" - -#include -#include -#include - -int main(int argc, char ** argv) { - ggml_time_init(); - - if (argc != 2) { - fprintf(stderr, "Usage: %s llama.ggml\n", argv[0]); - return -1; - } - - const char * fname_cgraph = argv[1]; - - // load the compute graph - struct ggml_context * ctx_data = NULL; - struct ggml_context * ctx_eval = NULL; - - struct ggml_cgraph * gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval); - - // this allocates all Metal resources and memory buffers - auto * ctx_metal = ggml_metal_init(1); - - const size_t max_size_data = ggml_get_max_tensor_size(ctx_data); - const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval); - ggml_metal_add_buffer(ctx_metal, "data", ggml_get_mem_buffer(ctx_data), ggml_get_mem_size(ctx_data), max_size_data); - ggml_metal_add_buffer(ctx_metal, "eval", ggml_get_mem_buffer(ctx_eval), ggml_get_mem_size(ctx_eval), max_size_eval); - - // main - { - struct ggml_tensor * input = ggml_graph_get_tensor(gf, "embd"); - *(int32_t *) input->data = 1; // BOS - - ggml_metal_set_tensor(ctx_metal, input); - - // warmup - ggml_metal_graph_compute(ctx_metal, gf); - - const int n_iter = 16; - - const int64_t t0 = ggml_time_us(); - - // the actual inference happens here - for (int i = 0; i < n_iter; ++i) { - ggml_metal_graph_compute(ctx_metal, gf); - } - - const int64_t t1 = ggml_time_us(); - - printf("time: %.2f ms, %.2f ms/tok\n", (t1 - t0) / 1000.0, (t1 - t0) / 1000.0 / n_iter); - } - - // debug output - { - struct ggml_tensor * logits = gf->nodes[gf->n_nodes - 1]; - ggml_metal_get_tensor(ctx_metal, logits); - - float * ptr = (float *) ggml_get_data(logits); - - printf("logits: "); - for (int i = 0; i < 10; i++) { - printf("%8.4f ", ptr[i]); - } - printf("\n"); - int imax = 0; - double sum = 0.0; - double vmax = -1e9; - for (int i = 0; i < 32000; i++) { - sum += (double) ptr[i]; - if (ptr[i] > vmax) { - vmax = ptr[i]; - imax = i; - } - } - printf("sum: %f, imax = %d, vmax = %f\n", sum, imax, vmax); - } - - ggml_metal_free(ctx_metal); - - ggml_free(ctx_data); - ggml_free(ctx_eval); - - return 0; -} - diff --git a/ggml-metal.h b/ggml-metal.h index c4b7325da..cd5e2995f 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -36,64 +36,13 @@ struct ggml_cgraph; extern "C" { #endif -// -// internal API -// temporary exposed to user-code -// - -struct ggml_metal_context; - -void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); - -// number of command buffers to use -struct ggml_metal_context * ggml_metal_init(int n_cb); -void ggml_metal_free(struct ggml_metal_context * ctx); - -void * ggml_metal_host_malloc(size_t n); -void ggml_metal_host_free (void * data); - -// set the number of command buffers to use -void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb); - -// creates a mapping between a host memory buffer and a device memory buffer -// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute -// - the mapping is used during computation to determine the arguments of the compute kernels -// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal -// - max_size specifies the maximum size of a tensor and is used to create shared views such -// that it is guaranteed that the tensor will fit in at least one of the views -// -bool ggml_metal_add_buffer( - struct ggml_metal_context * ctx, - const char * name, - void * data, - size_t size, - size_t max_size); - -// set data from host memory into the device -void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); - -// get data from the device into host memory -void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); - -// try to find operations that can be run concurrently in the graph -// you should run it again if the topology of your graph changes -void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem); - -// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized -int ggml_metal_if_optimized(struct ggml_metal_context * ctx); - -// output the concur_list for ggml_alloc -int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx); - -// same as ggml_graph_compute but uses Metal -// creates gf->n_threads command buffers in parallel -bool ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); - // // backend API // user-code should use only these functions // +GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); + GGML_API ggml_backend_t ggml_backend_metal_init(void); GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); diff --git a/ggml-metal.m b/ggml-metal.m index 57e444827..cae52c983 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -24,8 +24,6 @@ #define UNUSED(x) (void)(x) -#define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE) - #define GGML_METAL_MAX_KERNELS 256 struct ggml_metal_buffer { @@ -182,9 +180,6 @@ struct ggml_metal_context { struct ggml_metal_kernel kernels[GGML_METAL_MAX_KERNELS]; - int concur_list[GGML_MAX_CONCUR]; - int concur_list_len; - bool support_simdgroup_reduction; bool support_simdgroup_mm; }; @@ -200,7 +195,6 @@ struct ggml_metal_context { @implementation GGMLMetalClass @end - static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) { fprintf(stderr, "%s", msg); @@ -211,11 +205,6 @@ static void ggml_metal_default_log_callback(enum ggml_log_level level, const cha ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback; void * ggml_metal_log_user_data = NULL; -void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) { - ggml_metal_log_callback = log_callback; - ggml_metal_log_user_data = user_data; -} - GGML_ATTRIBUTE_FORMAT(2, 3) static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){ if (ggml_metal_log_callback != NULL) { @@ -238,7 +227,18 @@ static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){ } } -struct ggml_metal_context * ggml_metal_init(int n_cb) { +static void * ggml_metal_host_malloc(size_t n) { + void * data = NULL; + const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); + if (result != 0) { + GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); + return NULL; + } + + return data; +} + +static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: allocating\n", __func__); id device; @@ -264,7 +264,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); ctx->queue = [ctx->device newCommandQueue]; ctx->n_buffers = 0; - ctx->concur_list_len = 0; ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); @@ -531,7 +530,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { return ctx; } -void ggml_metal_free(struct ggml_metal_context * ctx) { +static void ggml_metal_free(struct ggml_metal_context * ctx) { GGML_METAL_LOG_INFO("%s: deallocating\n", __func__); for (int i = 0; i < ctx->n_buffers; ++i) { @@ -557,33 +556,6 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { free(ctx); } -void * ggml_metal_host_malloc(size_t n) { - void * data = NULL; - const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); - if (result != 0) { - GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); - return NULL; - } - - return data; -} - -void ggml_metal_host_free(void * data) { - free(data); -} - -void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { - ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); -} - -int ggml_metal_if_optimized(struct ggml_metal_context * ctx) { - return ctx->concur_list_len; -} - -int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) { - return ctx->concur_list; -} - // temporarily defined here for compatibility between ggml-backend and the old API struct ggml_backend_metal_buffer { @@ -656,209 +628,6 @@ static id ggml_metal_get_buffer(struct ggml_metal_context * ctx, stru return nil; } -bool ggml_metal_add_buffer( - struct ggml_metal_context * ctx, - const char * name, - void * data, - size_t size, - size_t max_size) { - if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { - GGML_METAL_LOG_ERROR("%s: error: too many buffers\n", __func__); - return false; - } - - if (data) { - // verify that the buffer does not overlap with any of the existing buffers - for (int i = 0; i < ctx->n_buffers; ++i) { - const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data; - - if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { - GGML_METAL_LOG_ERROR("%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name); - return false; - } - } - - const size_t size_page = sysconf(_SC_PAGESIZE); - - size_t size_aligned = size; - if ((size_aligned % size_page) != 0) { - size_aligned += (size_page - (size_aligned % size_page)); - } - - // the buffer fits into the max buffer size allowed by the device - if (size_aligned <= ctx->device.maxBufferLength) { - ctx->buffers[ctx->n_buffers].name = name; - ctx->buffers[ctx->n_buffers].data = data; - ctx->buffers[ctx->n_buffers].size = size; - - ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; - - if (ctx->buffers[ctx->n_buffers].metal == nil) { - GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_aligned / 1024.0 / 1024.0); - return false; - } - - GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB", __func__, name, size_aligned / 1024.0 / 1024.0); - - ++ctx->n_buffers; - } else { - // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into - // one of the views - const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case - const size_t size_step = ctx->device.maxBufferLength - size_ovlp; - const size_t size_view = ctx->device.maxBufferLength; - - for (size_t i = 0; i < size; i += size_step) { - const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); - - ctx->buffers[ctx->n_buffers].name = name; - ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); - ctx->buffers[ctx->n_buffers].size = size_step_aligned; - - ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; - - if (ctx->buffers[ctx->n_buffers].metal == nil) { - GGML_METAL_LOG_ERROR("%s: error: failed to allocate '%-16s' buffer, size = %8.2f MiB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); - return false; - } - - GGML_METAL_LOG_INFO("%s: allocated '%-16s' buffer, size = %8.2f MiB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); - if (i + size_step < size) { - GGML_METAL_LOG_INFO("\n"); - } - - ++ctx->n_buffers; - } - } - -#if TARGET_OS_OSX - GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", - ctx->device.currentAllocatedSize / 1024.0 / 1024.0, - ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - - if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { - GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__); - } else { - GGML_METAL_LOG_INFO("\n"); - } -#else - GGML_METAL_LOG_INFO(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0); -#endif - } - - return true; -} - -void ggml_metal_set_tensor( - struct ggml_metal_context * ctx, - struct ggml_tensor * t) { - size_t offs; - id id_dst = ggml_metal_get_buffer(ctx, t, &offs); - - memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t)); -} - -void ggml_metal_get_tensor( - struct ggml_metal_context * ctx, - struct ggml_tensor * t) { - size_t offs; - id id_src = ggml_metal_get_buffer(ctx, t, &offs); - - memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t)); -} - -void ggml_metal_graph_find_concurrency( - struct ggml_metal_context * ctx, - struct ggml_cgraph * gf, bool check_mem) { - int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time - int nodes_unused[GGML_MAX_CONCUR]; - - for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; } - for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; } - ctx->concur_list_len = 0; - - int n_left = gf->n_nodes; - int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list - int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos - - while (n_left > 0) { - // number of nodes at a layer (that can be issued concurrently) - int concurrency = 0; - for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) { - if (nodes_unused[i]) { - // if the requirements for gf->nodes[i] are satisfied - int exe_flag = 1; - - // scan all srcs - for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) { - struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind]; - if (src_cur) { - // if is leaf nodes it's satisfied. - // TODO: ggml_is_leaf() - if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) { - continue; - } - - // otherwise this src should be the output from previous nodes. - int is_found = 0; - - // scan 2*search_depth back because we inserted barrier. - //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) { - for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) { - if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) { - is_found = 1; - break; - } - } - if (is_found == 0) { - exe_flag = 0; - break; - } - } - } - if (exe_flag && check_mem) { - // check if nodes[i]'s data will be overwritten by a node before nodes[i]. - // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3] - int64_t data_start = (int64_t) gf->nodes[i]->data; - int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]); - for (int j = n_start; j < i; j++) { - if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \ - && gf->nodes[j]->op != GGML_OP_VIEW \ - && gf->nodes[j]->op != GGML_OP_TRANSPOSE \ - && gf->nodes[j]->op != GGML_OP_PERMUTE) { - if (((int64_t)gf->nodes[j]->data) >= data_start + length || \ - ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) { - continue; - } - - exe_flag = 0; - } - } - } - if (exe_flag) { - ctx->concur_list[level_pos + concurrency] = i; - nodes_unused[i] = 0; - concurrency++; - ctx->concur_list_len++; - } - } - } - n_left -= concurrency; - // adding a barrier different layer - ctx->concur_list[level_pos + concurrency] = -1; - ctx->concur_list_len++; - // jump all sorted nodes at nodes_bak - while (!nodes_unused[n_start]) { - n_start++; - } - level_pos += concurrency + 1; - } - - if (ctx->concur_list_len > GGML_MAX_CONCUR) { - GGML_METAL_LOG_WARN("%s: too many elements for metal ctx->concur_list!\n", __func__); - } -} - static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) { switch (op->op) { case GGML_OP_UNARY: @@ -940,19 +709,15 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const } } -bool ggml_metal_graph_compute( +static bool ggml_metal_graph_compute( struct ggml_metal_context * ctx, struct ggml_cgraph * gf) { @autoreleasepool { - // if there is ctx->concur_list, dispatch concurrently - // else fallback to serial dispatch MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor; - const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR; - - const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes; - edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial; + const int n_nodes = gf->n_nodes; + edesc.dispatchType = MTLDispatchTypeSerial; // create multiple command buffers and enqueue them // then, we encode the graph into the command buffers in parallel @@ -983,7 +748,7 @@ bool ggml_metal_graph_compute( const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes); for (int ind = node_start; ind < node_end; ++ind) { - const int i = has_concur ? ctx->concur_list[ind] : ind; + const int i = ind; if (i == -1) { [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; @@ -2823,6 +2588,11 @@ static struct ggml_backend_i ggml_backend_metal_i = { /* .supports_op = */ ggml_backend_metal_supports_op, }; +void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) { + ggml_metal_log_callback = log_callback; + ggml_metal_log_user_data = user_data; +} + ggml_backend_t ggml_backend_metal_init(void) { struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); @@ -2849,7 +2619,7 @@ void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; - ggml_metal_set_n_cb(ctx, n_cb); + ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); } bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) { diff --git a/llama.cpp b/llama.cpp index 2190ea7aa..66494974a 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1266,7 +1266,7 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_g struct llama_state { llama_state() { #ifdef GGML_USE_METAL - ggml_metal_log_set_callback(log_callback, log_callback_user_data); + ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); #endif } @@ -10470,7 +10470,7 @@ void llama_log_set(ggml_log_callback log_callback, void * user_data) { g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; g_state.log_callback_user_data = user_data; #ifdef GGML_USE_METAL - ggml_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); + ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); #endif } From c71d608ce7a1584bf5072f197919dd24f3a6163f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Sat, 13 Jan 2024 21:41:37 +0100 Subject: [PATCH 03/71] ggml: cache sin/cos for RoPE (#4908) --- ggml.c | 46 ++++++++++++++++++++++++++++++++-------------- 1 file changed, 32 insertions(+), 14 deletions(-) diff --git a/ggml.c b/ggml.c index de6ef34bd..bcfb6652c 100644 --- a/ggml.c +++ b/ggml.c @@ -11638,6 +11638,21 @@ static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, fl return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base)); } +static void ggml_rope_cache_init( + float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, + float * cache, float sin_sign, float theta_scale +) { + float theta = theta_base; + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + rope_yarn( + theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] + ); + cache[i0 + 1] *= sin_sign; + + theta *= theta_scale; + } +} + void ggml_rope_yarn_corr_dims( int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2] ) { @@ -11720,6 +11735,12 @@ static void ggml_compute_forward_rope_f32( for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { const int64_t p = pos[i2]; + + float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; + if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox + ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } + for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; @@ -11753,18 +11774,13 @@ static void ggml_compute_forward_rope_f32( } } else if (!is_neox) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) { - float cos_theta, sin_theta; - rope_yarn( - theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta - ); - sin_theta *= sin_sign; + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; // zeta scaling for xPos only: float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f; if (xpos_down) zeta = 1.0f / zeta; - theta_base *= theta_scale; - const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -11888,6 +11904,12 @@ static void ggml_compute_forward_rope_f16( for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { const int64_t p = pos[i2]; + + float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; + if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox + ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } + for (int64_t i1 = 0; i1 < ne1; i1++) { if (ir++ < ir0) continue; if (ir > ir1) break; @@ -11921,13 +11943,8 @@ static void ggml_compute_forward_rope_f16( } } else if (!is_neox) { for (int64_t i0 = 0; i0 < ne0; i0 += 2) { - float cos_theta, sin_theta; - rope_yarn( - theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta - ); - sin_theta *= sin_sign; - - theta_base *= theta_scale; + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); @@ -16722,6 +16739,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa } } break; case GGML_OP_SOFT_MAX: + case GGML_OP_ROPE: { cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; } break; From 76484fbfd355df388f71d6edaa98e1692a74de7e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 00:14:46 +0200 Subject: [PATCH 04/71] sync : ggml --- scripts/sync-ggml.last | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index edcdb530a..753d227a7 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -400c07f00508e6f60fb25405444b5669c365b0a9 +1890780da4ea10db88736fcde85f285abf6c64b0 From 807179ec583dcb882f97d9704577c06beb2c5ec9 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 09:44:30 +0200 Subject: [PATCH 05/71] Make Q3_K_S be the same as olf Q3_K_L for Mixtral-8x7B (#4906) Co-authored-by: Iwan Kawrakow --- llama.cpp | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/llama.cpp b/llama.cpp index 66494974a..8e20e72a2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8489,9 +8489,16 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty ++qs.i_feed_forward_w2; } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + if (qs.model.hparams.n_expert == 8) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || + ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { + new_type = GGML_TYPE_Q5_K; + } + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } From 147b17ac94a24d524e367cda26a9ff6245689f34 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 09:45:56 +0200 Subject: [PATCH 06/71] 2-bit quantizations (#4897) * imatrix: load * imatrix: WIP * imatrix: Add Q2_K quantization * imatrix: also guard against Q2_K_S quantization without importance matrix * imatrix: guard even more against low-bit quantization misuse --------- Co-authored-by: Iwan Kawrakow --- examples/benchmark/benchmark-matmult.cpp | 4 +- examples/quantize/quantize.cpp | 133 +++- ggml-quants.c | 950 +++++++++++++++++++++-- ggml-quants.h | 12 +- ggml.c | 36 +- ggml.h | 9 +- llama.cpp | 84 +- llama.h | 1 + tests/test-backend-ops.cpp | 2 +- 9 files changed, 1149 insertions(+), 82 deletions(-) diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp index 434e1d6bd..e89f3de2f 100644 --- a/examples/benchmark/benchmark-matmult.cpp +++ b/examples/benchmark/benchmark-matmult.cpp @@ -194,7 +194,7 @@ int main(int argc, char ** argv) { // Set up a the benchmark matrices // printf("Creating new tensor q11 & Running quantize\n"); struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); - ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data()); + ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], hist_cur.data(), nullptr); // Set up a the compute graph // printf("Creating new tensor q31\n"); @@ -207,7 +207,7 @@ int main(int argc, char ** argv) { // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey); - ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data()); + ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], hist_cur.data(), nullptr); // printf("Creating new tensor q32\n"); struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2); diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index f878f6911..f4e2175f1 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -5,6 +5,10 @@ #include #include #include +#include +#include +#include +#include struct quant_option { std::string name; @@ -17,6 +21,8 @@ static const std::vector QUANT_OPTIONS = { { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", }, { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", }, { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", }, + { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", }, + { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", }, { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, @@ -72,10 +78,14 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp // [[noreturn]] static void usage(const char * executable) { - printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); + printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable); printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); + printf(" --imatrixfile_name: use data in file_name as importance matrix for quant optimizations\n"); + printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); + printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); + printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("\nAllowed quantization types:\n"); for (auto & it : QUANT_OPTIONS) { if (it.name != "COPY") { @@ -83,11 +93,93 @@ static void usage(const char * executable) { } else { printf(" "); } - printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str()); + printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str()); } exit(1); } +static void load_imatrix(const std::string& imatrix_file, std::unordered_map>& imatrix_data) { + std::ifstream in(imatrix_file.c_str(), std::ios::binary); + if (!in) { + printf("%s: failed to open %s\n",__func__,imatrix_file.c_str()); + return; + } + int n_entries; + in.read((char*)&n_entries, sizeof(n_entries)); + if (in.fail() || n_entries < 1) { + printf("%s: no data in file %s\n", __func__, imatrix_file.c_str()); + return; + } + for (int i = 0; i < n_entries; ++i) { + int len; in.read((char *)&len, sizeof(len)); + std::vector name_as_vec(len+1); + in.read((char *)name_as_vec.data(), len); + if (in.fail()) { + printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str()); + return; + } + name_as_vec[len] = 0; + std::string name{name_as_vec.data()}; + auto& e = imatrix_data[std::move(name)]; + int ncall; + in.read((char*)&ncall, sizeof(ncall)); + int nval; + in.read((char *)&nval, sizeof(nval)); + if (in.fail() || nval < 1) { + printf("%s: failed reading number of values for entry %d\n",__func__,i); + imatrix_data = {}; + return; + } + e.resize(nval); + in.read((char*)e.data(), nval*sizeof(float)); + if (in.fail()) { + printf("%s: failed reading data for entry %d\n",__func__,i); + imatrix_data = {}; + return; + } + if (ncall > 0) { + for (auto& v : e) v /= ncall; + } + } + printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str()); +} + +static void prepare_imatrix(const std::string& imatrix_file, + const std::vector& included_weights, + const std::vector& excluded_weights, + std::unordered_map>& imatrix_data) { + if (!imatrix_file.empty()) { + load_imatrix(imatrix_file, imatrix_data); + } + if (imatrix_data.empty()) { + return; + } + if (!excluded_weights.empty()) { + for (auto& name : excluded_weights) { + for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) { + auto pos = it->first.find(name); + if (pos != std::string::npos) it = imatrix_data.erase(it); + else ++it; + } + } + } + if (!included_weights.empty()) { + std::unordered_map> tmp; + for (auto& name : included_weights) { + for (auto& e : imatrix_data) { + auto pos = e.first.find(name); + if (pos != std::string::npos) { + tmp.emplace(std::move(e)); + } + } + } + imatrix_data = std::move(tmp); + } + if (!imatrix_data.empty()) { + printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size())); + } +} + int main(int argc, char ** argv) { if (argc < 3) { usage(argv[0]); @@ -96,6 +188,8 @@ int main(int argc, char ** argv) { llama_model_quantize_params params = llama_model_quantize_default_params(); int arg_idx = 1; + std::string imatrix_file; + std::vector included_weights, excluded_weights; for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) { if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) { @@ -104,14 +198,42 @@ int main(int argc, char ** argv) { params.allow_requantize = true; } else if (strcmp(argv[arg_idx], "--pure") == 0) { params.pure = true; + } else if (strcmp(argv[arg_idx], "--imatrix") == 0) { + if (arg_idx < argc-1) { + imatrix_file = argv[++arg_idx]; + } else { + usage(argv[0]); + } + } else if (strcmp(argv[arg_idx], "--include-weights") == 0) { + if (arg_idx < argc-1) { + included_weights.push_back(argv[++arg_idx]); + } else { + usage(argv[0]); + } + } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) { + if (arg_idx < argc-1) { + excluded_weights.push_back(argv[++arg_idx]); + } else { + usage(argv[0]); + } } else { usage(argv[0]); } } if (argc - arg_idx < 2) { + printf("%s: bad arguments\n", argv[0]); usage(argv[0]); } + if (!included_weights.empty() && !excluded_weights.empty()) { + usage(argv[0]); + } + + std::unordered_map> imatrix_data; + prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data); + if (!imatrix_data.empty()) { + params.imatrix = &imatrix_data; + } llama_backend_init(false); @@ -163,6 +285,13 @@ int main(int argc, char ** argv) { } } + if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) && imatrix_data.empty()) { + fprintf(stderr, "\n===============================================================================================\n"); + fprintf(stderr, "Please do not use IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n"); + fprintf(stderr, "===============================================================================================\n\n\n"); + return 1; + } + print_build_info(); fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str()); diff --git a/ggml-quants.c b/ggml-quants.c index 601d155d7..9290d54cf 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -5,6 +5,8 @@ #include #include #include +#include // for qsort +#include // for GGML_ASSERT #ifdef __ARM_NEON @@ -1639,6 +1641,241 @@ size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q2_K)); } +static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights, + uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, + float rmin, float rdelta, int nstep, bool use_mad) { + float min = x[0]; + float max = x[0]; + float sum_w = weights ? weights[0] : x[0]*x[0]; + float sum_x = sum_w * x[0]; + for (int i = 1; i < n; ++i) { + if (x[i] < min) min = x[i]; + if (x[i] > max) max = x[i]; + float w = weights ? weights[i] : x[i]*x[i]; + sum_w += w; + sum_x += w * x[i]; + } + if (min > 0) { + min = 0; + } + if (max <= min) { + for (int i = 0; i < n; ++i) L[i] = 0; + *the_min = -min; + return 0.f; + } + float iscale = nmax/(max - min); + float scale = 1/iscale; + float best_mad = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + L[i] = MAX(0, MIN(nmax, l)); + float diff = scale * L[i] + min - x[i]; + diff = use_mad ? fabsf(diff) : diff*diff; + float w = weights ? weights[i] : x[i]*x[i]; + best_mad += w * diff; + } + if (nstep < 1) { + *the_min = -min; + return scale; + } + for (int is = 0; is <= nstep; ++is) { + iscale = (rmin + rdelta*is + nmax)/(max - min); + float sum_l = 0, sum_l2 = 0, sum_xl = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + l = MAX(0, MIN(nmax, l)); + Laux[i] = l; + float w = weights ? weights[i] : x[i]*x[i]; + sum_l += w*l; + sum_l2 += w*l*l; + sum_xl += w*l*x[i]; + } + float D = sum_w * sum_l2 - sum_l * sum_l; + if (D > 0) { + float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D; + float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D; + if (this_min > 0) { + this_min = 0; + this_scale = sum_xl / sum_l2; + } + float mad = 0; + for (int i = 0; i < n; ++i) { + float diff = this_scale * Laux[i] + this_min - x[i]; + diff = use_mad ? fabsf(diff) : diff*diff; + float w = weights ? weights[i] : x[i]*x[i]; + mad += w * diff; + } + if (mad < best_mad) { + for (int i = 0; i < n; ++i) { + L[i] = Laux[i]; + } + best_mad = mad; + scale = this_scale; + min = this_min; + } + } + } + *the_min = -min; + return scale; +} + +static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) { + float max = 0; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + } + if (!max) { // all zero + for (int i = 0; i < n; ++i) { L[i] = 0; } + return 0.f; + } + float iscale = nmax / max; + for (int i = 0; i < n; ++i) { + L[i] = nearest_int(iscale * x[i]); + } + float scale = 1/iscale; + float best_mse = 0; + for (int i = 0; i < n; ++i) { + float diff = x[i] - scale*L[i]; + float w = quant_weights[i]; + best_mse += w*diff*diff; + } + for (int is = -4; is <= 4; ++is) { + if (is == 0) continue; + float iscale_is = (0.1f*is + nmax)/max; + float scale_is = 1/iscale_is; + float mse = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale_is*x[i]); + l = MIN(nmax, l); + float diff = x[i] - scale_is*l; + float w = quant_weights[i]; + mse += w*diff*diff; + } + if (mse < best_mse) { + best_mse = mse; + iscale = iscale_is; + } + } + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MIN(nmax, l); + L[i] = l; + float w = quant_weights[i]; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + for (int itry = 0; itry < 5; ++itry) { + int n_changed = 0; + for (int i = 0; i < n; ++i) { + float w = quant_weights[i]; + float slx = sumlx - w*x[i]*L[i]; + float sl2 = suml2 - w*L[i]*L[i]; + if (slx > 0 && sl2 > 0) { + int new_l = nearest_int(x[i] * sl2 / slx); + new_l = MIN(nmax, new_l); + if (new_l != L[i]) { + slx += w*x[i]*new_l; + sl2 += w*new_l*new_l; + if (slx*slx*suml2 > sumlx*sumlx*sl2) { + L[i] = new_l; sumlx = slx; suml2 = sl2; + ++n_changed; + } + } + } + } + if (!n_changed) { + break; + } + } + return sumlx / suml2; +} + +static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) { + GGML_ASSERT(quant_weights); + assert(k % QK_K == 0); + const int nb = k / QK_K; + const bool requantize = true; + + uint8_t L[QK_K]; + uint8_t Laux[16]; + float mins[QK_K/16]; + float scales[QK_K/16]; + float sw[QK_K/16]; + float weight[QK_K/16]; + uint8_t Ls[QK_K/16], Lm[QK_K/16]; + + for (int i = 0; i < nb; i++) { + memset(sw, 0, QK_K/16*sizeof(float)); + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = sumx2/QK_K; + for (int j = 0; j < QK_K/16; ++j) { + const float * restrict qw = quant_weights + QK_K * i + 16*j; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]); + for (int l = 0; l < 16; ++l) sw[j] += weight[l]; + scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + } + + float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); + float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); + y[i].d = GGML_FP32_TO_FP16(dm); + y[i].dmin = GGML_FP32_TO_FP16(mm); + dm = GGML_FP16_TO_FP32(y[i].d); + mm = GGML_FP16_TO_FP32(y[i].dmin); + + for (int j = 0; j < QK_K/16; ++j) { + y[i].scales[j] = Ls[j] | (Lm[j] << 4); + } + + if (requantize) { + for (int j = 0; j < QK_K/16; ++j) { + const float d = dm * (y[i].scales[j] & 0xF); + if (!d) continue; + const float m = mm * (y[i].scales[j] >> 4); + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int((x[16*j + ii] + m)/d); + l = MAX(0, MIN(3, l)); + L[16*j + ii] = l; + } + } + } + +#if QK_K == 256 + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif + + x += QK_K; + + } +} + +size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row); + if (!quant_weights) { + quantize_row_q2_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + //========================= 3-bit (de)-quantization void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) { @@ -2584,14 +2821,6 @@ static const uint8_t ksigns_iq2xs[128] = { static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128}; -void quantize_row_iq2_xxs_reference(const float * restrict x, block_iq2_xxs * restrict y, int k) { - (void)x; - (void)y; - (void)k; - assert(k % QK_K == 0); - //fprintf(stderr, "=========================== %s: not implemented\n", __func__); -} - void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2618,33 +2847,8 @@ void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y } } -void quantize_row_iq2_xxs(const float * restrict x, void * restrict vy, int k) { - assert(k % QK_K == 0); - block_iq2_xxs * restrict y = vy; - quantize_row_iq2_xxs_reference(x, y, k); -} - -size_t ggml_quantize_iq2_xxs(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK_K == 0); - (void)hist; // TODO: collect histograms - - for (int j = 0; j < n; j += k) { - block_iq2_xxs * restrict y = (block_iq2_xxs *)dst + j/QK_K; - quantize_row_iq2_xxs_reference(src + j, y, k); - } - return (n/QK_K*sizeof(block_iq2_xxs)); -} - // ====================== 2.3125 bpw (de)-quantization -void quantize_row_iq2_xs_reference(const float * restrict x, block_iq2_xs * restrict y, int k) { - (void)x; - (void)y; - (void)k; - assert(k % QK_K == 0); - //fprintf(stderr, "=========================== %s: not implemented\n", __func__); -} - void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2670,23 +2874,6 @@ void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, } } -void quantize_row_iq2_xs(const float * restrict x, void * restrict vy, int k) { - assert(k % QK_K == 0); - block_iq2_xs * restrict y = vy; - quantize_row_iq2_xs_reference(x, y, k); -} - -size_t ggml_quantize_iq2_xs(const float * src, void * dst, int n, int k, int64_t * hist) { - assert(k % QK_K == 0); - (void)hist; // TODO: collect histograms - - for (int j = 0; j < n; j += k) { - block_iq2_xs * restrict y = (block_iq2_xs *)dst + j/QK_K; - quantize_row_iq2_xs_reference(src + j, y, k); - } - return (n/QK_K*sizeof(block_iq2_xs)); -} - //===================================== Q8_K ============================================== void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) { @@ -7730,3 +7917,666 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest *s = 0.125f * sumf; #endif } + +// ================================ IQ2 quantization ============================================= + +typedef struct { + uint64_t * grid; + int * map; + uint16_t * neighbours; +} iq2_entry_t; + +static iq2_entry_t iq2_data[2] = { + {NULL, NULL, NULL}, + {NULL, NULL, NULL}, +}; + +static inline int iq2_data_index(int grid_size) { + GGML_ASSERT(grid_size == 256 || grid_size == 512); + return grid_size == 256 ? 0 : 1; +} + +static int iq2_compare_func(const void * left, const void * right) { + const int * l = (const int *)left; + const int * r = (const int *)right; + return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; +} + +static void q2xs_init_impl(int grid_size) { + const int gindex = iq2_data_index(grid_size); + if (iq2_data[gindex].grid) { + return; + } + static const uint16_t kgrid_256[256] = { + 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97, + 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642, + 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288, + 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113, + 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240, + 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400, + 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260, + 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872, + 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516, + 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561, + 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488, + 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545, + 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874, + 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856, + 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142, + 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268, + }; + static const uint16_t kgrid_512[512] = { + 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70, + 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257, + 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340, + 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597, + 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096, + 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348, + 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065, + 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441, + 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160, + 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372, + 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125, + 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652, + 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197, + 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549, + 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894, + 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388, + 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480, + 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773, + 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473, + 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436, + 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497, + 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162, + 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528, + 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745, + 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234, + 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025, + 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810, + 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984, + 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462, + 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960, + 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048, + 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690, + }; + const int kmap_size = 43692; + const int nwant = 2; + const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512; + uint64_t * kgrid_q2xs; + int * kmap_q2xs; + uint16_t * kneighbors_q2xs; + + printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size); + uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t)); + for (int k = 0; k < grid_size; ++k) { + int8_t * pos = (int8_t *)(the_grid + k); + for (int i = 0; i < 8; ++i) { + int l = (kgrid[k] >> 2*i) & 0x3; + pos[i] = 2*l + 1; + } + } + kgrid_q2xs = the_grid; + iq2_data[gindex].grid = the_grid; + kmap_q2xs = (int *)malloc(kmap_size*sizeof(int)); + iq2_data[gindex].map = kmap_q2xs; + for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1; + uint64_t aux64; + uint8_t * aux8 = (uint8_t *)&aux64; + for (int i = 0; i < grid_size; ++i) { + aux64 = kgrid_q2xs[i]; + uint16_t index = 0; + for (int k=0; k<8; ++k) { + uint16_t q = (aux8[k] - 1)/2; + index |= (q << 2*k); + } + kmap_q2xs[index] = i; + } + int8_t pos[8]; + int * dist2 = (int *)malloc(2*grid_size*sizeof(int)); + int num_neighbors = 0, num_not_in_map = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q2xs[i] >= 0) continue; + ++num_not_in_map; + for (int k = 0; k < 8; ++k) { + int l = (i >> 2*k) & 0x3; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); + int d2 = 0; + for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); + int n = 0; int d2 = dist2[0]; + int nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + ++n; + } + num_neighbors += n; + } + printf("%s: %d neighbours in total\n", __func__, num_neighbors); + kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t)); + iq2_data[gindex].neighbours = kneighbors_q2xs; + int counter = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q2xs[i] >= 0) continue; + for (int k = 0; k < 8; ++k) { + int l = (i >> 2*k) & 0x3; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); + int d2 = 0; + for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); + kmap_q2xs[i] = -(counter + 1); + int d2 = dist2[0]; + uint16_t * start = &kneighbors_q2xs[counter++]; + int n = 0, nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + kneighbors_q2xs[counter++] = dist2[2*j+1]; + ++n; + } + *start = n; + } + free(dist2); +} + +void ggml_init_iq2_quantization(enum ggml_type type) { + if (type == GGML_TYPE_IQ2_XXS) { + q2xs_init_impl(256); + } + else if (type == GGML_TYPE_IQ2_XS) { + q2xs_init_impl(512); + } + else { + fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type); + } +} + +static void q2xs_deinit_impl(int grid_size) { + GGML_ASSERT(grid_size == 256 || grid_size == 512 || grid_size == 1024); + const int gindex = iq2_data_index(grid_size); + if (iq2_data[gindex].grid) { + free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL; + free(iq2_data[gindex].map); iq2_data[gindex].map = NULL; + free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL; + } +} + +void ggml_deinit_iq2_quantization(enum ggml_type type) { + if (type == GGML_TYPE_IQ2_XXS) { + q2xs_deinit_impl(256); + } + else if (type == GGML_TYPE_IQ2_XS) { + q2xs_deinit_impl(512); + } + else { + fprintf(stderr, "======================== Why are you calling %s with type %d?\n", __func__, (int)type); + } +} + +static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, + const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { + int num_neighbors = neighbours[0]; + GGML_ASSERT(num_neighbors > 0); + float best_d2 = FLT_MAX; + int grid_index = -1; + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float d2 = 0; + for (int i = 0; i < 8; ++i) { + float q = pg[i]; + float diff = scale*q - xval[i]; + d2 += weight[i]*diff*diff; + } + if (d2 < best_d2) { + best_d2 = d2; grid_index = neighbours[j]; + } + } + GGML_ASSERT(grid_index >= 0); + const int8_t * pg = (const int8_t *)(grid + grid_index); + for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; + return grid_index; +} + +static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(256); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights); + GGML_ASSERT(kgrid_q2xs); + GGML_ASSERT(kmap_q2xs); + GGML_ASSERT(kneighbors_q2xs); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int nbl = n/256; + + block_iq2_xxs * y = vy; + + float scales[QK_K/32]; + float weight[32]; + float xval[32]; + int8_t L[32]; + int8_t Laux[32]; + float waux[32]; + bool is_on_grid[4]; + bool is_on_grid_aux[4]; + uint8_t block_signs[4]; + uint32_t q2[2*(QK_K/32)]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(q2, 0, QK_K/4); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = sumx2/QK_K; + + for (int ib = 0; ib < QK_K/32; ++ib) { + const float * xb = xbl + 32*ib; + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 4; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 32); + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 4; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 32; ++i) L[i] = Laux[i]; + for (int k = 0; k < 4; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 4; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 4; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index); + for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2; + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) + // and correspondingly flip quant signs. + scale = -scale; + for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 4; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + q2[2*ib+0] |= (grid_index << 8*k); + q2[2*ib+1] |= (block_signs[k] << 7*k); + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(y[ibl].qs, 0, QK_K/4); + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d); + float id = 1/d; + float sumqx = 0, sumq2 = 0; + for (int ib = 0; ib < QK_K/32; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + q2[2*ib+1] |= ((uint32_t)l << 28); + const float * xb = xbl + 32*ib; + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + const uint8_t * aux8 = (const uint8_t *)(q2 + 2*ib); + const float db = d * (1 + 2*l); + uint32_t u = 0; + for (int k = 0; k < 4; ++k) { + const int8_t * signs = keven_signs_q2xs + 8*((q2[2*ib+1] >> 7*k) & 127); + const float * xk = xb + 8*k; + const float * wk = weight + 8*k; + const uint8_t * grid = (const uint8_t *)(kgrid_q2xs + aux8[k]); + float best_mse = 0; int best_index = aux8[k]; + for (int j = 0; j < 8; ++j) { + float diff = db * grid[j] * signs[j] - xk[j]; + best_mse += wk[j] * diff * diff; + } + for (int idx = 0; idx < 256; ++idx) { + grid = (const uint8_t *)(kgrid_q2xs + idx); + float mse = 0; + for (int j = 0; j < 8; ++j) { + float diff = db * grid[j] * signs[j] - xk[j]; + mse += wk[j] * diff * diff; + } + if (mse < best_mse) { + best_mse = mse; best_index = idx; + } + } + u |= (best_index << 8*k); + grid = (const uint8_t *)(kgrid_q2xs + best_index); + //grid = (const uint8_t *)(kgrid_q2xs + aux8[k]); + for (int j = 0; j < 8; ++j) { + float q = db * grid[j] * signs[j]; + sumqx += wk[j] * q * xk[j]; + sumq2 += wk[j] * q * q; + } + } + q2[2*ib] = u; + if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2); + } + memcpy(y[ibl].qs, q2, QK_K/4); + } +} + +static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(512); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights); + GGML_ASSERT(kmap_q2xs); + GGML_ASSERT(kgrid_q2xs); + GGML_ASSERT(kneighbors_q2xs); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int nbl = n/256; + + block_iq2_xs * y = vy; + + float scales[QK_K/16]; + float weight[16]; + float xval[16]; + int8_t L[16]; + int8_t Laux[16]; + float waux[16]; + bool is_on_grid[2]; + bool is_on_grid_aux[2]; + uint8_t block_signs[2]; + uint16_t q2[2*(QK_K/16)]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(q2, 0, QK_K/4); + memset(y[ibl].scales, 0, QK_K/32); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = sumx2/QK_K; + + for (int ib = 0; ib < QK_K/16; ++ib) { + const float * xb = xbl + 16*ib; + const float * qw = quant_weights + QK_K*ibl + 16*ib; + for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 2; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 16); + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + is_on_grid[0] = is_on_grid[1] = true; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 2; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 16; ++i) L[i] = Laux[i]; + for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 2; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + L[8*k + i] = l; + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + scale = -scale; + for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 2; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + q2[2*ib+k] = grid_index | (block_signs[k] << 9); + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(y[ibl].qs, 0, QK_K/4); + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d); + float id = 1/d; + for (int ib = 0; ib < QK_K/16; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + if (ib%2 == 0) y[ibl].scales[ib/2] = l; + else y[ibl].scales[ib/2] |= (l << 4); + } + memcpy(y[ibl].qs, q2, QK_K/4); + + } +} + +size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_xxs); + } + return nrow * nblock * sizeof(block_iq2_xxs); +} + +size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + GGML_ASSERT(n_per_row%QK_K == 0); + int nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_xs); + } + return nrow * nblock * sizeof(block_iq2_xs); +} + diff --git a/ggml-quants.h b/ggml-quants.h index df5e7ae80..e5d110230 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -196,8 +196,6 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k); void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k); void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k); -void quantize_row_iq2_xxs_reference(const float * restrict x, block_iq2_xxs * restrict y, int k); -void quantize_row_iq2_xs_reference (const float * restrict x, block_iq2_xs * restrict y, int k); void quantize_row_q4_0(const float * restrict x, void * restrict y, int k); void quantize_row_q4_1(const float * restrict x, void * restrict y, int k); @@ -212,8 +210,6 @@ void quantize_row_q4_K(const float * restrict x, void * restrict y, int k); void quantize_row_q5_K(const float * restrict x, void * restrict y, int k); void quantize_row_q6_K(const float * restrict x, void * restrict y, int k); void quantize_row_q8_K(const float * restrict x, void * restrict y, int k); -void quantize_row_iq2_xxs(const float * restrict x, void * restrict y, int k); -void quantize_row_iq2_xs (const float * restrict x, void * restrict y, int k); // Dequantization void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k); @@ -246,3 +242,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy); + +// +// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization") +// +size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); + diff --git a/ggml.c b/ggml.c index bcfb6652c..52467475a 100644 --- a/ggml.c +++ b/ggml.c @@ -585,8 +585,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_iq2_xxs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs, - .from_float = quantize_row_iq2_xxs, - .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference, + .from_float = NULL, + .from_float_reference = NULL, .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, @@ -596,8 +596,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { .type_size = sizeof(block_iq2_xs), .is_quantized = true, .to_float = (ggml_to_float_t) dequantize_row_iq2_xs, - .from_float = quantize_row_iq2_xs, - .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xs_reference, + .from_float = NULL, + .from_float_reference = NULL, .vec_dot = ggml_vec_dot_iq2_xs_q8_K, .vec_dot_type = GGML_TYPE_Q8_K, }, @@ -18665,8 +18665,11 @@ size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * return (n/QK8_0*sizeof(block_q8_0)); } -size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) { +size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, + int nrows, int n_per_row, int64_t * hist, const float * imatrix) { + (void)imatrix; size_t result = 0; + int n = nrows * n_per_row; switch (type) { case GGML_TYPE_Q4_0: { @@ -18701,8 +18704,11 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_Q2_K: { GGML_ASSERT(start % QK_K == 0); - block_q2_K * block = (block_q2_K*)dst + start / QK_K; - result = ggml_quantize_q2_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q3_K: { @@ -18731,14 +18737,22 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_IQ2_XXS: { GGML_ASSERT(start % QK_K == 0); - block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K; - result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + GGML_ASSERT(imatrix); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_IQ2_XS: { GGML_ASSERT(start % QK_K == 0); - block_iq2_xs * block = (block_iq2_xs*)dst + start / QK_K; - result = ggml_quantize_iq2_xs(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + GGML_ASSERT(imatrix); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_F16: { diff --git a/ggml.h b/ggml.h index b18ba7812..1187074f7 100644 --- a/ggml.h +++ b/ggml.h @@ -2067,10 +2067,13 @@ extern "C" { GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist); GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist); - GGML_API size_t ggml_quantize_iq2_xxs(const float * src, void * dst, int n, int k, int64_t * hist); - GGML_API size_t ggml_quantize_iq2_xs (const float * src, void * dst, int n, int k, int64_t * hist); - GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist); + GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, + int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix); + + // These are needed for IQ2_XS and IQ2_XXS quantizations + GGML_API void ggml_init_iq2_quantization(enum ggml_type type); + GGML_API void ggml_deinit_iq2_quantization(enum ggml_type type); // // Importance matrix diff --git a/llama.cpp b/llama.cpp index 8e20e72a2..107b05114 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8429,9 +8429,23 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { new_type = GGML_TYPE_Q8_0; } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) { + new_type = GGML_TYPE_Q5_K; + } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) { + if (name.find("attn_v.weight") != std::string::npos) { + if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; + else new_type = GGML_TYPE_Q2_K; + ++qs.i_attention_wv; + } + else if (name.find("ffn_down") != std::string::npos) { + if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q2_K; + ++qs.i_feed_forward_w2; + } + else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K; } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { @@ -8601,6 +8615,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (params->only_copy) { ftype = model.ftype; } + const std::unordered_map> * imatrix_data = nullptr; + if (params->imatrix) { + imatrix_data = static_cast>*>(params->imatrix); + if (imatrix_data) { + printf("================================ Have weights data with %d entries\n",int(imatrix_data->size())); + } + } const size_t align = GGUF_DEFAULT_ALIGNMENT; struct gguf_context * ctx_out = gguf_init_empty(); @@ -8658,6 +8679,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // placeholder for the meta data ::zeros(fout, meta_size); + std::set used_iq2; + for (int i = 0; i < ml.n_tensors; ++i) { struct ggml_tensor * tensor = ml.get_tensor_meta(i); @@ -8710,6 +8733,35 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else { const size_t nelements = ggml_nelements(tensor); + if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS) && used_iq2.find(new_type) == used_iq2.end()) { + ggml_init_iq2_quantization(new_type); + used_iq2.insert(new_type); + } + + const float * imatrix = nullptr; + if (imatrix_data) { + auto it = imatrix_data->find(tensor->name); + if (it == imatrix_data->end()) { + printf("\n====== %s: did not find weights for %s\n", __func__, tensor->name); + } else { + if (it->second.size() == (size_t)tensor->ne[0]) { + imatrix = it->second.data(); + } else { + printf("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, + int(it->second.size()), int(tensor->ne[0]), tensor->name); + } + } + } + if ((new_type == GGML_TYPE_IQ2_XXS || + new_type == GGML_TYPE_IQ2_XS || + (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { + fprintf(stderr, "\n\n============================================================\n"); + fprintf(stderr, "Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); + fprintf(stderr, "The result will be garbage, so bailing out\n"); + fprintf(stderr, "============================================================\n\n"); + throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); + } + float * f32_data; if (tensor->type == GGML_TYPE_F32) { @@ -8730,21 +8782,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_data = work.data(); std::array hist_cur = {}; - static const int chunk_size = 32 * 512; + const int n_per_row = tensor->ne[0]; + const int nrows = nelements / n_per_row; + + static const int min_chunk_size = 32 * 512; + const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); + const int nchunk = (nelements + chunk_size - 1)/chunk_size; const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1; if (nthread_use < 2) { - new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data()); + new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix); } else { - size_t counter = 0; + int counter = 0; new_size = 0; - auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() { + auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size, + nrows, n_per_row, imatrix]() { std::array local_hist = {}; + const int nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); - size_t first = counter; counter += chunk_size; - if (first >= nelements) { + int first_row = counter; counter += nrows_per_chunk; + if (first_row >= nrows) { if (local_size > 0) { for (int j=0; j %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); + LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; @@ -8774,6 +8834,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } if (tot_count > 0) { + LLAMA_LOG_INFO(" | hist: "); for (size_t i = 0; i < hist_cur.size(); i++) { LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements)); } @@ -8802,6 +8863,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s fout.close(); + for (auto type : used_iq2) { + ggml_deinit_iq2_quantization(type); + } + gguf_free(ctx_out); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); @@ -9166,6 +9231,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() { /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, /*.pure =*/ false, + /*.imatrix =*/ nullptr, }; return result; diff --git a/llama.h b/llama.h index 01d6fafaa..79c8335b6 100644 --- a/llama.h +++ b/llama.h @@ -249,6 +249,7 @@ extern "C" { bool quantize_output_tensor; // quantize output.weight bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored bool pure; // disable k-quant mixtures and quantize all tensors to the same type + void * imatrix; // pointer to importance matrix data } llama_model_quantize_params; // grammar types diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index d9b8b106a..22a7856d4 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -56,7 +56,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); std::vector dataq(ggml_row_size(tensor->type, size)); int64_t hist[16]; - ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist); + ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, nullptr); ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { // This is going to create some weird integers though. From ac32902a87147f78d63c931aa8a23dee762660e7 Mon Sep 17 00:00:00 2001 From: Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com> Date: Sun, 14 Jan 2024 00:41:44 -0800 Subject: [PATCH 07/71] llama : support WinXP build with MinGW 8.1.0 (#3419) --- CMakeLists.txt | 8 ++++++-- llama.cpp | 4 ++++ 2 files changed, 10 insertions(+), 2 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 668669c6d..2741568ed 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 3.13) # for add_link_options +cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories. project("llama.cpp" C CXX) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) @@ -76,6 +76,10 @@ if (NOT MSVC) option(LLAMA_F16C "llama: enable F16C" ${INS_ENB}) endif() +if (WIN32) + option(LLAMA_WIN_VER "llama: Windows Version" 0x602) +endif() + # 3rd party libs option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) option(LLAMA_BLAS "llama: use BLAS" OFF) @@ -686,7 +690,7 @@ endif() if (MINGW) # Target Windows 8 for PrefetchVirtualMemory - add_compile_definitions(_WIN32_WINNT=0x602) + add_compile_definitions(_WIN32_WINNT=${LLAMA_WIN_VER}) endif() # diff --git a/llama.cpp b/llama.cpp index 107b05114..51e9bdaed 100644 --- a/llama.cpp +++ b/llama.cpp @@ -987,6 +987,7 @@ struct llama_mmap { } if (prefetch > 0) { +#if _WIN32_WINNT >= 0x602 // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); @@ -1004,6 +1005,9 @@ struct llama_mmap { llama_format_win_err(GetLastError()).c_str()); } } +#else + throw std::runtime_error("PrefetchVirtualMemory unavailable"); +#endif } } From 5f5fe1bd608fa2ed42af97b5f2ea31be6625fc48 Mon Sep 17 00:00:00 2001 From: Alex Azarov Date: Sun, 14 Jan 2024 09:44:39 +0100 Subject: [PATCH 08/71] metal : correctly set SIMD support flags on iOS (#4923) * Correctly set support_simdgroup_reduction and support_simdgroup_mm on iPhone/iPad * log a little bit more info on iOS --- ggml-metal.m | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ggml-metal.m b/ggml-metal.m index cae52c983..2ca726055 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -330,7 +330,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { } } -#if TARGET_OS_OSX // print MTL GPU family: GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]); @@ -370,6 +369,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false"); GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false"); GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); +#if TARGET_OS_OSX GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6); if (ctx->device.maxTransferRate != 0) { GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6); From a128c38de862431f1aae9ccc40b792fbc1b8b682 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 10:53:39 +0200 Subject: [PATCH 09/71] Fix ffn_down quantization mix for MoE models (#4927) * Fix ffn_down quantization mix for MoE models In #4872 I did not consider the part where every third tensor is quantized with more bits. Fir MoE this leads to tensors of the same layer being quantized with different number of bits, which is not considered as a possibility in the inference implementation (it is assumed all experts use the same quantization). * Fix the fix * Review suggestion --------- Co-authored-by: Iwan Kawrakow --- llama.cpp | 34 ++++++++++++++++++++++++++-------- 1 file changed, 26 insertions(+), 8 deletions(-) diff --git a/llama.cpp b/llama.cpp index 51e9bdaed..b1d6015e2 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8480,13 +8480,31 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty new_type = GGML_TYPE_Q8_0; } } else if (name.find("ffn_down") != std::string::npos) { + const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); + int i_layer, n_layer; + if (n_expert == 1) { + i_layer = qs.i_feed_forward_w2; + n_layer = qs.n_feed_forward_w2; + } else { + // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly + // sprinkled in the model. Hence, simply dividing i_feed_forward_w2 by n_expert does not work + // for getting the current layer as I initially thought, and we need to resort to parsing the + // tensor name. + n_layer = qs.n_feed_forward_w2 / n_expert; + if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) { + throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str())); + } + if (i_layer < 0 || i_layer >= n_layer) { + throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name.c_str(), n_layer)); + } + } if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { - if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q4_K; + if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { - new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q5_K - : arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K + new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K + : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { @@ -8494,14 +8512,14 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { if (arch == LLM_ARCH_FALCON) { - new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q6_K : - use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; + new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : + use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { - if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; + if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } - else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) { + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { new_type = GGML_TYPE_Q5_K; } ++qs.i_feed_forward_w2; From 03c526749041c863b0cd842b26b8907e1ea0e0b1 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 11:03:19 +0200 Subject: [PATCH 10/71] llama : use LLAMA_LOG_ macros for logging --- llama.cpp | 46 +++++++++++++++++++++++----------------------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/llama.cpp b/llama.cpp index b1d6015e2..51821965e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1114,7 +1114,7 @@ struct llama_mlock { suggest = false; } - fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", + LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); return false; } @@ -1123,7 +1123,7 @@ struct llama_mlock { static void raw_unlock(void * addr, size_t size) { if (munlock(addr, size)) { - fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno)); + LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); } } #elif defined(_WIN32) @@ -1141,7 +1141,7 @@ struct llama_mlock { return true; } if (tries == 2) { - fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", + LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", len, size, llama_format_win_err(GetLastError()).c_str()); return false; } @@ -1150,7 +1150,7 @@ struct llama_mlock { // set size and try again. SIZE_T min_ws_size, max_ws_size; if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { - fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n", + LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } @@ -1163,7 +1163,7 @@ struct llama_mlock { min_ws_size += increment; max_ws_size += increment; if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { - fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n", + LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", llama_format_win_err(GetLastError()).c_str()); return false; } @@ -1172,7 +1172,7 @@ struct llama_mlock { static void raw_unlock(void * ptr, size_t len) { if (!VirtualUnlock(ptr, len)) { - fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n", + LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", llama_format_win_err(GetLastError()).c_str()); } } @@ -1184,7 +1184,7 @@ struct llama_mlock { } bool raw_lock(const void * addr, size_t len) const { - fprintf(stderr, "warning: mlock not supported on this system\n"); + LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); return false; } @@ -2085,13 +2085,13 @@ namespace GGUFMeta { __func__, override_type_to_str(override->tag), override->key); switch (override->tag) { case LLAMA_KV_OVERRIDE_BOOL: { - printf("%s\n", override->bool_value ? "true" : "false"); + LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false"); } break; case LLAMA_KV_OVERRIDE_INT: { - printf("%" PRId64 "\n", override->int_value); + LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value); } break; case LLAMA_KV_OVERRIDE_FLOAT: { - printf("%.6f\n", override->float_value); + LLAMA_LOG_INFO("%.6f\n", override->float_value); } break; default: // Shouldn't be possible to end up here, but just in case... @@ -6993,7 +6993,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); + LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif auto source = std::distance(buffer.begin(), it); @@ -7006,7 +7006,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length); #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); + LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); #endif it++; } @@ -7022,7 +7022,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length); #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); + LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); #endif it++; @@ -7038,7 +7038,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list< raw_text_base_length = right_reminder_length; #ifdef PRETOKENIZERDEBUG - fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); + LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif } else { if (source == 0) { @@ -7095,7 +7095,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & } #ifdef PRETOKENIZERDEBUG - fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); + LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); @@ -7116,7 +7116,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG - fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); + LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); @@ -8641,7 +8641,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (params->imatrix) { imatrix_data = static_cast>*>(params->imatrix); if (imatrix_data) { - printf("================================ Have weights data with %d entries\n",int(imatrix_data->size())); + LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); } } @@ -8764,12 +8764,12 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (imatrix_data) { auto it = imatrix_data->find(tensor->name); if (it == imatrix_data->end()) { - printf("\n====== %s: did not find weights for %s\n", __func__, tensor->name); + LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); } else { if (it->second.size() == (size_t)tensor->ne[0]) { imatrix = it->second.data(); } else { - printf("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, + LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, int(it->second.size()), int(tensor->ne[0]), tensor->name); } } @@ -8777,10 +8777,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { - fprintf(stderr, "\n\n============================================================\n"); - fprintf(stderr, "Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); - fprintf(stderr, "The result will be garbage, so bailing out\n"); - fprintf(stderr, "============================================================\n\n"); + LLAMA_LOG_ERROR("\n\n============================================================\n"); + LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); + LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); + LLAMA_LOG_ERROR("============================================================\n\n"); throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); } From 9408cfdad6b1c090a7e1419d4434edc260b7e47e Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 11:08:09 +0200 Subject: [PATCH 11/71] scripts : sync-ggml-am.sh option to skip commits --- scripts/sync-ggml-am.sh | 14 +++++++++++++- scripts/sync-ggml.last | 2 +- 2 files changed, 14 insertions(+), 2 deletions(-) diff --git a/scripts/sync-ggml-am.sh b/scripts/sync-ggml-am.sh index 248cf1023..6b2514a11 100755 --- a/scripts/sync-ggml-am.sh +++ b/scripts/sync-ggml-am.sh @@ -5,7 +5,7 @@ # Usage: # # $ cd /path/to/llama.cpp -# $ ./scripts/sync-ggml-am.sh +# $ ./scripts/sync-ggml-am.sh -skip hash0,hash1,hash2... # set -e @@ -24,6 +24,11 @@ fi lc=$(cat $SRC_LLAMA/scripts/sync-ggml.last) echo "Syncing ggml changes since commit $lc" +to_skip="" +if [ "$1" == "-skip" ]; then + to_skip=$2 +fi + cd $SRC_GGML git log --oneline $lc..HEAD @@ -40,6 +45,13 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then fi while read c; do + if [ -n "$to_skip" ]; then + if [[ $to_skip == *"$c"* ]]; then + echo "Skipping $c" + continue + fi + fi + git format-patch -k $c~1..$c --stdout -- \ include/ggml/ggml*.h \ src/ggml*.h \ diff --git a/scripts/sync-ggml.last b/scripts/sync-ggml.last index 753d227a7..be9e408fb 100644 --- a/scripts/sync-ggml.last +++ b/scripts/sync-ggml.last @@ -1 +1 @@ -1890780da4ea10db88736fcde85f285abf6c64b0 +b306d6e996ec0ace77118fa5098822cdc7f9c88f From bb0c1392479398f9aba86d9ec98db0b95ede6e6d Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Sun, 14 Jan 2024 13:26:53 +0200 Subject: [PATCH 12/71] llama : check LLAMA_TRACE env for extra logging (#4929) * llama : minor fix indent * llama : check LLAMA_TRACE env for extra logging ggml-ci --- llama.cpp | 32 ++++++++++++++++++-------------- 1 file changed, 18 insertions(+), 14 deletions(-) diff --git a/llama.cpp b/llama.cpp index 51821965e..63f37ecdb 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2190,6 +2190,11 @@ struct llama_model_loader { LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") { + int trace = 0; + if (getenv("LLAMA_TRACE")) { + trace = atoi(getenv("LLAMA_TRACE")); + } + struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, @@ -2242,11 +2247,10 @@ struct llama_model_loader { type_max = type; } - // TODO: make runtime configurable -#if 0 - struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); - LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str()); -#endif + if (trace > 0) { + struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); + LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str()); + } } switch (type_max) { @@ -6451,15 +6455,15 @@ static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { static const char * hex = "0123456789ABCDEF"; switch (llama_vocab_get_type(vocab)) { - case LLAMA_VOCAB_TYPE_SPM: { - const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; - return vocab.token_to_id.at(buf); - } - case LLAMA_VOCAB_TYPE_BPE: { - return vocab.token_to_id.at(bytes_to_unicode_bpe(ch)); - } - default: - GGML_ASSERT(false); + case LLAMA_VOCAB_TYPE_SPM: { + const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; + return vocab.token_to_id.at(buf); + } + case LLAMA_VOCAB_TYPE_BPE: { + return vocab.token_to_id.at(bytes_to_unicode_bpe(ch)); + } + default: + GGML_ASSERT(false); } } From 467a882fd2e5b6172897b49aa45aa29bd3f27685 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Sun, 14 Jan 2024 16:21:12 +0200 Subject: [PATCH 13/71] Add ability to use importance matrix for all k-quants (#4930) Co-authored-by: Iwan Kawrakow --- examples/quantize/quantize.cpp | 2 +- ggml-quants.c | 443 ++++++++++++++++++++++++++++++++- ggml-quants.h | 5 +- ggml.c | 28 ++- 4 files changed, 462 insertions(+), 16 deletions(-) diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index f4e2175f1..2ae046933 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -82,7 +82,7 @@ static void usage(const char * executable) { printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n"); printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n"); printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n"); - printf(" --imatrixfile_name: use data in file_name as importance matrix for quant optimizations\n"); + printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n"); printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n"); diff --git a/ggml-quants.c b/ggml-quants.c index 9290d54cf..0750fe1bb 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -1244,7 +1244,8 @@ static inline int nearest_int(float fval) { return (i & 0x007fffff) - 0x00400000; } -static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) { +static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type, + const float * restrict qw) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { @@ -1270,14 +1271,13 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * rmse_type = -rmse_type; return_early = true; } - int weight_type = rmse_type%2; float sumlx = 0; float suml2 = 0; for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); L[i] = l + nmax; - float w = weight_type == 1 ? x[i] * x[i] : 1; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } @@ -1293,7 +1293,7 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * for (int i = 0; i < n; ++i) { int l = nearest_int(iscale * x[i]); l = MAX(-nmax, MIN(nmax-1, l)); - float w = weight_type == 1 ? x[i] * x[i] : 1; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); sumlx += w*x[i]*l; suml2 += w*l*l; } @@ -2089,6 +2089,112 @@ size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q3_K)); } +static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q3_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K / 16]; + float weight[16]; + float sw[QK_K / 16]; + int8_t Ls[QK_K / 16]; + + for (int i = 0; i < nb; i++) { + + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = 2*sumx2/QK_K; + + for (int j = 0; j < QK_K/16; ++j) { + if (quant_weights) { + const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]); + } else { + for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l]; + } + float sumw = 0; + for (int l = 0; l < 16; ++l) sumw += weight[l]; + sw[j] = sumw; + + scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight); + + } + + memset(y[i].scales, 0, 12); + + float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw); + for (int j = 0; j < QK_K/16; ++j) { + int l = Ls[j]; + if (j < 8) { + y[i].scales[j] = l & 0xF; + } else { + y[i].scales[j-8] |= ((l & 0xF) << 4); + } + l >>= 4; + y[i].scales[j%4 + 8] |= (l << (2*(j/4))); + } + y[i].d = GGML_FP32_TO_FP16(d_block); + + int8_t sc; + for (int j = 0; j < QK_K/16; ++j) { + sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; + sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; + float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } + + memset(y[i].hmask, 0, QK_K/8); + // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. + int m = 0; + uint8_t hm = 1; + for (int j = 0; j < QK_K; ++j) { + if (L[j] > 3) { + y[i].hmask[m] |= hm; + L[j] -= 4; + } + if (++m == QK_K/8) { + m = 0; hm <<= 1; + } + } + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } + + x += QK_K; + } +#endif +} + +size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row); + if (!quant_weights) { + quantize_row_q3_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 4-bit (de)-quantization void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) { @@ -2254,6 +2360,108 @@ size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q4_K)); } +static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q4_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[32]; + float weights[32]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + //scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + } + } + uint8_t * q = y[i].qs; + for (int j = 0; j < QK_K; j += 64) { + for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); + q += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row); + if (!quant_weights) { + quantize_row_q4_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 5-bit (de)-quantization void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) { @@ -2349,7 +2557,7 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict #else float max_scale = 0, amax = 0; for (int j = 0; j < QK_K/16; ++j) { - scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1); + scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL); float abs_scale = fabsf(scales[j]); if (abs_scale > amax) { amax = abs_scale; @@ -2460,6 +2668,123 @@ size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n return (n/QK_K*sizeof(block_q5_K)); } +static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q5_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + float mins[QK_K/32]; + float scales[QK_K/32]; + float weights[32]; + uint8_t Laux[32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(31, l)); + L[32*j + ii] = l; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + uint8_t m1 = 1, m2 = 2; + for (int n = 0; n < QK_K; n += 64) { + for (int j = 0; j < 32; ++j) { + int l1 = L[n + j]; + if (l1 > 15) { + l1 -= 16; qh[j] |= m1; + } + int l2 = L[n + j + 32]; + if (l2 > 15) { + l2 -= 16; qh[j] |= m2; + } + ql[j] = l1 | (l2 << 4); + } + m1 <<= 2; m2 <<= 2; + ql += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row); + if (!quant_weights) { + quantize_row_q5_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== 6-bit (de)-quantization void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) { @@ -2476,7 +2801,7 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict for (int ib = 0; ib < QK_K/16; ++ib) { - const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1); + const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); scales[ib] = scale; const float abs_scale = fabsf(scale); @@ -2608,6 +2933,112 @@ size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * return (n/QK_K*sizeof(block_q6_K)); } +static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q6_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K/16]; + //float weights[16]; + + for (int i = 0; i < nb; i++) { + + //float sum_x2 = 0; + //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j]; + //float sigma2 = sum_x2/QK_K; + + float max_scale = 0; + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/16; ++ib) { + + float scale; + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 16*ib; + //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]); + //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights); + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw); + } else { + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); + } + scales[ib] = scale; + + const float abs_scale = fabsf(scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scale; + } + + } + + if (!max_abs_scale) { + memset(&y[i], 0, sizeof(block_q6_K)); + y[i].d = GGML_FP32_TO_FP16(0.f); + x += QK_K; + continue; + } + + float iscale = -128.f/max_scale; + y[i].d = GGML_FP32_TO_FP16(1/iscale); + for (int ib = 0; ib < QK_K/16; ++ib) { + y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); + } + + for (int j = 0; j < QK_K/16; ++j) { + float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-32, MIN(31, l)); + L[16*j + ii] = l + 32; + } + } + + uint8_t * restrict ql = y[i].ql; + uint8_t * restrict qh = y[i].qh; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[j + l + 0] & 0xF; + const uint8_t q2 = L[j + l + 32] & 0xF; + const uint8_t q3 = L[j + l + 64] & 0xF; + const uint8_t q4 = L[j + l + 96] & 0xF; + ql[l+ 0] = q1 | (q3 << 4); + ql[l+32] = q2 | (q4 << 4); + qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); + } + ql += 64; + qh += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) { + (void)hist; + int row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row); + if (!quant_weights) { + quantize_row_q6_K_reference(src, dst, nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int row = 0; row < nrow; ++row) { + quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + // ====================== "True" 2-bit (de)-quantization static const uint64_t iq2xxs_grid[256] = { diff --git a/ggml-quants.h b/ggml-quants.h index e5d110230..99467936a 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -249,4 +249,7 @@ void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); - +size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); +size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix); diff --git a/ggml.c b/ggml.c index 52467475a..ef5888ab2 100644 --- a/ggml.c +++ b/ggml.c @@ -18713,26 +18713,38 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i case GGML_TYPE_Q3_K: { GGML_ASSERT(start % QK_K == 0); - block_q3_K * block = (block_q3_K*)dst + start / QK_K; - result = ggml_quantize_q3_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q4_K: { GGML_ASSERT(start % QK_K == 0); - block_q4_K * block = (block_q4_K*)dst + start / QK_K; - result = ggml_quantize_q4_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q5_K: { GGML_ASSERT(start % QK_K == 0); - block_q5_K * block = (block_q5_K*)dst + start / QK_K; - result = ggml_quantize_q5_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_Q6_K: { GGML_ASSERT(start % QK_K == 0); - block_q6_K * block = (block_q6_K*)dst + start / QK_K; - result = ggml_quantize_q6_K(src + start, block, n, n, hist); + GGML_ASSERT(start % n_per_row == 0); + size_t start_row = start / n_per_row; + size_t row_size = ggml_row_size(type, n_per_row); + result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix); + GGML_ASSERT(result == row_size * nrows); } break; case GGML_TYPE_IQ2_XXS: { From a836c8f534ab789b02da149fbdaf7735500bff74 Mon Sep 17 00:00:00 2001 From: David Pflug Date: Sun, 14 Jan 2024 10:46:00 -0500 Subject: [PATCH 14/71] llama : fix missing quotes (#4937) --- llama.cpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/llama.cpp b/llama.cpp index 63f37ecdb..7af38718c 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7099,7 +7099,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & } #ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); @@ -7120,7 +7120,7 @@ static std::vector llama_tokenize_internal(const llama_vocab & auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG - LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_bpe tokenizer(vocab); tokenizer.tokenize(raw_text, output); From 4a3156de2fac9a8ee4279de7804d4e352dcfe121 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 15 Jan 2024 07:48:06 +0200 Subject: [PATCH 15/71] CUDA: faster dequantize kernels for Q4_0 and Q4_1 (#4938) Co-authored-by: Iwan Kawrakow --- ggml-cuda.cu | 77 +++++++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 73 insertions(+), 4 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index bd3814c72..a870718a7 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1105,6 +1105,61 @@ static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const in #endif // GGML_CUDA_F16 } +template +static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) { + + const int i = blockIdx.x; + + // assume 32 threads + const int tid = threadIdx.x; + const int il = tid/8; + const int ir = tid%8; + const int ib = 8*i + ir; + if (ib >= nb32) { + return; + } + + dst_t * y = yy + 256*i + 32*ir + 4*il; + + const block_q4_0 * x = (const block_q4_0 *)vx + ib; + const float d = __half2float(x->d); + const float dm = -8*d; + + const uint8_t * q = x->qs + 4*il; + + for (int l = 0; l < 4; ++l) { + y[l+ 0] = d * (q[l] & 0xF) + dm; + y[l+16] = d * (q[l] >> 4) + dm; + } +} + +template +static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) { + + const int i = blockIdx.x; + + // assume 32 threads + const int tid = threadIdx.x; + const int il = tid/8; + const int ir = tid%8; + const int ib = 8*i + ir; + if (ib >= nb32) { + return; + } + + dst_t * y = yy + 256*i + 32*ir + 4*il; + + const block_q4_1 * x = (const block_q4_1 *)vx + ib; + const float2 d = __half22float2(x->dm); + + const uint8_t * q = x->qs + 4*il; + + for (int l = 0; l < 4; ++l) { + y[l+ 0] = d.x * (q[l] & 0xF) + d.y; + y[l+16] = d.x * (q[l] >> 4) + d.y; + } +} + //================================== k-quants template @@ -6253,6 +6308,20 @@ static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cu #endif } +template +static void dequantize_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb32 = k / 32; + const int nb = (k + 255) / 256; + dequantize_block_q4_0<<>>(vx, y, nb32); +} + +template +static void dequantize_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { + const int nb32 = k / 32; + const int nb = (k + 255) / 256; + dequantize_block_q4_1<<>>(vx, y, nb32); +} + template static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { const int nb = k / QK_K; @@ -6301,9 +6370,9 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { int id; switch (type) { case GGML_TYPE_Q4_0: - return dequantize_block_cuda; + return dequantize_q4_0_cuda; case GGML_TYPE_Q4_1: - return dequantize_block_cuda; + return dequantize_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_block_cuda; case GGML_TYPE_Q5_1: @@ -6338,9 +6407,9 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: - return dequantize_block_cuda; + return dequantize_q4_0_cuda; case GGML_TYPE_Q4_1: - return dequantize_block_cuda; + return dequantize_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_block_cuda; case GGML_TYPE_Q5_1: From 2faaef39799c97a53bec3898141478700da25757 Mon Sep 17 00:00:00 2001 From: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Mon, 15 Jan 2024 10:09:38 +0200 Subject: [PATCH 16/71] llama : check for 256 divisibility for IQ2_XS, IQ2_XXS (#4950) Co-authored-by: Iwan Kawrakow --- llama.cpp | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/llama.cpp b/llama.cpp index 7af38718c..f9718060d 100644 --- a/llama.cpp +++ b/llama.cpp @@ -8559,7 +8559,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty //} bool convert_incompatible_tensor = false; if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || - new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) { + new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || + new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; if (nx % QK_K != 0) { @@ -8571,6 +8572,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } if (convert_incompatible_tensor) { switch (new_type) { + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break; case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break; case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; From ddb008d845cd50bb090bf051f570130524042936 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 15 Jan 2024 13:27:00 +0200 Subject: [PATCH 17/71] cuda : fix dequantize kernel names (#4938) --- ggml-cuda.cu | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/ggml-cuda.cu b/ggml-cuda.cu index a870718a7..c3e14bc96 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -6309,14 +6309,14 @@ static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int k, cu } template -static void dequantize_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { +static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { const int nb32 = k / 32; const int nb = (k + 255) / 256; dequantize_block_q4_0<<>>(vx, y, nb32); } template -static void dequantize_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { +static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) { const int nb32 = k / 32; const int nb = (k + 255) / 256; dequantize_block_q4_1<<>>(vx, y, nb32); @@ -6370,9 +6370,9 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { int id; switch (type) { case GGML_TYPE_Q4_0: - return dequantize_q4_0_cuda; + return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: - return dequantize_q4_1_cuda; + return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_block_cuda; case GGML_TYPE_Q5_1: @@ -6407,9 +6407,9 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) { static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) { switch (type) { case GGML_TYPE_Q4_0: - return dequantize_q4_0_cuda; + return dequantize_row_q4_0_cuda; case GGML_TYPE_Q4_1: - return dequantize_q4_1_cuda; + return dequantize_row_q4_1_cuda; case GGML_TYPE_Q5_0: return dequantize_block_cuda; case GGML_TYPE_Q5_1: From d9aa4ffa6e0296d42f1f676dd85de97c8491eb73 Mon Sep 17 00:00:00 2001 From: "Victor Z. Peng" Date: Mon, 15 Jan 2024 04:41:46 -0800 Subject: [PATCH 18/71] awq-py : fix typo in awq-py/README.md (#4947) --- awq-py/README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/awq-py/README.md b/awq-py/README.md index 59354f4e3..16e68d027 100644 --- a/awq-py/README.md +++ b/awq-py/README.md @@ -43,7 +43,7 @@ Example for llama model # For llama7b and llama2 models python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf # For mistral and mpt models -python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf +python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/mpt-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf ``` ## Quantize From 4483396751c79dea540808b9cb9238245d06da2b Mon Sep 17 00:00:00 2001 From: David Friehs Date: Mon, 15 Jan 2024 14:06:52 +0100 Subject: [PATCH 19/71] llama : apply classifier-free guidance to logits directly (#4951) --- common/sampling.cpp | 9 ++++--- llama.cpp | 60 ++++++++++++++++++++++++++++++--------------- llama.h | 17 +++++++++---- 3 files changed, 57 insertions(+), 29 deletions(-) diff --git a/common/sampling.cpp b/common/sampling.cpp index 8e45909f1..dd1ffeb1b 100644 --- a/common/sampling.cpp +++ b/common/sampling.cpp @@ -190,6 +190,11 @@ static llama_token llama_sampling_sample_impl( logits[it->first] += it->second; } + if (ctx_cfg) { + float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx); + llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale); + } + cur.clear(); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { @@ -198,10 +203,6 @@ static llama_token llama_sampling_sample_impl( llama_token_data_array cur_p = { cur.data(), cur.size(), false }; - if (ctx_cfg) { - llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale); - } - // apply penalties const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev; const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n); diff --git a/llama.cpp b/llama.cpp index f9718060d..46c4d11c8 100644 --- a/llama.cpp +++ b/llama.cpp @@ -7898,39 +7898,59 @@ static void llama_log_softmax(float * array, size_t size) { } } +void llama_sample_apply_guidance( + struct llama_context * ctx, + float * logits, + float * logits_guidance, + float scale) { + GGML_ASSERT(ctx); + + const auto t_start_sample_us = ggml_time_us(); + const auto n_vocab = llama_n_vocab(llama_get_model(ctx)); + + llama_log_softmax(logits, n_vocab); + llama_log_softmax(logits_guidance, n_vocab); + + for (int i = 0; i < n_vocab; ++i) { + auto & l = logits[i]; + const auto & g = logits_guidance[i]; + + l = scale * (l - g) + g; + } + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; +} + void llama_sample_classifier_free_guidance( struct llama_context * ctx, llama_token_data_array * candidates, struct llama_context * guidance_ctx, float scale) { - int64_t t_start_sample_us = ggml_time_us(); - GGML_ASSERT(ctx); + int64_t t_start_sample_us; - auto n_vocab = llama_n_vocab(llama_get_model(ctx)); + t_start_sample_us = ggml_time_us(); + const size_t n_vocab = llama_n_vocab(llama_get_model(ctx)); - GGML_ASSERT(n_vocab == (int)candidates->size); + GGML_ASSERT(n_vocab == candidates->size); GGML_ASSERT(!candidates->sorted); - std::vector logits_base; - logits_base.reserve(candidates->size); - for (size_t i = 0; i < candidates->size; ++i) { - logits_base.push_back(candidates->data[i].logit); - } - llama_log_softmax(logits_base.data(), candidates->size); - - float* logits_guidance = llama_get_logits(guidance_ctx); - llama_log_softmax(logits_guidance, n_vocab); - - for (int i = 0; i < n_vocab; ++i) { - float logit_guidance = logits_guidance[i]; - float logit_base = logits_base[i]; - candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance; + std::vector logits_base(n_vocab); + for (size_t i = 0; i < n_vocab; ++i) { + logits_base[i] = candidates->data[i].logit; } - if (ctx) { - ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + float * logits_guidance = llama_get_logits(guidance_ctx); + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale); + t_start_sample_us = ggml_time_us(); + + for (size_t i = 0; i < n_vocab; ++i) { + candidates->data[i].logit = logits_base[i]; } + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; } llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { diff --git a/llama.h b/llama.h index 79c8335b6..a570b0d69 100644 --- a/llama.h +++ b/llama.h @@ -714,14 +714,21 @@ extern "C" { float penalty_present); /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 - /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. - /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. - /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. - LLAMA_API void llama_sample_classifier_free_guidance( + /// @param logits Logits extracted from the original generation context. + /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. + /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. + LLAMA_API void llama_sample_apply_guidance( + struct llama_context * ctx, + float * logits, + float * logits_guidance, + float scale); + + LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance( struct llama_context * ctx, llama_token_data_array * candidates, struct llama_context * guidance_ctx, - float scale); + float scale), + "use llama_sample_apply_guidance() instead"); /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. LLAMA_API void llama_sample_softmax( From 3e5ca7931c68152e4ec18d126e9c832dd84914c8 Mon Sep 17 00:00:00 2001 From: ngc92 <7938269+ngc92@users.noreply.github.com> Date: Mon, 15 Jan 2024 20:40:48 +0200 Subject: [PATCH 20/71] pass cpu-architecture arguments only to host code (C;C++) (#4943) --- CMakeLists.txt | 34 +++++++++++++++++++--------------- 1 file changed, 19 insertions(+), 15 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 2741568ed..7bd640966 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -594,6 +594,13 @@ if (NOT MSVC) endif() endif() +function(add_compile_option_cpp ARG) + # Adds a compile option to C/C++ only, but not for Cuda. + # Use, e.g., for CPU-architecture flags. + add_compile_options($<$:${ARG}>) + add_compile_options($<$:${ARG}>) +endfunction() + if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64")) message(STATUS "ARM detected") if (MSVC) @@ -628,8 +635,7 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE include(cmake/FindSIMD.cmake) endif () if (LLAMA_AVX512) - add_compile_options($<$:/arch:AVX512>) - add_compile_options($<$:/arch:AVX512>) + add_compile_option_cpp(/arch:AVX512) # MSVC has no compile-time flags enabling specific # AVX512 extensions, neither it defines the # macros corresponding to the extensions. @@ -643,37 +649,35 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GE add_compile_definitions($<$:__AVX512VNNI__>) endif() elseif (LLAMA_AVX2) - add_compile_options($<$:/arch:AVX2>) - add_compile_options($<$:/arch:AVX2>) + add_compile_option_cpp(/arch:AVX2) elseif (LLAMA_AVX) - add_compile_options($<$:/arch:AVX>) - add_compile_options($<$:/arch:AVX>) + add_compile_option_cpp(/arch:AVX) endif() else() if (LLAMA_NATIVE) - add_compile_options(-march=native) + add_compile_option_cpp(-march=native) endif() if (LLAMA_F16C) - add_compile_options(-mf16c) + add_compile_option_cpp(-mf16c) endif() if (LLAMA_FMA) - add_compile_options(-mfma) + add_compile_option_cpp(-mfma) endif() if (LLAMA_AVX) - add_compile_options(-mavx) + add_compile_option_cpp(-mavx) endif() if (LLAMA_AVX2) - add_compile_options(-mavx2) + add_compile_option_cpp(-mavx2) endif() if (LLAMA_AVX512) - add_compile_options(-mavx512f) - add_compile_options(-mavx512bw) + add_compile_option_cpp(-mavx512f) + add_compile_option_cpp(-mavx512bw) endif() if (LLAMA_AVX512_VBMI) - add_compile_options(-mavx512vbmi) + add_compile_option_cpp(-mavx512vbmi) endif() if (LLAMA_AVX512_VNNI) - add_compile_options(-mavx512vnni) + add_compile_option_cpp(-mavx512vnni) endif() endif() elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64") From e0324285a569d0583cf2f4a07a2402221ee25f58 Mon Sep 17 00:00:00 2001 From: stduhpf Date: Tue, 16 Jan 2024 12:04:32 +0100 Subject: [PATCH 21/71] speculative : threading options (#4959) * speculative: expose draft threading * fix usage format * accept -td and -tbd args * speculative: revert default behavior when -td is unspecified * fix trailing whitespace --- common/common.cpp | 22 ++++++++++++++++++++++ common/common.h | 2 ++ examples/speculative/speculative.cpp | 4 ++++ 3 files changed, 28 insertions(+) diff --git a/common/common.cpp b/common/common.cpp index c11006bcb..2b0865fff 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -167,6 +167,24 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { if (params.n_threads_batch <= 0) { params.n_threads_batch = std::thread::hardware_concurrency(); } + } else if (arg == "-td" || arg == "--threads-draft") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_threads_draft = std::stoi(argv[i]); + if (params.n_threads_draft <= 0) { + params.n_threads_draft = std::thread::hardware_concurrency(); + } + } else if (arg == "-tbd" || arg == "--threads-batch-draft") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.n_threads_batch_draft = std::stoi(argv[i]); + if (params.n_threads_batch_draft <= 0) { + params.n_threads_batch_draft = std::thread::hardware_concurrency(); + } } else if (arg == "-p" || arg == "--prompt") { if (++i >= argc) { invalid_param = true; @@ -845,6 +863,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads); printf(" -tb N, --threads-batch N\n"); printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n"); + printf(" -td N, --threads-draft N"); + printf(" number of threads to use during generation (default: same as --threads)"); + printf(" -tbd N, --threads-batch-draft N\n"); + printf(" number of threads to use during batch and prompt processing (default: same as --threads-draft)\n"); printf(" -p PROMPT, --prompt PROMPT\n"); printf(" prompt to start generation with (default: empty)\n"); printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n"); diff --git a/common/common.h b/common/common.h index 096468243..1f43e6282 100644 --- a/common/common.h +++ b/common/common.h @@ -46,7 +46,9 @@ struct gpt_params { uint32_t seed = -1; // RNG seed int32_t n_threads = get_num_physical_cores(); + int32_t n_threads_draft = -1; int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads) + int32_t n_threads_batch_draft = -1; int32_t n_predict = -1; // new tokens to predict int32_t n_ctx = 512; // context size int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index 20f1fb5bf..7b3af01f3 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -65,6 +65,10 @@ int main(int argc, char ** argv) { // load the draft model params.model = params.model_draft; params.n_gpu_layers = params.n_gpu_layers_draft; + if (params.n_threads_draft > 0) { + params.n_threads = params.n_threads_draft; + } + params.n_threads_batch = params.n_threads_batch_draft; std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params); { From d75c232e1da56f19ac4d2530dadbe0ab3a11fde5 Mon Sep 17 00:00:00 2001 From: Daniel Bevenius Date: Tue, 16 Jan 2024 12:14:19 +0100 Subject: [PATCH 22/71] finetune : use LLAMA_FILE_MAGIC_GGLA (#4961) This commit replaces the magic number LLAMA_FILE_MAGIC_LORA used in finetune.cpp with LLAMA_FILE_MAGIC_GGLA defined in llama.h. Signed-off-by: Daniel Bevenius --- examples/finetune/finetune.cpp | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index eaca42fc1..a6620fd73 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -1138,9 +1138,8 @@ static void save_as_llama_lora(const char * filename, struct my_llama_lora * lor return tn_buf.data(); }; - uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla' // write_magic - file.write_u32(LLAMA_FILE_MAGIC_LORA); // magic + file.write_u32(LLAMA_FILE_MAGIC_GGLA); // magic file.write_u32(1); // version // write_hparams file.write_u32(lora->hparams.lora_r); From a0b3ac8c48b66206b9c5921ce57bd5c0ea6557c3 Mon Sep 17 00:00:00 2001 From: Justine Tunney Date: Tue, 16 Jan 2024 03:16:33 -0800 Subject: [PATCH 23/71] ggml : introduce GGML_CALL function annotation (#4850) This change makes it possible to build ggml-cuda.cu and ggml-metal.m as independent dynamic shared objects, that may be conditionally linked at runtime in a multiplatform binary. It introduces a GGML_CALL annotation that documents which functions have a cyclic call relationship, between the application code and GPU modules. This change does nothing, unless the build defines -DGGML_MULTIPLATFORM which causes back-references and function pointers to conform to MS ABI which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms --- ggml-backend-impl.h | 60 +++++++++++----------- ggml-backend.c | 80 ++++++++++++++--------------- ggml-backend.h | 50 +++++++++--------- ggml-cuda.cu | 121 ++++++++++++++++++++++---------------------- ggml-cuda.h | 32 ++++++------ ggml-metal.h | 4 +- ggml-metal.m | 42 +++++++-------- ggml.c | 32 ++++++------ ggml.h | 58 ++++++++++++--------- 9 files changed, 244 insertions(+), 235 deletions(-) diff --git a/ggml-backend-impl.h b/ggml-backend-impl.h index 1db32901f..1397828d9 100644 --- a/ggml-backend-impl.h +++ b/ggml-backend-impl.h @@ -16,14 +16,14 @@ extern "C" { typedef void * ggml_backend_buffer_type_context_t; struct ggml_backend_buffer_type_i { - const char * (*get_name) (ggml_backend_buffer_type_t buft); - ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); - size_t (*get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment - size_t (*get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding - bool (*supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend + const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft); + ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); + size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment + size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding + bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend // check if tensor data is in host memory // should be equivalent to supports_backend(buft, ggml_backend_cpu_init()) - bool (*is_host) (ggml_backend_buffer_type_t buft); + bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft); }; struct ggml_backend_buffer_type { @@ -35,15 +35,15 @@ extern "C" { typedef void * ggml_backend_buffer_context_t; struct ggml_backend_buffer_i { - const char * (*get_name) (ggml_backend_buffer_t buffer); - void (*free_buffer)(ggml_backend_buffer_t buffer); - void * (*get_base) (ggml_backend_buffer_t buffer); - void (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer - void (*clear) (ggml_backend_buffer_t buffer, uint8_t value); - void (*reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras + const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer); + void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer); + void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer); + void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer + void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value); + void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras }; struct ggml_backend_buffer { @@ -54,7 +54,7 @@ extern "C" { enum ggml_backend_buffer_usage usage; }; - ggml_backend_buffer_t ggml_backend_buffer_init( + GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_type_t buft, struct ggml_backend_buffer_i iface, ggml_backend_buffer_context_t context, @@ -70,31 +70,31 @@ extern "C" { typedef void * ggml_backend_context_t; struct ggml_backend_i { - const char * (*get_name)(ggml_backend_t backend); + const char * (*GGML_CALL get_name)(ggml_backend_t backend); - void (*free)(ggml_backend_t backend); + void (*GGML_CALL free)(ggml_backend_t backend); // buffer allocation - ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend); + ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend); // (optional) asynchronous tensor data access - void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - bool (*cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst); + void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * src, struct ggml_tensor * dst); // (optional) complete all pending operations - void (*synchronize)(ggml_backend_t backend); + void (*GGML_CALL synchronize)(ggml_backend_t backend); // compute graph with a plan - ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); - void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); - void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); + void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + void (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); // compute graph without a plan (async) - bool (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph); + bool (*GGML_CALL graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph); // check if the backend supports an operation - bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); }; struct ggml_backend { @@ -107,9 +107,9 @@ extern "C" { // Backend registry // - typedef ggml_backend_t (*ggml_backend_init_fn)(const char * params, void * user_data); + typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data); - void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data); + GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data); #ifdef __cplusplus } diff --git a/ggml-backend.c b/ggml-backend.c index 505dbba47..f5424fb90 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -19,7 +19,7 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { return buft->iface.get_name(buft); } -ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { return buft->iface.alloc_buffer(buft, size); } @@ -27,7 +27,7 @@ size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { return buft->iface.get_alignment(buft); } -size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { +GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { // get_alloc_size is optional, defaults to ggml_nbytes if (buft->iface.get_alloc_size) { return buft->iface.get_alloc_size(buft, tensor); @@ -48,7 +48,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { // backend buffer -ggml_backend_buffer_t ggml_backend_buffer_init( +GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( ggml_backend_buffer_type_t buft, struct ggml_backend_buffer_i iface, ggml_backend_buffer_context_t context, @@ -95,7 +95,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { return base; } -void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { +GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { // init_tensor is optional if (buffer->iface.init_tensor) { buffer->iface.init_tensor(buffer, tensor); @@ -191,7 +191,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten } } -void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); @@ -201,7 +201,7 @@ void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, siz tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size); } -void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { +GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); @@ -318,9 +318,9 @@ struct ggml_backend_reg { static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG]; static size_t ggml_backend_registry_count = 0; -static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data); +GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data); -static void ggml_backend_registry_init(void) { +GGML_CALL static void ggml_backend_registry_init(void) { static bool initialized = false; if (initialized) { @@ -333,18 +333,18 @@ static void ggml_backend_registry_init(void) { // add forward decls here to avoid including the backend headers #ifdef GGML_USE_CUBLAS - extern void ggml_backend_cuda_reg_devices(void); + extern GGML_CALL void ggml_backend_cuda_reg_devices(void); ggml_backend_cuda_reg_devices(); #endif #ifdef GGML_USE_METAL - extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); - extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); + extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); + extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL); #endif } -void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { +GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG); size_t id = ggml_backend_registry_count; @@ -439,33 +439,33 @@ ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) { // backend CPU -static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { +GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { return "CPU"; GGML_UNUSED(buffer); } -static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { +GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { return (void *)buffer->context; } -static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { +GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { free(buffer->context); } -static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); GGML_UNUSED(buffer); } -static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); GGML_UNUSED(buffer); } -static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { +GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; @@ -475,7 +475,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con GGML_UNUSED(buffer); } -static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { memset(buffer->context, value, buffer->size); } @@ -506,13 +506,13 @@ static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512 -static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { +GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU"; GGML_UNUSED(buft); } -static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC? @@ -521,25 +521,25 @@ static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_back return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size); } -static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return TENSOR_ALIGNMENT; GGML_UNUSED(buft); } -static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { +GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { return ggml_backend_is_cpu(backend); GGML_UNUSED(buft); } -static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; GGML_UNUSED(buft); } -ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { /* .iface = */ { /* .get_name = */ ggml_backend_cpu_buffer_type_get_name, @@ -561,23 +561,23 @@ ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { #include -static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { +GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "CPU_HBM"; GGML_UNUSED(buft); } -static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { +GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { return "CPU_HBM"; GGML_UNUSED(buf); } -static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { +GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { hbw_free(buffer->context); } -static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { //void * ptr = hbw_malloc(size); void * ptr; int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size); @@ -617,20 +617,20 @@ struct ggml_backend_cpu_context { size_t work_size; }; -static const char * ggml_backend_cpu_name(ggml_backend_t backend) { +GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) { return "CPU"; GGML_UNUSED(backend); } -static void ggml_backend_cpu_free(ggml_backend_t backend) { +GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; free(cpu_ctx->work_data); free(cpu_ctx); free(backend); } -static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); @@ -641,7 +641,7 @@ struct ggml_backend_plan_cpu { struct ggml_cgraph cgraph; }; -static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { +GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); @@ -656,7 +656,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend return cpu_plan; } -static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { +GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; free(cpu_plan->cplan.work_data); @@ -665,7 +665,7 @@ static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backen GGML_UNUSED(backend); } -static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { +GGML_CALL static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); @@ -673,7 +673,7 @@ static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_bac GGML_UNUSED(backend); } -static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { +GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); @@ -690,7 +690,7 @@ static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_c return true; } -static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { +GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { switch (op->op) { case GGML_OP_MUL_MAT: return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; @@ -732,7 +732,7 @@ ggml_backend_t ggml_backend_cpu_init(void) { return cpu_backend; } -bool ggml_backend_is_cpu(ggml_backend_t backend) { +GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) { return backend && backend->iface.get_name == ggml_backend_cpu_name; } @@ -743,11 +743,11 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { ctx->n_threads = n_threads; } -ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { +GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size); } -static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { +GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { return ggml_backend_cpu_init(); GGML_UNUSED(params); diff --git a/ggml-backend.h b/ggml-backend.h index 4eb244af1..12b4b4ab7 100644 --- a/ggml-backend.h +++ b/ggml-backend.h @@ -17,12 +17,12 @@ extern "C" { // // buffer type - GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); - GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); - GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); - GGML_API size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); - GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend); - GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); + GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); + GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); + GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); + GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); + GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend); + GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); // buffer enum ggml_backend_buffer_usage { @@ -30,18 +30,18 @@ extern "C" { GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, }; - GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); - GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); - GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); - GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); - GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); - GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); - GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); + GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); + GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); + GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); + GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); // // Backend @@ -58,8 +58,8 @@ extern "C" { GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); - GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); - GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); GGML_API void ggml_backend_synchronize(ggml_backend_t backend); @@ -80,13 +80,13 @@ extern "C" { GGML_API ggml_backend_t ggml_backend_cpu_init(void); - GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend); - GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads); + GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); + GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads); // Create a backend buffer from an existing pointer - GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); + GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); - GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); + GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); #ifdef GGML_USE_CPU_HBM GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); @@ -183,7 +183,7 @@ extern "C" { GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); - typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); + typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); // Compare the output of two backends GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); diff --git a/ggml-cuda.cu b/ggml-cuda.cu index c3e14bc96..568c411af 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -7615,11 +7615,11 @@ struct cuda_pool_alloc { static bool g_cublas_loaded = false; -bool ggml_cublas_loaded(void) { +GGML_CALL bool ggml_cublas_loaded(void) { return g_cublas_loaded; } -void ggml_init_cublas() { +GGML_CALL void ggml_init_cublas() { static bool initialized = false; if (!initialized) { @@ -7707,7 +7707,7 @@ void ggml_init_cublas() { } } -void * ggml_cuda_host_malloc(size_t size) { +GGML_CALL void * ggml_cuda_host_malloc(size_t size) { if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { return nullptr; } @@ -7725,7 +7725,7 @@ void * ggml_cuda_host_malloc(size_t size) { return ptr; } -void ggml_cuda_host_free(void * ptr) { +GGML_CALL void ggml_cuda_host_free(void * ptr) { CUDA_CHECK(cudaFreeHost(ptr)); } @@ -9242,7 +9242,7 @@ static void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_rms_norm); } -bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { +GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { if (!g_cublas_loaded) return false; const int64_t ne10 = src1->ne[0]; @@ -10013,7 +10013,7 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); } -static void ggml_cuda_set_main_device(const int main_device) { +GGML_CALL static void ggml_cuda_set_main_device(const int main_device) { if (main_device >= g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", main_device, g_device_count, g_main_device); @@ -10028,7 +10028,7 @@ static void ggml_cuda_set_main_device(const int main_device) { } } -bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { +GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { if (!g_cublas_loaded) return false; ggml_cuda_func_t func; @@ -10186,7 +10186,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ return true; } -int ggml_cuda_get_device_count() { +GGML_CALL int ggml_cuda_get_device_count() { int device_count; if (cudaGetDeviceCount(&device_count) != cudaSuccess) { return 0; @@ -10194,7 +10194,7 @@ int ggml_cuda_get_device_count() { return device_count; } -void ggml_cuda_get_device_description(int device, char * description, size_t description_size) { +GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); snprintf(description, description_size, "%s", prop.name); @@ -10244,27 +10244,27 @@ struct ggml_backend_cuda_buffer_context { } }; -static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { +GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; return ctx->name.c_str(); } -static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { +GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name; } -static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { +GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; CUDA_CHECK(cudaFree(ctx->dev_ptr)); delete ctx; } -static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { +GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; return ctx->dev_ptr; } -static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { +GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; if (tensor->view_src != NULL && tensor->view_offs == 0) { @@ -10296,7 +10296,7 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g } } -static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -10307,7 +10307,7 @@ static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, gg CUDA_CHECK(cudaDeviceSynchronize()); } -static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -10318,7 +10318,7 @@ static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, co CUDA_CHECK(cudaDeviceSynchronize()); } -static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { +GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { if (ggml_backend_buffer_is_cuda(src->buffer)) { ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context; ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)buffer->context; @@ -10335,7 +10335,7 @@ static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, co return false; } -static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; ggml_cuda_set_device(ctx->device); @@ -10357,19 +10357,18 @@ static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = { }; // cuda buffer type - struct ggml_backend_cuda_buffer_type_context { int device; std::string name; }; -static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { +GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; return ctx->name.c_str(); } -static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; ggml_cuda_set_device(buft_ctx->device); @@ -10388,13 +10387,13 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size); } -static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; UNUSED(buft); } -static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { int64_t row_low = 0; int64_t row_high = ggml_nrows(tensor); int64_t nrows_split = row_high - row_low; @@ -10414,7 +10413,7 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t UNUSED(buft); } -static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { +GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { if (!ggml_backend_is_cuda(backend)) { return false; } @@ -10434,7 +10433,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { /* .is_host = */ NULL, }; -ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { // FIXME: this is not thread safe if (device >= ggml_backend_cuda_get_device_count()) { return nullptr; @@ -10479,7 +10478,7 @@ struct ggml_backend_cuda_split_buffer_context { std::vector tensor_extras; }; -static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { +GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { return GGML_CUDA_NAME "_Split"; UNUSED(buffer); @@ -10490,19 +10489,19 @@ static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_ // return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name; //} -static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { +GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; delete ctx; } -static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { +GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced return (void *)0x1000; UNUSED(buffer); } -static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { +GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; @@ -10552,7 +10551,7 @@ static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buf tensor->extra = extra; } -static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { // split tensors must always be set in their entirety at once GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); @@ -10586,7 +10585,7 @@ static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buff } } -static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { // split tensors must always be set in their entirety at once GGML_ASSERT(offset == 0); GGML_ASSERT(size == ggml_nbytes(tensor)); @@ -10620,7 +10619,7 @@ static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buff } } -static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { UNUSED(buffer); UNUSED(value); } @@ -10639,13 +10638,13 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = { // cuda split buffer type -static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { +GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_CUDA_NAME "_Split"; UNUSED(buft); } -static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point // instead, we allocate them for each tensor separately in init_tensor // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, @@ -10655,13 +10654,13 @@ static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(gg return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size); } -static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 128; UNUSED(buft); } -static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { +GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; size_t total_size = 0; @@ -10688,13 +10687,13 @@ static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_bu return total_size; } -static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { +GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { return ggml_backend_is_cuda(backend); UNUSED(buft); } -static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return false; UNUSED(buft); @@ -10709,7 +10708,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host, }; -ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { // FIXME: this is not thread safe static std::map, struct ggml_backend_buffer_type> buft_map; @@ -10745,23 +10744,23 @@ ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * ten // host buffer type -static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { +GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { return GGML_CUDA_NAME "_Host"; UNUSED(buft); } -static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { +GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { return GGML_CUDA_NAME "_Host"; UNUSED(buffer); } -static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { +GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { ggml_cuda_host_free(buffer->context); } -static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { void * ptr = ggml_cuda_host_malloc(size); if (ptr == nullptr) { @@ -10777,7 +10776,7 @@ static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggm return buffer; } -ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = { /* .iface = */ { /* .get_name = */ ggml_backend_cuda_host_buffer_type_name, @@ -10795,26 +10794,26 @@ ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { // backend -static const char * ggml_backend_cuda_name(ggml_backend_t backend) { +GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return cuda_ctx->name.c_str(); } -static void ggml_backend_cuda_free(ggml_backend_t backend) { +GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; delete cuda_ctx; delete backend; } -static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; return ggml_backend_cuda_buffer_type(cuda_ctx->device); } -static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); @@ -10823,7 +10822,7 @@ static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tens CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0])); } -static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); @@ -10832,7 +10831,7 @@ static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggm CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0])); } -static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { +GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; if (dst->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && ggml_backend_buffer_is_cuda(src->buffer)) { @@ -10843,7 +10842,7 @@ static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend, const ggm return false; } -static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { +GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[cuda_ctx->device][0])); @@ -10851,7 +10850,7 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { UNUSED(backend); } -static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { +GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; ggml_cuda_set_main_device(cuda_ctx->device); @@ -10890,7 +10889,7 @@ static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph return true; } -static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { +GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { switch (op->op) { case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { @@ -11016,7 +11015,7 @@ static ggml_backend_i ggml_backend_cuda_interface = { /* .supports_op = */ ggml_backend_cuda_supports_op, }; -ggml_backend_t ggml_backend_cuda_init(int device) { +GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { ggml_init_cublas(); // TODO: remove from ggml.c if (device < 0 || device >= ggml_cuda_get_device_count()) { @@ -11040,35 +11039,35 @@ ggml_backend_t ggml_backend_cuda_init(int device) { return cuda_backend; } -bool ggml_backend_is_cuda(ggml_backend_t backend) { +GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) { return backend && backend->iface.get_name == ggml_backend_cuda_name; } -int ggml_backend_cuda_get_device_count() { +GGML_CALL int ggml_backend_cuda_get_device_count() { return ggml_cuda_get_device_count(); } -void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { +GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { ggml_cuda_get_device_description(device, description, description_size); } -void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { +GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { ggml_cuda_set_device(device); CUDA_CHECK(cudaMemGetInfo(free, total)); } // backend registry -static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { +GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); return cuda_backend; UNUSED(params); } -extern "C" int ggml_backend_cuda_reg_devices(); +extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); -int ggml_backend_cuda_reg_devices() { +GGML_CALL int ggml_backend_cuda_reg_devices() { int device_count = ggml_cuda_get_device_count(); //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization for (int i = 0; i < device_count; i++) { diff --git a/ggml-cuda.h b/ggml-cuda.h index d19cbf3fd..b1ebd61d7 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -18,34 +18,34 @@ extern "C" { #define GGML_CUDA_MAX_DEVICES 16 // Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`. -GGML_API void ggml_init_cublas(void); +GGML_API GGML_CALL void ggml_init_cublas(void); // Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`. -GGML_API bool ggml_cublas_loaded(void); +GGML_API GGML_CALL bool ggml_cublas_loaded(void); -GGML_API void * ggml_cuda_host_malloc(size_t size); -GGML_API void ggml_cuda_host_free(void * ptr); +GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size); +GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr); -GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); +GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); -GGML_API int ggml_cuda_get_device_count(void); -GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size); +GGML_API GGML_CALL int ggml_cuda_get_device_count(void); +GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size); // backend API -GGML_API ggml_backend_t ggml_backend_cuda_init(int device); +GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device); -GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend); +GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend); -GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); // split tensor buffer that splits matrices by rows across multiple devices -GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); // pinned host buffer for use with the CPU backend for faster copies between CPU and GPU -GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); -GGML_API int ggml_backend_cuda_get_device_count(void); -GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); -GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); +GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); +GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); +GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); #ifdef __cplusplus } diff --git a/ggml-metal.h b/ggml-metal.h index cd5e2995f..8b0bfc5f1 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -47,11 +47,11 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void); GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); -GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); +GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); -GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); // helper to check if the device supports a specific family // ideally, the user code should be doing these checks diff --git a/ggml-metal.m b/ggml-metal.m index 2ca726055..867f2fd48 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -2294,13 +2294,13 @@ static void ggml_backend_metal_free_device(void) { } } -static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) { +GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) { return "Metal"; UNUSED(buffer); } -static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { +GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; for (int i = 0; i < ctx->n_buffers; i++) { @@ -2315,25 +2315,25 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) free(ctx); } -static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { +GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; return ctx->all_data; } -static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { memcpy((char *)tensor->data + offset, data, size); UNUSED(buffer); } -static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { +GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { memcpy(data, (const char *)tensor->data + offset, size); UNUSED(buffer); } -static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { +GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { if (ggml_backend_buffer_is_host(src->buffer)) { memcpy(dst->data, src->data, ggml_nbytes(src)); return true; @@ -2343,7 +2343,7 @@ static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, c UNUSED(buffer); } -static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { +GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; memset(ctx->all_data, value, ctx->all_size); @@ -2363,13 +2363,13 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = { // default buffer type -static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) { +GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return "Metal"; UNUSED(buft); } -static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { +GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); const size_t size_page = sysconf(_SC_PAGESIZE); @@ -2421,24 +2421,24 @@ static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_ba return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); } -static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { +GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { return 32; UNUSED(buft); } -static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { +GGML_CALL static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend); UNUSED(buft); } -static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) { +GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) { return true; UNUSED(buft); } -ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { +GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = { /* .iface = */ { /* .get_name = */ ggml_backend_metal_buffer_type_get_name, @@ -2456,7 +2456,7 @@ ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { // buffer from ptr -ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) { +GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) { struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); ctx->all_data = data; @@ -2543,31 +2543,31 @@ ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t siz // backend -static const char * ggml_backend_metal_name(ggml_backend_t backend) { +GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) { return "Metal"; UNUSED(backend); } -static void ggml_backend_metal_free(ggml_backend_t backend) { +GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) { struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; ggml_metal_free(ctx); free(backend); } -static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) { +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_metal_buffer_type(); UNUSED(backend); } -static bool ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { +GGML_CALL static bool ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; return ggml_metal_graph_compute(metal_ctx, cgraph); } -static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { +GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; return ggml_metal_supports_op(metal_ctx, op); @@ -2630,9 +2630,9 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) { return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)]; } -ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning +GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning -ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) { +GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) { return ggml_backend_metal_init(); GGML_UNUSED(params); diff --git a/ggml.c b/ggml.c index ef5888ab2..5779f32d2 100644 --- a/ggml.c +++ b/ggml.c @@ -1990,19 +1990,19 @@ void ggml_print_objects(const struct ggml_context * ctx) { GGML_PRINT("%s: --- end ---\n", __func__); } -int64_t ggml_nelements(const struct ggml_tensor * tensor) { +GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; } -int64_t ggml_nrows(const struct ggml_tensor * tensor) { +GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; } -size_t ggml_nbytes(const struct ggml_tensor * tensor) { +GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) { size_t nbytes; size_t blck_size = ggml_blck_size(tensor->type); if (blck_size == 1) { @@ -2025,15 +2025,15 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN); } -int ggml_blck_size(enum ggml_type type) { +GGML_CALL int ggml_blck_size(enum ggml_type type) { return type_traits[type].blck_size; } -size_t ggml_type_size(enum ggml_type type) { +GGML_CALL size_t ggml_type_size(enum ggml_type type) { return type_traits[type].type_size; } -size_t ggml_row_size(enum ggml_type type, int64_t ne) { +GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) { assert(ne % ggml_blck_size(type) == 0); return ggml_type_size(type)*ne/ggml_blck_size(type); } @@ -2042,15 +2042,15 @@ double ggml_type_sizef(enum ggml_type type) { return ((double)(type_traits[type].type_size))/type_traits[type].blck_size; } -const char * ggml_type_name(enum ggml_type type) { +GGML_CALL const char * ggml_type_name(enum ggml_type type) { return type_traits[type].type_name; } -bool ggml_is_quantized(enum ggml_type type) { +GGML_CALL bool ggml_is_quantized(enum ggml_type type) { return type_traits[type].is_quantized; } -const char * ggml_op_name(enum ggml_op op) { +GGML_CALL const char * ggml_op_name(enum ggml_op op) { return GGML_OP_NAME[op]; } @@ -2062,7 +2062,7 @@ const char * ggml_unary_op_name(enum ggml_unary_op op) { return GGML_UNARY_OP_NAME[op]; } -const char * ggml_op_desc(const struct ggml_tensor * t) { +GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) { if (t->op == GGML_OP_UNARY) { enum ggml_unary_op uop = ggml_get_unary_op(t); return ggml_unary_op_name(uop); @@ -2072,7 +2072,7 @@ const char * ggml_op_desc(const struct ggml_tensor * t) { } } -size_t ggml_element_size(const struct ggml_tensor * tensor) { +GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) { return ggml_type_size(tensor->type); } @@ -2154,11 +2154,11 @@ size_t ggml_tensor_overhead(void) { return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE; } -bool ggml_is_transposed(const struct ggml_tensor * tensor) { +GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) { return tensor->nb[0] > tensor->nb[1]; } -bool ggml_is_contiguous(const struct ggml_tensor * tensor) { +GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return @@ -2177,7 +2177,7 @@ static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * te tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; } -bool ggml_is_permuted(const struct ggml_tensor * tensor) { +GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) { static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3]; @@ -3079,7 +3079,7 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) { return (float *)(tensor->data); } -enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { +GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { GGML_ASSERT(tensor->op == GGML_OP_UNARY); return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0); } @@ -11653,7 +11653,7 @@ static void ggml_rope_cache_init( } } -void ggml_rope_yarn_corr_dims( +GGML_CALL void ggml_rope_yarn_corr_dims( int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2] ) { // start and end correction dims diff --git a/ggml.h b/ggml.h index 1187074f7..837c52e68 100644 --- a/ggml.h +++ b/ggml.h @@ -187,6 +187,16 @@ # define GGML_API #endif +#ifdef GGML_MULTIPLATFORM +# if defined(_WIN32) +# define GGML_CALL +# else +# define GGML_CALL __attribute__((__ms_abi__)) +# endif +#else +# define GGML_CALL +#endif + // TODO: support for clang #ifdef __GNUC__ # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint))) @@ -649,41 +659,41 @@ extern "C" { GGML_API void ggml_print_object (const struct ggml_object * obj); GGML_API void ggml_print_objects(const struct ggml_context * ctx); - GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor); - GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); - GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); - GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN + GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor); + GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor); + GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor); + GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN - GGML_API int ggml_blck_size(enum ggml_type type); - GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block - GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row + GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type); + GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block + GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row GGML_DEPRECATED( GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float "use ggml_row_size() instead"); - GGML_API const char * ggml_type_name(enum ggml_type type); - GGML_API const char * ggml_op_name (enum ggml_op op); - GGML_API const char * ggml_op_symbol(enum ggml_op op); + GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type); + GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op); + GGML_API const char * ggml_op_symbol(enum ggml_op op); - GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op); - GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name + GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op); + GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name - GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor); + GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor); - GGML_API bool ggml_is_quantized(enum ggml_type type); + GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type); // TODO: temporary until model loading of ggml examples is refactored GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype); - GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor); - GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor); - GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor); - GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); - GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars + GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor); + GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor); + GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); + GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1); @@ -770,7 +780,7 @@ extern "C" { GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); - GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor); + GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor); GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor); GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name); @@ -1413,7 +1423,7 @@ extern "C" { float beta_slow); // compute correction dims for YaRN RoPE scaling - void ggml_rope_yarn_corr_dims( + GGML_CALL void ggml_rope_yarn_corr_dims( int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]); // xPos RoPE, in-place, returns view(a) From 122ed4840cc6d209df6043e027f9f8a03aee01da Mon Sep 17 00:00:00 2001 From: Maximilian Winter Date: Tue, 16 Jan 2024 13:10:48 +0100 Subject: [PATCH 24/71] examples : fix and improv docs for the grammar generator (#4909) * Create pydantic-models-to-grammar.py * Added some comments for usage * Refactored Grammar Generator Added example and usage instruction. * Update pydantic_models_to_grammar.py * Update pydantic-models-to-grammar-examples.py * Renamed module and imported it. * Update pydantic-models-to-grammar.py * Renamed file and fixed grammar generator issue. * Fixed some issues and bugs of the grammar generator. Imporved Documentation * Update pydantic_models_to_grammar.py --- examples/pydantic_models_to_grammar.py | 877 +++++++++++++++---------- 1 file changed, 519 insertions(+), 358 deletions(-) diff --git a/examples/pydantic_models_to_grammar.py b/examples/pydantic_models_to_grammar.py index 41b98fdc1..848c1c367 100644 --- a/examples/pydantic_models_to_grammar.py +++ b/examples/pydantic_models_to_grammar.py @@ -4,6 +4,7 @@ from copy import copy from inspect import isclass, getdoc from types import NoneType +from docstring_parser import parse from pydantic import BaseModel, create_model, Field from typing import Any, Type, List, get_args, get_origin, Tuple, Union, Optional, _GenericAlias from enum import Enum @@ -25,9 +26,10 @@ class PydanticDataType(Enum): ENUM (str): Represents an enum data type. CUSTOM_CLASS (str): Represents a custom class data type. """ + STRING = "string" TRIPLE_QUOTED_STRING = "triple_quoted_string" - MARKDOWN_STRING = "markdown_string" + MARKDOWN_CODE_BLOCK = "markdown_code_block" BOOLEAN = "boolean" INTEGER = "integer" FLOAT = "float" @@ -78,10 +80,10 @@ def map_pydantic_type_to_gbnf(pydantic_type: Type[Any]) -> str: def format_model_and_field_name(model_name: str) -> str: - parts = re.findall('[A-Z][^A-Z]*', model_name) + parts = re.findall("[A-Z][^A-Z]*", model_name) if not parts: # Check if the list is empty return model_name.lower().replace("_", "-") - return '-'.join(part.lower().replace("_", "-") for part in parts) + return "-".join(part.lower().replace("_", "-") for part in parts) def generate_list_rule(element_type): @@ -93,29 +95,31 @@ def generate_list_rule(element_type): """ rule_name = f"{map_pydantic_type_to_gbnf(element_type)}-list" element_rule = map_pydantic_type_to_gbnf(element_type) - list_rule = fr'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"' + list_rule = rf'{rule_name} ::= "[" {element_rule} ("," {element_rule})* "]"' return list_rule def get_members_structure(cls, rule_name): if issubclass(cls, Enum): # Handle Enum types - members = [f'\"\\\"{member.value}\\\"\"' for name, member in cls.__members__.items()] + members = [f'"\\"{member.value}\\""' for name, member in cls.__members__.items()] return f"{cls.__name__.lower()} ::= " + " | ".join(members) if cls.__annotations__ and cls.__annotations__ != {}: result = f'{rule_name} ::= "{{"' type_list_rules = [] # Modify this comprehension - members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param_type)}' - for name, param_type in cls.__annotations__.items() - if name != 'self'] + members = [ + f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param_type)}' + for name, param_type in cls.__annotations__.items() + if name != "self" + ] result += '"," '.join(members) result += ' "}"' return result, type_list_rules elif rule_name == "custom-class-any": - result = f'{rule_name} ::= ' - result += 'value' + result = f"{rule_name} ::= " + result += "value" type_list_rules = [] return result, type_list_rules else: @@ -124,9 +128,11 @@ def get_members_structure(cls, rule_name): result = f'{rule_name} ::= "{{"' type_list_rules = [] # Modify this comprehension too - members = [f' \"\\\"{name}\\\"\" ":" {map_pydantic_type_to_gbnf(param.annotation)}' - for name, param in parameters.items() - if name != 'self' and param.annotation != inspect.Parameter.empty] + members = [ + f' "\\"{name}\\"" ":" {map_pydantic_type_to_gbnf(param.annotation)}' + for name, param in parameters.items() + if name != "self" and param.annotation != inspect.Parameter.empty + ] result += '", "'.join(members) result += ' "}"' @@ -141,8 +147,8 @@ def regex_to_gbnf(regex_pattern: str) -> str: gbnf_rule = regex_pattern # Translate common regex components to GBNF - gbnf_rule = gbnf_rule.replace('\\d', '[0-9]') - gbnf_rule = gbnf_rule.replace('\\s', '[ \t\n]') + gbnf_rule = gbnf_rule.replace("\\d", "[0-9]") + gbnf_rule = gbnf_rule.replace("\\s", "[ \t\n]") # Handle quantifiers and other regex syntax that is similar in GBNF # (e.g., '*', '+', '?', character classes) @@ -158,12 +164,12 @@ def generate_gbnf_integer_rules(max_digit=None, min_digit=None): Generates GBNF (Generalized Backus-Naur Form) rules for integers based on the given maximum and minimum digits. Parameters: - max_digit (int): The maximum number of digits for the integer. Default is None. - min_digit (int): The minimum number of digits for the integer. Default is None. + max_digit (int): The maximum number of digits for the integer. Default is None. + min_digit (int): The minimum number of digits for the integer. Default is None. Returns: - integer_rule (str): The identifier for the integer rule generated. - additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits. + integer_rule (str): The identifier for the integer rule generated. + additional_rules (list): A list of additional rules generated based on the given maximum and minimum digits. """ additional_rules = [] @@ -178,21 +184,21 @@ def generate_gbnf_integer_rules(max_digit=None, min_digit=None): # Handling Integer Rules if max_digit is not None or min_digit is not None: # Start with an empty rule part - integer_rule_part = '' + integer_rule_part = "" # Add mandatory digits as per min_digit if min_digit is not None: - integer_rule_part += '[0-9] ' * min_digit + integer_rule_part += "[0-9] " * min_digit # Add optional digits up to max_digit if max_digit is not None: optional_digits = max_digit - (min_digit if min_digit is not None else 0) - integer_rule_part += ''.join(['[0-9]? ' for _ in range(optional_digits)]) + integer_rule_part += "".join(["[0-9]? " for _ in range(optional_digits)]) # Trim the rule part and append it to additional rules integer_rule_part = integer_rule_part.strip() if integer_rule_part: - additional_rules.append(f'{integer_rule} ::= {integer_rule_part}') + additional_rules.append(f"{integer_rule} ::= {integer_rule_part}") return integer_rule, additional_rules @@ -224,21 +230,26 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None additional_rules = [] # Define the integer part rule - integer_part_rule = "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + ( + integer_part_rule = ( + "integer-part" + (f"-max{max_digit}" if max_digit is not None else "") + ( f"-min{min_digit}" if min_digit is not None else "") + ) # Define the fractional part rule based on precision constraints fractional_part_rule = "fractional-part" - fractional_rule_part = '' + fractional_rule_part = "" if max_precision is not None or min_precision is not None: fractional_part_rule += (f"-max{max_precision}" if max_precision is not None else "") + ( - f"-min{min_precision}" if min_precision is not None else "") + f"-min{min_precision}" if min_precision is not None else "" + ) # Minimum number of digits - fractional_rule_part = '[0-9]' * (min_precision if min_precision is not None else 1) + fractional_rule_part = "[0-9]" * (min_precision if min_precision is not None else 1) # Optional additional digits - fractional_rule_part += ''.join([' [0-9]?'] * ( - (max_precision - (min_precision if min_precision is not None else 1)) if max_precision is not None else 0)) - additional_rules.append(f'{fractional_part_rule} ::= {fractional_rule_part}') + fractional_rule_part += "".join( + [" [0-9]?"] * ((max_precision - ( + min_precision if min_precision is not None else 1)) if max_precision is not None else 0) + ) + additional_rules.append(f"{fractional_part_rule} ::= {fractional_rule_part}") # Define the float rule float_rule = f"float-{max_digit if max_digit is not None else 'X'}-{min_digit if min_digit is not None else 'X'}-{max_precision if max_precision is not None else 'X'}-{min_precision if min_precision is not None else 'X'}" @@ -246,20 +257,19 @@ def generate_gbnf_float_rules(max_digit=None, min_digit=None, max_precision=None # Generating the integer part rule definition, if necessary if max_digit is not None or min_digit is not None: - integer_rule_part = '[0-9]' + integer_rule_part = "[0-9]" if min_digit is not None and min_digit > 1: - integer_rule_part += ' [0-9]' * (min_digit - 1) + integer_rule_part += " [0-9]" * (min_digit - 1) if max_digit is not None: - integer_rule_part += ''.join([' [0-9]?'] * (max_digit - (min_digit if min_digit is not None else 1))) - additional_rules.append(f'{integer_part_rule} ::= {integer_rule_part.strip()}') + integer_rule_part += "".join([" [0-9]?"] * (max_digit - (min_digit if min_digit is not None else 1))) + additional_rules.append(f"{integer_part_rule} ::= {integer_rule_part.strip()}") return float_rule, additional_rules -def generate_gbnf_rule_for_type(model_name, field_name, - field_type, is_optional, processed_models, created_rules, - field_info=None) -> \ - Tuple[str, list]: +def generate_gbnf_rule_for_type( + model_name, field_name, field_type, is_optional, processed_models, created_rules, field_info=None +) -> Tuple[str, list]: """ Generate GBNF rule for a given field type. @@ -282,20 +292,19 @@ def generate_gbnf_rule_for_type(model_name, field_name, if isclass(field_type) and issubclass(field_type, BaseModel): nested_model_name = format_model_and_field_name(field_type.__name__) - nested_model_rules = generate_gbnf_grammar(field_type, processed_models, created_rules) + nested_model_rules, _ = generate_gbnf_grammar(field_type, processed_models, created_rules) rules.extend(nested_model_rules) gbnf_type, rules = nested_model_name, rules elif isclass(field_type) and issubclass(field_type, Enum): - enum_values = [f'\"\\\"{e.value}\\\"\"' for e in field_type] # Adding escaped quotes + enum_values = [f'"\\"{e.value}\\""' for e in field_type] # Adding escaped quotes enum_rule = f"{model_name}-{field_name} ::= {' | '.join(enum_values)}" rules.append(enum_rule) gbnf_type, rules = model_name + "-" + field_name, rules - elif get_origin(field_type) == list or field_type == list: # Array + elif get_origin(field_type) == list: # Array element_type = get_args(field_type)[0] - element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-element", - element_type, is_optional, processed_models, - created_rules) + element_rule_name, additional_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules + ) rules.extend(additional_rules) array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """ rules.append(array_rule) @@ -303,10 +312,9 @@ def generate_gbnf_rule_for_type(model_name, field_name, elif get_origin(field_type) == set or field_type == set: # Array element_type = get_args(field_type)[0] - element_rule_name, additional_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-element", - element_type, is_optional, processed_models, - created_rules) + element_rule_name, additional_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-element", element_type, is_optional, processed_models, created_rules + ) rules.extend(additional_rules) array_rule = f"""{model_name}-{field_name} ::= "[" ws {element_rule_name} ("," ws {element_rule_name})* "]" """ rules.append(array_rule) @@ -318,15 +326,13 @@ def generate_gbnf_rule_for_type(model_name, field_name, elif gbnf_type.startswith("custom-dict-"): key_type, value_type = get_args(field_type) - additional_key_type, additional_key_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-key-type", - key_type, is_optional, processed_models, - created_rules) - additional_value_type, additional_value_rules = generate_gbnf_rule_for_type(model_name, - f"{field_name}-value-type", - value_type, is_optional, - processed_models, created_rules) - gbnf_type = fr'{gbnf_type} ::= "{{" ( {additional_key_type} ":" {additional_value_type} ("," {additional_key_type} ":" {additional_value_type})* )? "}}" ' + additional_key_type, additional_key_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-key-type", key_type, is_optional, processed_models, created_rules + ) + additional_value_type, additional_value_rules = generate_gbnf_rule_for_type( + model_name, f"{field_name}-value-type", value_type, is_optional, processed_models, created_rules + ) + gbnf_type = rf'{gbnf_type} ::= "{{" ( {additional_key_type} ": " {additional_value_type} ("," "\n" ws {additional_key_type} ":" {additional_value_type})* )? "}}" ' rules.extend(additional_key_rules) rules.extend(additional_value_rules) @@ -336,19 +342,16 @@ def generate_gbnf_rule_for_type(model_name, field_name, for union_type in union_types: if isinstance(union_type, _GenericAlias): - union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name, - field_name, union_type, - False, - processed_models, created_rules) + union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type( + model_name, field_name, union_type, False, processed_models, created_rules + ) union_rules.append(union_gbnf_type) rules.extend(union_rules_list) - elif not issubclass(union_type, NoneType): - union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type(model_name, - field_name, union_type, - False, - processed_models, created_rules) + union_gbnf_type, union_rules_list = generate_gbnf_rule_for_type( + model_name, field_name, union_type, False, processed_models, created_rules + ) union_rules.append(union_gbnf_type) rules.extend(union_rules_list) @@ -363,45 +366,58 @@ def generate_gbnf_rule_for_type(model_name, field_name, else: gbnf_type = f"{model_name}-{field_name}-union" elif isclass(field_type) and issubclass(field_type, str): - if field_info and hasattr(field_info, 'json_schema_extra') and field_info.json_schema_extra is not None: - - triple_quoted_string = field_info.json_schema_extra.get('triple_quoted_string', False) - markdown_string = field_info.json_schema_extra.get('markdown_string', False) + if field_info and hasattr(field_info, "json_schema_extra") and field_info.json_schema_extra is not None: + triple_quoted_string = field_info.json_schema_extra.get("triple_quoted_string", False) + markdown_string = field_info.json_schema_extra.get("markdown_code_block", False) gbnf_type = PydanticDataType.TRIPLE_QUOTED_STRING.value if triple_quoted_string else PydanticDataType.STRING.value - gbnf_type = PydanticDataType.MARKDOWN_STRING.value if markdown_string else gbnf_type + gbnf_type = PydanticDataType.MARKDOWN_CODE_BLOCK.value if markdown_string else gbnf_type - elif field_info and hasattr(field_info, 'pattern'): + elif field_info and hasattr(field_info, "pattern"): # Convert regex pattern to grammar rule regex_pattern = field_info.regex.pattern gbnf_type = f"pattern-{field_name} ::= {regex_to_gbnf(regex_pattern)}" else: gbnf_type = PydanticDataType.STRING.value - elif isclass(field_type) and issubclass(field_type, float) and field_info and hasattr(field_info, - 'json_schema_extra') and field_info.json_schema_extra is not None: + elif ( + isclass(field_type) + and issubclass(field_type, float) + and field_info + and hasattr(field_info, "json_schema_extra") + and field_info.json_schema_extra is not None + ): # Retrieve precision attributes for floats - max_precision = field_info.json_schema_extra.get('max_precision') if field_info and hasattr(field_info, - 'json_schema_extra') else None - min_precision = field_info.json_schema_extra.get('min_precision') if field_info and hasattr(field_info, - 'json_schema_extra') else None - max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None - min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None + max_precision = ( + field_info.json_schema_extra.get("max_precision") if field_info and hasattr(field_info, + "json_schema_extra") else None + ) + min_precision = ( + field_info.json_schema_extra.get("min_precision") if field_info and hasattr(field_info, + "json_schema_extra") else None + ) + max_digits = field_info.json_schema_extra.get("max_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None + min_digits = field_info.json_schema_extra.get("min_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None # Generate GBNF rule for float with given attributes - gbnf_type, rules = generate_gbnf_float_rules(max_digit=max_digits, min_digit=min_digits, - max_precision=max_precision, - min_precision=min_precision) + gbnf_type, rules = generate_gbnf_float_rules( + max_digit=max_digits, min_digit=min_digits, max_precision=max_precision, min_precision=min_precision + ) - elif isclass(field_type) and issubclass(field_type, int) and field_info and hasattr(field_info, - 'json_schema_extra') and field_info.json_schema_extra is not None: + elif ( + isclass(field_type) + and issubclass(field_type, int) + and field_info + and hasattr(field_info, "json_schema_extra") + and field_info.json_schema_extra is not None + ): # Retrieve digit attributes for integers - max_digits = field_info.json_schema_extra.get('max_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None - min_digits = field_info.json_schema_extra.get('min_digit') if field_info and hasattr(field_info, - 'json_schema_extra') else None + max_digits = field_info.json_schema_extra.get("max_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None + min_digits = field_info.json_schema_extra.get("min_digit") if field_info and hasattr(field_info, + "json_schema_extra") else None # Generate GBNF rule for integer with given attributes gbnf_type, rules = generate_gbnf_integer_rules(max_digit=max_digits, min_digit=min_digits) @@ -443,13 +459,13 @@ def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created if not issubclass(model, BaseModel): # For non-Pydantic classes, generate model_fields from __annotations__ or __init__ - if hasattr(model, '__annotations__') and model.__annotations__: + if hasattr(model, "__annotations__") and model.__annotations__: model_fields = {name: (typ, ...) for name, typ in model.__annotations__.items()} else: init_signature = inspect.signature(model.__init__) parameters = init_signature.parameters - model_fields = {name: (param.annotation, param.default) for name, param in parameters.items() - if name != 'self'} + model_fields = {name: (param.annotation, param.default) for name, param in parameters.items() if + name != "self"} else: # For Pydantic models, use model_fields and check for ellipsis (required fields) model_fields = model.__annotations__ @@ -469,51 +485,55 @@ def generate_gbnf_grammar(model: Type[BaseModel], processed_models: set, created field_type = field_info field_info = model.model_fields[field_name] is_optional = field_info.is_required is False and get_origin(field_type) is Optional - rule_name, additional_rules = generate_gbnf_rule_for_type(model_name, - format_model_and_field_name(field_name), - field_type, is_optional, - processed_models, created_rules, field_info) - look_for_markdown_code_block = True if rule_name == "markdown_string" else False + rule_name, additional_rules = generate_gbnf_rule_for_type( + model_name, format_model_and_field_name(field_name), field_type, is_optional, processed_models, + created_rules, field_info + ) + look_for_markdown_code_block = True if rule_name == "markdown_code_block" else False look_for_triple_quoted_string = True if rule_name == "triple_quoted_string" else False if not look_for_markdown_code_block and not look_for_triple_quoted_string: if rule_name not in created_rules: created_rules[rule_name] = additional_rules - model_rule_parts.append(f' ws \"\\\"{field_name}\\\"\" ": " {rule_name}') # Adding escaped quotes + model_rule_parts.append(f' ws "\\"{field_name}\\"" ":" ws {rule_name}') # Adding escaped quotes nested_rules.extend(additional_rules) else: - has_triple_quoted_string = look_for_markdown_code_block - has_markdown_code_block = look_for_triple_quoted_string + has_triple_quoted_string = look_for_triple_quoted_string + has_markdown_code_block = look_for_markdown_code_block fields_joined = r' "," "\n" '.join(model_rule_parts) - model_rule = fr'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"' - - if look_for_markdown_code_block or look_for_triple_quoted_string: - model_rule += ' ws "}"' + model_rule = rf'{model_name} ::= "{{" "\n" {fields_joined} "\n" ws "}}"' + has_special_string = False if has_triple_quoted_string: + model_rule += '"\\n" ws "}"' model_rule += '"\\n" triple-quoted-string' + has_special_string = True if has_markdown_code_block: + model_rule += '"\\n" ws "}"' model_rule += '"\\n" markdown-code-block' + has_special_string = True all_rules = [model_rule] + nested_rules - return all_rules, has_markdown_code_block, has_triple_quoted_string + return all_rules, has_special_string -def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], outer_object_name: str = None, - outer_object_content: str = None, list_of_outputs: bool = False) -> str: +def generate_gbnf_grammar_from_pydantic_models( + models: List[Type[BaseModel]], outer_object_name: str = None, outer_object_content: str = None, + list_of_outputs: bool = False +) -> str: """ Generate GBNF Grammar from Pydantic Models. This method takes a list of Pydantic models and uses them to generate a GBNF grammar string. The generated grammar string can be used for parsing and validating data using the generated * grammar. - Parameters: - models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - list_of_outputs (str, optional): Allows a list of output objects + Args: + models (List[Type[BaseModel]]): A list of Pydantic models to generate the grammar from. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + list_of_outputs (str, optional): Allows a list of output objects Returns: - str: The generated GBNF grammar string. + str: The generated GBNF grammar string. Examples: models = [UserModel, PostModel] @@ -527,52 +547,53 @@ def generate_gbnf_grammar_from_pydantic_models(models: List[Type[BaseModel]], ou all_rules = [] created_rules = {} if outer_object_name is None: - for model in models: - model_rules, _, _ = generate_gbnf_grammar(model, - processed_models, created_rules) + model_rules, _ = generate_gbnf_grammar(model, processed_models, created_rules) all_rules.extend(model_rules) if list_of_outputs: - root_rule = r'root ::= ws "[" grammar-models ("," grammar-models)* "]"' + "\n" + root_rule = r'root ::= (" "| "\n") "[" ws grammar-models ("," ws grammar-models)* ws "]"' + "\n" else: - root_rule = r'root ::= ws grammar-models' + "\n" + root_rule = r'root ::= (" "| "\n") grammar-models' + "\n" root_rule += "grammar-models ::= " + " | ".join( [format_model_and_field_name(model.__name__) for model in models]) all_rules.insert(0, root_rule) return "\n".join(all_rules) elif outer_object_name is not None: if list_of_outputs: - root_rule = fr'root ::= ws "[" {format_model_and_field_name(outer_object_name)} ("," {format_model_and_field_name(outer_object_name)})* "]"' + "\n" + root_rule = ( + rf'root ::= (" "| "\n") "[" ws {format_model_and_field_name(outer_object_name)} ("," ws {format_model_and_field_name(outer_object_name)})* ws "]"' + + "\n" + ) else: root_rule = f"root ::= {format_model_and_field_name(outer_object_name)}\n" - model_rule = fr'{format_model_and_field_name(outer_object_name)} ::= ws "{{" ws "\"{outer_object_name}\"" ": " grammar-models' + model_rule = ( + rf'{format_model_and_field_name(outer_object_name)} ::= (" "| "\n") "{{" ws "\"{outer_object_name}\"" ":" ws grammar-models' + ) fields_joined = " | ".join( - [fr'{format_model_and_field_name(model.__name__)}-grammar-model' for model in models]) + [rf"{format_model_and_field_name(model.__name__)}-grammar-model" for model in models]) - grammar_model_rules = f'\ngrammar-models ::= {fields_joined}' + grammar_model_rules = f"\ngrammar-models ::= {fields_joined}" mod_rules = [] for model in models: - mod_rule = fr'{format_model_and_field_name(model.__name__)}-grammar-model ::= ws' - mod_rule += fr'"\"{format_model_and_field_name(model.__name__)}\"" "," ws "\"{outer_object_content}\"" ws ":" ws {format_model_and_field_name(model.__name__)}' + '\n' + mod_rule = rf"{format_model_and_field_name(model.__name__)}-grammar-model ::= " + mod_rule += ( + rf'"\"{model.__name__}\"" "," ws "\"{outer_object_content}\"" ":" ws {format_model_and_field_name(model.__name__)}' + "\n" + ) mod_rules.append(mod_rule) grammar_model_rules += "\n" + "\n".join(mod_rules) - look_for_markdown_code_block = False - look_for_triple_quoted_string = False + for model in models: - model_rules, markdown_block, triple_quoted_string = generate_gbnf_grammar(model, - processed_models, created_rules) + model_rules, has_special_string = generate_gbnf_grammar(model, processed_models, + created_rules) + + if not has_special_string: + model_rules[0] += r'"\n" ws "}"' + all_rules.extend(model_rules) - if markdown_block: - look_for_markdown_code_block = True - if triple_quoted_string: - look_for_triple_quoted_string = True - - if not look_for_markdown_code_block and not look_for_triple_quoted_string: - model_rule += ' ws "}"' all_rules.insert(0, root_rule + model_rule + grammar_model_rules) return "\n".join(all_rules) @@ -582,10 +603,10 @@ def get_primitive_grammar(grammar): Returns the needed GBNF primitive grammar for a given GBNF grammar string. Args: - grammar (str): The string containing the GBNF grammar. + grammar (str): The string containing the GBNF grammar. Returns: - str: GBNF primitive grammar string. + str: GBNF primitive grammar string. """ type_list = [] if "string-list" in grammar: @@ -611,7 +632,7 @@ integer ::= [0-9]+""" any_block = "" if "custom-class-any" in grammar: - any_block = ''' + any_block = """ value ::= object | array | string | number | boolean | null object ::= @@ -626,7 +647,7 @@ array ::= ("," ws value)* )? "]" ws -number ::= integer | float''' +number ::= integer | float""" markdown_code_block_grammar = "" if "markdown-code-block" in grammar: @@ -641,90 +662,32 @@ closing-triple-ticks ::= "```" "\n"''' triple-quoted-string ::= triple-quotes triple-quoted-string-content triple-quotes triple-quoted-string-content ::= ( [^'] | "'" [^'] | "'" "'" [^'] )* triple-quotes ::= "'''" """ - return "\n" + '\n'.join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar + return "\n" + "\n".join(additional_grammar) + any_block + primitive_grammar + markdown_code_block_grammar -def generate_field_markdown(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1) -> str: - indent = ' ' * depth - field_markdown = f"{indent}- **{field_name}** (`{field_type.__name__}`): " - - # Extracting field description from Pydantic Field using __model_fields__ - field_info = model.model_fields.get(field_name) - field_description = field_info.description if field_info and field_info.description else "No description available." - - field_markdown += field_description + '\n' - - # Handling nested BaseModel fields - if isclass(field_type) and issubclass(field_type, BaseModel): - field_markdown += f"{indent} - Details:\n" - for name, type_ in field_type.__annotations__.items(): - field_markdown += generate_field_markdown(name, type_, field_type, depth + 2) - - return field_markdown - - -def generate_markdown_report(pydantic_models: List[Type[BaseModel]]) -> str: - markdown = "" - for model in pydantic_models: - markdown += f"### {format_model_and_field_name(model.__name__)}\n" - - # Check if the model's docstring is different from BaseModel's docstring - class_doc = getdoc(model) - base_class_doc = getdoc(BaseModel) - class_description = class_doc if class_doc and class_doc != base_class_doc else "No specific description available." - - markdown += f"{class_description}\n\n" - markdown += "#### Fields\n" - - if isclass(model) and issubclass(model, BaseModel): - for name, field_type in model.__annotations__.items(): - markdown += generate_field_markdown(format_model_and_field_name(name), field_type, model) - markdown += "\n" - - return markdown - - -def format_json_example(example: dict, depth: int) -> str: +def generate_markdown_documentation( + pydantic_models: List[Type[BaseModel]], model_prefix="Model", fields_prefix="Fields", + documentation_with_field_description=True +) -> str: """ - Format a JSON example into a readable string with indentation. + Generate markdown documentation for a list of Pydantic models. Args: - example (dict): JSON example to be formatted. - depth (int): Indentation depth. + pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes. + model_prefix (str): Prefix for the model section. + fields_prefix (str): Prefix for the fields section. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - str: Formatted JSON example string. - """ - indent = ' ' * depth - formatted_example = '{\n' - for key, value in example.items(): - value_text = f"'{value}'" if isinstance(value, str) else value - formatted_example += f"{indent}{key}: {value_text},\n" - formatted_example = formatted_example.rstrip(',\n') + '\n' + indent + '}' - return formatted_example - - -def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_prefix="Model", - fields_prefix="Fields", documentation_with_field_description=True) -> str: - """ - Generate text documentation for a list of Pydantic models. - - Args: - pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes. - model_prefix (str): Prefix for the model section. - fields_prefix (str): Prefix for the fields section. - documentation_with_field_description (bool): Include field descriptions in the documentation. - - Returns: - str: Generated text documentation. + str: Generated text documentation. """ documentation = "" pyd_models = [(model, True) for model in pydantic_models] for model, add_prefix in pyd_models: if add_prefix: - documentation += f"{model_prefix}: {format_model_and_field_name(model.__name__)}\n" + documentation += f"{model_prefix}: {model.__name__}\n" else: - documentation += f"Model: {format_model_and_field_name(model.__name__)}\n" + documentation += f"Model: {model.__name__}\n" # Handling multi-line model description with proper indentation @@ -733,7 +696,7 @@ def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_pr class_description = class_doc if class_doc and class_doc != base_class_doc else "" if class_description != "": documentation += " Description: " - documentation += "\n" + format_multiline_description(class_description, 2) + "\n" + documentation += format_multiline_description(class_description, 0) + "\n" if add_prefix: # Indenting the fields section @@ -753,35 +716,192 @@ def generate_text_documentation(pydantic_models: List[Type[BaseModel]], model_pr for element_type in element_types: if isclass(element_type) and issubclass(element_type, BaseModel): pyd_models.append((element_type, False)) - documentation += generate_field_text(name, field_type, model, - documentation_with_field_description=documentation_with_field_description) + documentation += generate_field_markdown( + name, field_type, model, documentation_with_field_description=documentation_with_field_description + ) documentation += "\n" - if hasattr(model, 'Config') and hasattr(model.Config, - 'json_schema_extra') and 'example' in model.Config.json_schema_extra: + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n" - json_example = json.dumps(model.Config.json_schema_extra['example']) + json_example = json.dumps(model.Config.json_schema_extra["example"]) documentation += format_multiline_description(json_example, 2) + "\n" return documentation -def generate_field_text(field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1, - documentation_with_field_description=True) -> str: +def generate_field_markdown( + field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1, + documentation_with_field_description=True +) -> str: + """ + Generate markdown documentation for a Pydantic model field. + + Args: + field_name (str): Name of the field. + field_type (Type[Any]): Type of the field. + model (Type[BaseModel]): Pydantic model class. + depth (int): Indentation depth in the documentation. + documentation_with_field_description (bool): Include field descriptions in the documentation. + + Returns: + str: Generated text documentation for the field. + """ + indent = " " * depth + + field_info = model.model_fields.get(field_name) + field_description = field_info.description if field_info and field_info.description else "" + + if get_origin(field_type) == list: + element_type = get_args(field_type)[0] + field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)} of {format_model_and_field_name(element_type.__name__)})" + if field_description != "": + field_text += ":\n" + else: + field_text += "\n" + elif get_origin(field_type) == Union: + element_types = get_args(field_type) + types = [] + for element_type in element_types: + types.append(format_model_and_field_name(element_type.__name__)) + field_text = f"{indent}{field_name} ({' or '.join(types)})" + if field_description != "": + field_text += ":\n" + else: + field_text += "\n" + else: + field_text = f"{indent}{field_name} ({format_model_and_field_name(field_type.__name__)})" + if field_description != "": + field_text += ":\n" + else: + field_text += "\n" + + if not documentation_with_field_description: + return field_text + + if field_description != "": + field_text += f" Description: " + field_description + "\n" + + # Check for and include field-specific examples if available + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: + field_example = model.Config.json_schema_extra["example"].get(field_name) + if field_example is not None: + example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example + field_text += f"{indent} Example: {example_text}\n" + + if isclass(field_type) and issubclass(field_type, BaseModel): + field_text += f"{indent} Details:\n" + for name, type_ in field_type.__annotations__.items(): + field_text += generate_field_markdown(name, type_, field_type, depth + 2) + + return field_text + + +def format_json_example(example: dict, depth: int) -> str: + """ + Format a JSON example into a readable string with indentation. + + Args: + example (dict): JSON example to be formatted. + depth (int): Indentation depth. + + Returns: + str: Formatted JSON example string. + """ + indent = " " * depth + formatted_example = "{\n" + for key, value in example.items(): + value_text = f"'{value}'" if isinstance(value, str) else value + formatted_example += f"{indent}{key}: {value_text},\n" + formatted_example = formatted_example.rstrip(",\n") + "\n" + indent + "}" + return formatted_example + + +def generate_text_documentation( + pydantic_models: List[Type[BaseModel]], model_prefix="Model", fields_prefix="Fields", + documentation_with_field_description=True +) -> str: + """ + Generate text documentation for a list of Pydantic models. + + Args: + pydantic_models (List[Type[BaseModel]]): List of Pydantic model classes. + model_prefix (str): Prefix for the model section. + fields_prefix (str): Prefix for the fields section. + documentation_with_field_description (bool): Include field descriptions in the documentation. + + Returns: + str: Generated text documentation. + """ + documentation = "" + pyd_models = [(model, True) for model in pydantic_models] + for model, add_prefix in pyd_models: + if add_prefix: + documentation += f"{model_prefix}: {model.__name__}\n" + else: + documentation += f"Model: {model.__name__}\n" + + # Handling multi-line model description with proper indentation + + class_doc = getdoc(model) + base_class_doc = getdoc(BaseModel) + class_description = class_doc if class_doc and class_doc != base_class_doc else "" + if class_description != "": + documentation += " Description: " + documentation += "\n" + format_multiline_description(class_description, 2) + "\n" + + if isclass(model) and issubclass(model, BaseModel): + documentation_fields = "" + for name, field_type in model.__annotations__.items(): + # if name == "markdown_code_block": + # continue + if get_origin(field_type) == list: + element_type = get_args(field_type)[0] + if isclass(element_type) and issubclass(element_type, BaseModel): + pyd_models.append((element_type, False)) + if get_origin(field_type) == Union: + element_types = get_args(field_type) + for element_type in element_types: + if isclass(element_type) and issubclass(element_type, BaseModel): + pyd_models.append((element_type, False)) + documentation_fields += generate_field_text( + name, field_type, model, documentation_with_field_description=documentation_with_field_description + ) + if documentation_fields != "": + if add_prefix: + documentation += f" {fields_prefix}:\n{documentation_fields}" + else: + documentation += f" Fields:\n{documentation_fields}" + documentation += "\n" + + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: + documentation += f" Expected Example Output for {format_model_and_field_name(model.__name__)}:\n" + json_example = json.dumps(model.Config.json_schema_extra["example"]) + documentation += format_multiline_description(json_example, 2) + "\n" + + return documentation + + +def generate_field_text( + field_name: str, field_type: Type[Any], model: Type[BaseModel], depth=1, + documentation_with_field_description=True +) -> str: """ Generate text documentation for a Pydantic model field. Args: - field_name (str): Name of the field. - field_type (Type[Any]): Type of the field. - model (Type[BaseModel]): Pydantic model class. - depth (int): Indentation depth in the documentation. - documentation_with_field_description (bool): Include field descriptions in the documentation. + field_name (str): Name of the field. + field_type (Type[Any]): Type of the field. + model (Type[BaseModel]): Pydantic model class. + depth (int): Indentation depth in the documentation. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - str: Generated text documentation for the field. + str: Generated text documentation for the field. """ - indent = ' ' * depth + indent = " " * depth field_info = model.model_fields.get(field_name) field_description = field_info.description if field_info and field_info.description else "" @@ -817,9 +937,9 @@ def generate_field_text(field_name: str, field_type: Type[Any], model: Type[Base field_text += f"{indent} Description: " + field_description + "\n" # Check for and include field-specific examples if available - if hasattr(model, 'Config') and hasattr(model.Config, - 'json_schema_extra') and 'example' in model.Config.json_schema_extra: - field_example = model.Config.json_schema_extra['example'].get(field_name) + if hasattr(model, "Config") and hasattr(model.Config, + "json_schema_extra") and "example" in model.Config.json_schema_extra: + field_example = model.Config.json_schema_extra["example"].get(field_name) if field_example is not None: example_text = f"'{field_example}'" if isinstance(field_example, str) else field_example field_text += f"{indent} Example: {example_text}\n" @@ -837,39 +957,40 @@ def format_multiline_description(description: str, indent_level: int) -> str: Format a multiline description with proper indentation. Args: - description (str): Multiline description. - indent_level (int): Indentation level. + description (str): Multiline description. + indent_level (int): Indentation level. Returns: - str: Formatted multiline description. + str: Formatted multiline description. """ - indent = ' ' * indent_level - return indent + description.replace('\n', '\n' + indent) + indent = " " * indent_level + return indent + description.replace("\n", "\n" + indent) -def save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path="./grammar.gbnf", - documentation_file_path="./grammar_documentation.md"): +def save_gbnf_grammar_and_documentation( + grammar, documentation, grammar_file_path="./grammar.gbnf", documentation_file_path="./grammar_documentation.md" +): """ Save GBNF grammar and documentation to specified files. Args: - grammar (str): GBNF grammar string. - documentation (str): Documentation string. - grammar_file_path (str): File path to save the GBNF grammar. - documentation_file_path (str): File path to save the documentation. + grammar (str): GBNF grammar string. + documentation (str): Documentation string. + grammar_file_path (str): File path to save the GBNF grammar. + documentation_file_path (str): File path to save the documentation. Returns: - None + None """ try: - with open(grammar_file_path, 'w') as file: + with open(grammar_file_path, "w") as file: file.write(grammar + get_primitive_grammar(grammar)) print(f"Grammar successfully saved to {grammar_file_path}") except IOError as e: print(f"An error occurred while saving the grammar file: {e}") try: - with open(documentation_file_path, 'w') as file: + with open(documentation_file_path, "w") as file: file.write(documentation) print(f"Documentation successfully saved to {documentation_file_path}") except IOError as e: @@ -881,10 +1002,10 @@ def remove_empty_lines(string): Remove empty lines from a string. Args: - string (str): Input string. + string (str): Input string. Returns: - str: String with empty lines removed. + str: String with empty lines removed. """ lines = string.splitlines() non_empty_lines = [line for line in lines if line.strip() != ""] @@ -892,95 +1013,109 @@ def remove_empty_lines(string): return string_no_empty_lines -def generate_and_save_gbnf_grammar_and_documentation(pydantic_model_list, - grammar_file_path="./generated_grammar.gbnf", - documentation_file_path="./generated_grammar_documentation.md", - outer_object_name: str = None, - outer_object_content: str = None, - model_prefix: str = "Output Model", - fields_prefix: str = "Output Fields", - list_of_outputs: bool = False, - documentation_with_field_description=True): +def generate_and_save_gbnf_grammar_and_documentation( + pydantic_model_list, + grammar_file_path="./generated_grammar.gbnf", + documentation_file_path="./generated_grammar_documentation.md", + outer_object_name: str = None, + outer_object_content: str = None, + model_prefix: str = "Output Model", + fields_prefix: str = "Output Fields", + list_of_outputs: bool = False, + documentation_with_field_description=True, +): """ Generate GBNF grammar and documentation, and save them to specified files. Args: - pydantic_model_list: List of Pydantic model classes. - grammar_file_path (str): File path to save the generated GBNF grammar. - documentation_file_path (str): File path to save the generated documentation. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - model_prefix (str): Prefix for the model section in the documentation. - fields_prefix (str): Prefix for the fields section in the documentation. - list_of_outputs (bool): Whether the output is a list of items. - documentation_with_field_description (bool): Include field descriptions in the documentation. + pydantic_model_list: List of Pydantic model classes. + grammar_file_path (str): File path to save the generated GBNF grammar. + documentation_file_path (str): File path to save the generated documentation. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + model_prefix (str): Prefix for the model section in the documentation. + fields_prefix (str): Prefix for the fields section in the documentation. + list_of_outputs (bool): Whether the output is a list of items. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - None + None """ - documentation = generate_text_documentation(pydantic_model_list, model_prefix, fields_prefix, - documentation_with_field_description=documentation_with_field_description) - grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, - outer_object_content, list_of_outputs) + documentation = generate_markdown_documentation( + pydantic_model_list, model_prefix, fields_prefix, + documentation_with_field_description=documentation_with_field_description + ) + grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, outer_object_content, + list_of_outputs) grammar = remove_empty_lines(grammar) save_gbnf_grammar_and_documentation(grammar, documentation, grammar_file_path, documentation_file_path) -def generate_gbnf_grammar_and_documentation(pydantic_model_list, outer_object_name: str = None, - outer_object_content: str = None, - model_prefix: str = "Output Model", - fields_prefix: str = "Output Fields", list_of_outputs: bool = False, - documentation_with_field_description=True): +def generate_gbnf_grammar_and_documentation( + pydantic_model_list, + outer_object_name: str = None, + outer_object_content: str = None, + model_prefix: str = "Output Model", + fields_prefix: str = "Output Fields", + list_of_outputs: bool = False, + documentation_with_field_description=True, +): """ Generate GBNF grammar and documentation for a list of Pydantic models. Args: - pydantic_model_list: List of Pydantic model classes. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - model_prefix (str): Prefix for the model section in the documentation. - fields_prefix (str): Prefix for the fields section in the documentation. - list_of_outputs (bool): Whether the output is a list of items. - documentation_with_field_description (bool): Include field descriptions in the documentation. + pydantic_model_list: List of Pydantic model classes. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + model_prefix (str): Prefix for the model section in the documentation. + fields_prefix (str): Prefix for the fields section in the documentation. + list_of_outputs (bool): Whether the output is a list of items. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - tuple: GBNF grammar string, documentation string. + tuple: GBNF grammar string, documentation string. """ - documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix, - documentation_with_field_description=documentation_with_field_description) - grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, - outer_object_content, list_of_outputs) + documentation = generate_markdown_documentation( + copy(pydantic_model_list), model_prefix, fields_prefix, + documentation_with_field_description=documentation_with_field_description + ) + grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, outer_object_content, + list_of_outputs) grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar)) return grammar, documentation -def generate_gbnf_grammar_and_documentation_from_dictionaries(dictionaries: List[dict], - outer_object_name: str = None, - outer_object_content: str = None, - model_prefix: str = "Output Model", - fields_prefix: str = "Output Fields", - list_of_outputs: bool = False, - documentation_with_field_description=True): +def generate_gbnf_grammar_and_documentation_from_dictionaries( + dictionaries: List[dict], + outer_object_name: str = None, + outer_object_content: str = None, + model_prefix: str = "Output Model", + fields_prefix: str = "Output Fields", + list_of_outputs: bool = False, + documentation_with_field_description=True, +): """ Generate GBNF grammar and documentation from a list of dictionaries. Args: - dictionaries (List[dict]): List of dictionaries representing Pydantic models. - outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. - outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. - model_prefix (str): Prefix for the model section in the documentation. - fields_prefix (str): Prefix for the fields section in the documentation. - list_of_outputs (bool): Whether the output is a list of items. - documentation_with_field_description (bool): Include field descriptions in the documentation. + dictionaries (List[dict]): List of dictionaries representing Pydantic models. + outer_object_name (str): Outer object name for the GBNF grammar. If None, no outer object will be generated. Eg. "function" for function calling. + outer_object_content (str): Content for the outer rule in the GBNF grammar. Eg. "function_parameters" or "params" for function calling. + model_prefix (str): Prefix for the model section in the documentation. + fields_prefix (str): Prefix for the fields section in the documentation. + list_of_outputs (bool): Whether the output is a list of items. + documentation_with_field_description (bool): Include field descriptions in the documentation. Returns: - tuple: GBNF grammar string, documentation string. + tuple: GBNF grammar string, documentation string. """ pydantic_model_list = create_dynamic_models_from_dictionaries(dictionaries) - documentation = generate_text_documentation(copy(pydantic_model_list), model_prefix, fields_prefix, - documentation_with_field_description=documentation_with_field_description) - grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, - outer_object_content, list_of_outputs) + documentation = generate_markdown_documentation( + copy(pydantic_model_list), model_prefix, fields_prefix, + documentation_with_field_description=documentation_with_field_description + ) + grammar = generate_gbnf_grammar_from_pydantic_models(pydantic_model_list, outer_object_name, outer_object_content, + list_of_outputs) grammar = remove_empty_lines(grammar + get_primitive_grammar(grammar)) return grammar, documentation @@ -990,41 +1125,61 @@ def create_dynamic_model_from_function(func: Callable): Creates a dynamic Pydantic model from a given function's type hints and adds the function as a 'run' method. Args: - func (Callable): A function with type hints from which to create the model. + func (Callable): A function with type hints from which to create the model. Returns: - A dynamic Pydantic model class with the provided function as a 'run' method. + A dynamic Pydantic model class with the provided function as a 'run' method. """ - # Extracting type hints from the provided function - type_hints = get_type_hints(func) - type_hints.pop('return', None) - # Handling default values and annotations + # Get the signature of the function + sig = inspect.signature(func) + + # Parse the docstring + docstring = parse(func.__doc__) + dynamic_fields = {} - defaults = getattr(func, '__defaults__', ()) or () - defaults_index = len(type_hints) - len(defaults) + param_docs = [] + for param in sig.parameters.values(): + # Exclude 'self' parameter + if param.name == "self": + continue - for index, (name, typ) in enumerate(type_hints.items()): - if index >= defaults_index: - default_value = defaults[index - defaults_index] - dynamic_fields[name] = (typ, default_value) + # Assert that the parameter has a type annotation + if param.annotation == inspect.Parameter.empty: + raise TypeError(f"Parameter '{param.name}' in function '{func.__name__}' lacks a type annotation") + + # Find the parameter's description in the docstring + param_doc = next((d for d in docstring.params if d.arg_name == param.name), None) + + # Assert that the parameter has a description + if not param_doc or not param_doc.description: + raise ValueError( + f"Parameter '{param.name}' in function '{func.__name__}' lacks a description in the docstring") + + # Add parameter details to the schema + param_doc = next((d for d in docstring.params if d.arg_name == param.name), None) + param_docs.append((param.name, param_doc)) + if param.default == inspect.Parameter.empty: + default_value = ... else: - dynamic_fields[name] = (typ, ...) - + default_value = param.default + dynamic_fields[param.name] = ( + param.annotation if param.annotation != inspect.Parameter.empty else str, default_value) # Creating the dynamic model - dynamicModel = create_model(f'{func.__name__}', **dynamic_fields) + dynamic_model = create_model(f"{func.__name__}", **dynamic_fields) - dynamicModel.__doc__ = getdoc(func) + for param_doc in param_docs: + dynamic_model.model_fields[param_doc[0]].description = param_doc[1].description + + dynamic_model.__doc__ = docstring.short_description - # Wrapping the original function to handle instance 'self' def run_method_wrapper(self): - func_args = {name: getattr(self, name) for name in type_hints} + func_args = {name: getattr(self, name) for name, _ in dynamic_fields.items()} return func(**func_args) # Adding the wrapped function as a 'run' method - setattr(dynamicModel, 'run', run_method_wrapper) - - return dynamicModel + setattr(dynamic_model, "run", run_method_wrapper) + return dynamic_model def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable): @@ -1032,11 +1187,11 @@ def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable): Add a 'run' method to a dynamic Pydantic model, using the provided function. Args: - - model (Type[BaseModel]): Dynamic Pydantic model class. - - func (Callable): Function to be added as a 'run' method to the model. + model (Type[BaseModel]): Dynamic Pydantic model class. + func (Callable): Function to be added as a 'run' method to the model. Returns: - - Type[BaseModel]: Pydantic model class with the added 'run' method. + Type[BaseModel]: Pydantic model class with the added 'run' method. """ def run_method_wrapper(self): @@ -1044,7 +1199,7 @@ def add_run_method_to_dynamic_model(model: Type[BaseModel], func: Callable): return func(**func_args) # Adding the wrapped function as a 'run' method - setattr(model, 'run', run_method_wrapper) + setattr(model, "run", run_method_wrapper) return model @@ -1054,15 +1209,15 @@ def create_dynamic_models_from_dictionaries(dictionaries: List[dict]): Create a list of dynamic Pydantic model classes from a list of dictionaries. Args: - - dictionaries (List[dict]): List of dictionaries representing model structures. + dictionaries (List[dict]): List of dictionaries representing model structures. Returns: - - List[Type[BaseModel]]: List of generated dynamic Pydantic model classes. + List[Type[BaseModel]]: List of generated dynamic Pydantic model classes. """ dynamic_models = [] for func in dictionaries: model_name = format_model_and_field_name(func.get("name", "")) - dyn_model = convert_dictionary_to_to_pydantic_model(func, model_name) + dyn_model = convert_dictionary_to_pydantic_model(func, model_name) dynamic_models.append(dyn_model) return dynamic_models @@ -1080,12 +1235,12 @@ from enum import Enum def json_schema_to_python_types(schema): type_map = { - 'any': Any, - 'string': str, - 'number': float, - 'integer': int, - 'boolean': bool, - 'array': list, + "any": Any, + "string": str, + "number": float, + "integer": int, + "boolean": bool, + "array": list, } return type_map[schema] @@ -1094,58 +1249,64 @@ def list_to_enum(enum_name, values): return Enum(enum_name, {value: value for value in values}) -def convert_dictionary_to_to_pydantic_model(dictionary: dict, model_name: str = 'CustomModel') -> Type[BaseModel]: +def convert_dictionary_to_pydantic_model(dictionary: dict, model_name: str = "CustomModel") -> Type[BaseModel]: """ Convert a dictionary to a Pydantic model class. Args: - - dictionary (dict): Dictionary representing the model structure. - - model_name (str): Name of the generated Pydantic model. + dictionary (dict): Dictionary representing the model structure. + model_name (str): Name of the generated Pydantic model. Returns: - - Type[BaseModel]: Generated Pydantic model class. + Type[BaseModel]: Generated Pydantic model class. """ fields = {} if "properties" in dictionary: for field_name, field_data in dictionary.get("properties", {}).items(): - if field_data == 'object': - submodel = convert_dictionary_to_to_pydantic_model(dictionary, f'{model_name}_{field_name}') + if field_data == "object": + submodel = convert_dictionary_to_pydantic_model(dictionary, f"{model_name}_{field_name}") fields[field_name] = (submodel, ...) else: - field_type = field_data.get('type', 'str') + field_type = field_data.get("type", "str") if field_data.get("enum", []): fields[field_name] = (list_to_enum(field_name, field_data.get("enum", [])), ...) - if field_type == "array": + elif field_type == "array": items = field_data.get("items", {}) if items != {}: array = {"properties": items} - array_type = convert_dictionary_to_to_pydantic_model(array, f'{model_name}_{field_name}_items') + array_type = convert_dictionary_to_pydantic_model(array, f"{model_name}_{field_name}_items") fields[field_name] = (List[array_type], ...) else: fields[field_name] = (list, ...) - elif field_type == 'object': - submodel = convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}_{field_name}') + elif field_type == "object": + submodel = convert_dictionary_to_pydantic_model(field_data, f"{model_name}_{field_name}") fields[field_name] = (submodel, ...) + elif field_type == "required": + required = field_data.get("enum", []) + for key, field in fields.items(): + if key not in required: + fields[key] = (Optional[fields[key][0]], ...) else: field_type = json_schema_to_python_types(field_type) fields[field_name] = (field_type, ...) if "function" in dictionary: - for field_name, field_data in dictionary.get("function", {}).items(): if field_name == "name": model_name = field_data elif field_name == "description": fields["__doc__"] = field_data elif field_name == "parameters": - return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}') + return convert_dictionary_to_pydantic_model(field_data, f"{model_name}") + if "parameters" in dictionary: field_data = {"function": dictionary} - return convert_dictionary_to_to_pydantic_model(field_data, f'{model_name}') - + return convert_dictionary_to_pydantic_model(field_data, f"{model_name}") + if "required" in dictionary: + required = dictionary.get("required", []) + for key, field in fields.items(): + if key not in required: + fields[key] = (Optional[fields[key][0]], ...) custom_model = create_model(model_name, **fields) return custom_model - - - From 7c8d3abd1a17c28fc56b1a4814bc4b29f91d7454 Mon Sep 17 00:00:00 2001 From: Alex Azarov Date: Tue, 16 Jan 2024 14:33:02 +0100 Subject: [PATCH 25/71] metal : log `recommendedMaxWorkingSetSize` on iOS 16+ (#4936) * metal: Log `recommendedMaxWorkingSetSize` on iOS 16+ * Only log on iOS and macOS, ignoring tvOS and other platforms * Check for Xcode version before using recommendedMaxWorkingSetSize --------- Co-authored-by: Georgi Gerganov --- ggml-metal.m | 58 ++++++++++++++++++++++++---------------------------- 1 file changed, 27 insertions(+), 31 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index 867f2fd48..44134d1d9 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -369,8 +369,12 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) { GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false"); GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false"); GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); -#if TARGET_OS_OSX - GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6); + +#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) + if (@available(macOS 10.12, iOS 16.0, *)) { + GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6); + } +#elif TARGET_OS_OSX if (ctx->device.maxTransferRate != 0) { GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6); } else { @@ -2369,6 +2373,25 @@ GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backe UNUSED(buft); } +static void ggml_backend_metal_log_allocated_size(id device) { +#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) + if (@available(macOS 10.12, iOS 16.0, *)) { + GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", + device.currentAllocatedSize / 1024.0 / 1024.0, + device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); + + if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) { + GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__); + } else { + GGML_METAL_LOG_INFO("\n"); + } + } else { + GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); + } +#endif + UNUSED(device); +} + GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); @@ -2401,22 +2424,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff } GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); - - -#if TARGET_OS_OSX - GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", - device.currentAllocatedSize / 1024.0 / 1024.0, - device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - - if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) { - GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__); - } else { - GGML_METAL_LOG_INFO("\n"); - } -#else - GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); -#endif - + ggml_backend_metal_log_allocated_size(device); return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); } @@ -2524,19 +2532,7 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, } } -#if TARGET_OS_OSX - GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", - device.currentAllocatedSize / 1024.0 / 1024.0, - device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - - if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) { - GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__); - } else { - GGML_METAL_LOG_INFO("\n"); - } -#else - GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); -#endif + ggml_backend_metal_log_allocated_size(device); return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size); } From 3a48d558a69c88ac17efcaa5900cd9eb19596ac4 Mon Sep 17 00:00:00 2001 From: Alex Azarov Date: Tue, 16 Jan 2024 14:41:27 +0100 Subject: [PATCH 26/71] metal : replace loop of dispatch_async with dispatch_apply (#4934) * Replace loop of dispatch_async with dispatch_apply * Update ggml-metal.m --------- Co-authored-by: Georgi Gerganov --- ggml-metal.m | 2882 +++++++++++++++++++++++++------------------------- 1 file changed, 1439 insertions(+), 1443 deletions(-) diff --git a/ggml-metal.m b/ggml-metal.m index 44134d1d9..c21dc465a 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -737,1475 +737,249 @@ static bool ggml_metal_graph_compute( ctx->command_encoders[i] = [ctx->command_buffers[i] computeCommandEncoderWithDescriptor: edesc]; } - for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { - const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb; + const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb; + dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) { + const int cb_idx = iter; - dispatch_async(ctx->d_queue, ^{ - size_t offs_src0 = 0; - size_t offs_src1 = 0; - size_t offs_dst = 0; + size_t offs_src0 = 0; + size_t offs_src1 = 0; + size_t offs_dst = 0; - id command_buffer = ctx->command_buffers[cb_idx]; - id encoder = ctx->command_encoders[cb_idx]; + id command_buffer = ctx->command_buffers[cb_idx]; + id encoder = ctx->command_encoders[cb_idx]; - const int node_start = (cb_idx + 0) * n_nodes_per_cb; - const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes); + const int node_start = (cb_idx + 0) * n_nodes_per_cb; + const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes); - for (int ind = node_start; ind < node_end; ++ind) { - const int i = ind; + for (int ind = node_start; ind < node_end; ++ind) { + const int i = ind; - if (i == -1) { - [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; - continue; - } + if (i == -1) { + [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; + continue; + } - //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); + //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); - struct ggml_tensor * src0 = gf->nodes[i]->src[0]; - struct ggml_tensor * src1 = gf->nodes[i]->src[1]; - struct ggml_tensor * dst = gf->nodes[i]; + struct ggml_tensor * src0 = gf->nodes[i]->src[0]; + struct ggml_tensor * src1 = gf->nodes[i]->src[1]; + struct ggml_tensor * dst = gf->nodes[i]; - switch (dst->op) { - case GGML_OP_NONE: - case GGML_OP_RESHAPE: - case GGML_OP_VIEW: - case GGML_OP_TRANSPOSE: - case GGML_OP_PERMUTE: - { - // noop -> next node - } continue; - default: - { - } break; - } + switch (dst->op) { + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + { + // noop -> next node + } continue; + default: + { + } break; + } - if (!ggml_metal_supports_op(ctx, dst)) { - GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); - GGML_ASSERT(!"unsupported op"); - } + if (!ggml_metal_supports_op(ctx, dst)) { + GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); + GGML_ASSERT(!"unsupported op"); + } #ifndef GGML_METAL_NDEBUG - [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]]; + [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]]; #endif - const int64_t ne00 = src0 ? src0->ne[0] : 0; - const int64_t ne01 = src0 ? src0->ne[1] : 0; - const int64_t ne02 = src0 ? src0->ne[2] : 0; - const int64_t ne03 = src0 ? src0->ne[3] : 0; + const int64_t ne00 = src0 ? src0->ne[0] : 0; + const int64_t ne01 = src0 ? src0->ne[1] : 0; + const int64_t ne02 = src0 ? src0->ne[2] : 0; + const int64_t ne03 = src0 ? src0->ne[3] : 0; - const uint64_t nb00 = src0 ? src0->nb[0] : 0; - const uint64_t nb01 = src0 ? src0->nb[1] : 0; - const uint64_t nb02 = src0 ? src0->nb[2] : 0; - const uint64_t nb03 = src0 ? src0->nb[3] : 0; + const uint64_t nb00 = src0 ? src0->nb[0] : 0; + const uint64_t nb01 = src0 ? src0->nb[1] : 0; + const uint64_t nb02 = src0 ? src0->nb[2] : 0; + const uint64_t nb03 = src0 ? src0->nb[3] : 0; - const int64_t ne10 = src1 ? src1->ne[0] : 0; - const int64_t ne11 = src1 ? src1->ne[1] : 0; - const int64_t ne12 = src1 ? src1->ne[2] : 0; - const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + const int64_t ne10 = src1 ? src1->ne[0] : 0; + const int64_t ne11 = src1 ? src1->ne[1] : 0; + const int64_t ne12 = src1 ? src1->ne[2] : 0; + const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); - const uint64_t nb10 = src1 ? src1->nb[0] : 0; - const uint64_t nb11 = src1 ? src1->nb[1] : 0; - const uint64_t nb12 = src1 ? src1->nb[2] : 0; - const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); + const uint64_t nb10 = src1 ? src1->nb[0] : 0; + const uint64_t nb11 = src1 ? src1->nb[1] : 0; + const uint64_t nb12 = src1 ? src1->nb[2] : 0; + const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); - const int64_t ne0 = dst ? dst->ne[0] : 0; - const int64_t ne1 = dst ? dst->ne[1] : 0; - const int64_t ne2 = dst ? dst->ne[2] : 0; - const int64_t ne3 = dst ? dst->ne[3] : 0; + const int64_t ne0 = dst ? dst->ne[0] : 0; + const int64_t ne1 = dst ? dst->ne[1] : 0; + const int64_t ne2 = dst ? dst->ne[2] : 0; + const int64_t ne3 = dst ? dst->ne[3] : 0; - const uint64_t nb0 = dst ? dst->nb[0] : 0; - const uint64_t nb1 = dst ? dst->nb[1] : 0; - const uint64_t nb2 = dst ? dst->nb[2] : 0; - const uint64_t nb3 = dst ? dst->nb[3] : 0; + const uint64_t nb0 = dst ? dst->nb[0] : 0; + const uint64_t nb1 = dst ? dst->nb[1] : 0; + const uint64_t nb2 = dst ? dst->nb[2] : 0; + const uint64_t nb3 = dst ? dst->nb[3] : 0; - const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; - const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; - const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; - id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; - id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; - id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; + id id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil; + id id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil; + id id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil; - //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); - //if (src0) { - // GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, - // ggml_is_contiguous(src0), src0->name); - //} - //if (src1) { - // GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, - // ggml_is_contiguous(src1), src1->name); - //} - //if (dst) { - // GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, - // dst->name); - //} + //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); + //if (src0) { + // GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, + // ggml_is_contiguous(src0), src0->name); + //} + //if (src1) { + // GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, + // ggml_is_contiguous(src1), src1->name); + //} + //if (dst) { + // GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, + // dst->name); + //} - switch (dst->op) { - case GGML_OP_CONCAT: - { - const int64_t nb = ne00; + switch (dst->op) { + case GGML_OP_CONCAT: + { + const int64_t nb = ne00; - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; - [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; - [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; - [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; - [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; - [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; - [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; - [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; - [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; - [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; - [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; - const int nth = MIN(1024, ne0); + const int nth = MIN(1024, ne0); - [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_ADD: - case GGML_OP_MUL: - case GGML_OP_DIV: - { - const size_t offs = 0; + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ADD: + case GGML_OP_MUL: + case GGML_OP_DIV: + { + const size_t offs = 0; - bool bcast_row = false; + bool bcast_row = false; - int64_t nb = ne00; + int64_t nb = ne00; - id pipeline = nil; + id pipeline = nil; - if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { - GGML_ASSERT(ggml_is_contiguous(src0)); - - // src1 is a row - GGML_ASSERT(ne11 == 1); - - nb = ne00 / 4; - switch (dst->op) { - case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; - case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; - case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; - default: GGML_ASSERT(false); - } - - bcast_row = true; - } else { - switch (dst->op) { - case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; - case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; - case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; - default: GGML_ASSERT(false); - } - } - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; - [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; - [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; - [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; - [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; - [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; - [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; - [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; - [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; - [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; - [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; - [encoder setBytes:&nb length:sizeof(nb) atIndex:28]; - - if (bcast_row) { - const int64_t n = ggml_nelements(dst)/4; - - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } else { - const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); - - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } - } break; - case GGML_OP_ACC: - { - GGML_ASSERT(src0t == GGML_TYPE_F32); - GGML_ASSERT(src1t == GGML_TYPE_F32); - GGML_ASSERT(dstt == GGML_TYPE_F32); - - GGML_ASSERT(ggml_is_contiguous(src0)); - GGML_ASSERT(ggml_is_contiguous(src1)); - - const size_t pnb1 = ((int32_t *) dst->op_params)[0]; - const size_t pnb2 = ((int32_t *) dst->op_params)[1]; - const size_t pnb3 = ((int32_t *) dst->op_params)[2]; - const size_t offs = ((int32_t *) dst->op_params)[3]; - - const bool inplace = (bool) ((int32_t *) dst->op_params)[4]; - - if (!inplace) { - // run a separete kernel to cpy src->dst - // not sure how to avoid this - // TODO: make a simpler cpy_bytes kernel - - const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - - const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); - - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } - - const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; - [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; - [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8]; - [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9]; - [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; - [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; - [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; - [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; - [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; - [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; - [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24]; - [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25]; - [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26]; - [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; - - const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); - - [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_SCALE: - { + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { GGML_ASSERT(ggml_is_contiguous(src0)); - const float scale = *(const float *) dst->op_params; + // src1 is a row + GGML_ASSERT(ne11 == 1); - int64_t n = ggml_nelements(dst); - - id pipeline = nil; - - if (n % 4 == 0) { - n /= 4; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline; - } else { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline; + nb = ne00 / 4; + switch (dst->op) { + case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; + case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; + case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; + default: GGML_ASSERT(false); } - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; + bcast_row = true; + } else { + switch (dst->op) { + case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; + case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; + case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; + default: GGML_ASSERT(false); + } + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; + [encoder setBytes:&nb length:sizeof(nb) atIndex:28]; + + if (bcast_row) { + const int64_t n = ggml_nelements(dst)/4; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_UNARY: - switch (ggml_get_unary_op(gf->nodes[i])) { - case GGML_UNARY_OP_TANH: - { - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - - const int64_t n = ggml_nelements(dst); - - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_UNARY_OP_RELU: - { - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - - const int64_t n = ggml_nelements(dst); - - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_UNARY_OP_GELU: - { - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - - const int64_t n = ggml_nelements(dst); - GGML_ASSERT(n % 4 == 0); - - [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_UNARY_OP_GELU_QUICK: - { - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - - const int64_t n = ggml_nelements(dst); - GGML_ASSERT(n % 4 == 0); - - [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_UNARY_OP_SILU: - { - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - - const int64_t n = ggml_nelements(dst); - GGML_ASSERT(n % 4 == 0); - - [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - default: - { - GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); - GGML_ASSERT(false); - } - } break; - case GGML_OP_SQR: - { - GGML_ASSERT(ggml_is_contiguous(src0)); - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - - const int64_t n = ggml_nelements(dst); - - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_SUM_ROWS: - { - GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; - [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; - [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19]; - [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20]; - [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21]; - [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23]; - [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24]; - [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_SOFT_MAX: - { - int nth = 32; // SIMD width - - id pipeline = nil; - - if (ne00%4 == 0) { - while (nth < ne00/4 && nth < 256) { - nth *= 2; - } - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline; - } else { - while (nth < ne00 && nth < 1024) { - nth *= 2; - } - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; - } - - const float scale = ((float *) dst->op_params)[0]; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - if (id_src1) { - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - } else { - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; - } - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; - [encoder setBytes:&scale length:sizeof(scale) atIndex:6]; - [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_DIAG_MASK_INF: - { - const int n_past = ((int32_t *)(dst->op_params))[0]; - - id pipeline = nil; - - if (ne00%8 == 0) { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline; - } else { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline; - } - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; - [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; - - if (ne00%8 == 0) { - [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } - else { - [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } - } break; - case GGML_OP_MUL_MAT: - { - GGML_ASSERT(ne00 == ne10); - - // TODO: assert that dim2 and dim3 are contiguous - GGML_ASSERT(ne12 % ne02 == 0); - GGML_ASSERT(ne13 % ne03 == 0); - - const uint r2 = ne12/ne02; - const uint r3 = ne13/ne03; - - // find the break-even point where the matrix-matrix kernel becomes more efficient compared - // to the matrix-vector kernel - int ne11_mm_min = 1; - -#if 0 - // the numbers below are measured on M2 Ultra for 7B and 13B models - // these numbers do not translate to other devices or model sizes - // TODO: need to find a better approach - if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) { - switch (src0t) { - case GGML_TYPE_F16: ne11_mm_min = 2; break; - case GGML_TYPE_Q8_0: ne11_mm_min = 7; break; - case GGML_TYPE_Q2_K: ne11_mm_min = 15; break; - case GGML_TYPE_Q3_K: ne11_mm_min = 7; break; - case GGML_TYPE_Q4_0: - case GGML_TYPE_Q4_1: ne11_mm_min = 15; break; - case GGML_TYPE_Q4_K: ne11_mm_min = 11; break; - case GGML_TYPE_Q5_0: // not tested yet - case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet - case GGML_TYPE_Q5_K: ne11_mm_min = 7; break; - case GGML_TYPE_Q6_K: ne11_mm_min = 7; break; - default: ne11_mm_min = 1; break; - } - } -#endif - - // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs - // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel - if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && - !ggml_is_transposed(src0) && - !ggml_is_transposed(src1) && - src1t == GGML_TYPE_F32 && - ne00 % 32 == 0 && ne00 >= 64 && - (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) { - //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); - - id pipeline = nil; - - switch (src0->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; - case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; - case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; - case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; - case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; - case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; - case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; - case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; - case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; - case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break; - case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break; - case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; - case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; - default: GGML_ASSERT(false && "MUL MAT-MAT not implemented"); - } - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; - [encoder setBytes:&r2 length:sizeof(r2) atIndex:13]; - [encoder setBytes:&r3 length:sizeof(r3) atIndex:14]; - [encoder setThreadgroupMemoryLength:8192 atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; - } else { - int nth0 = 32; - int nth1 = 1; - int nrows = 1; - //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); - - id pipeline = nil; - - // use custom matrix x vector kernel - switch (src0t) { - case GGML_TYPE_F32: - { - GGML_ASSERT(src1t == GGML_TYPE_F32); - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline; - nrows = 4; - } break; - case GGML_TYPE_F16: - { - nth0 = 32; - nth1 = 1; - if (src1t == GGML_TYPE_F32) { - if (ne11 * ne12 < 4) { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline; - } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline; - nrows = ne11; - } else { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline; - nrows = 4; - } - } else { - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline; - nrows = 4; - } - } break; - case GGML_TYPE_Q4_0: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline; - } break; - case GGML_TYPE_Q4_1: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline; - } break; - case GGML_TYPE_Q5_0: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline; - } break; - case GGML_TYPE_Q5_1: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline; - } break; - case GGML_TYPE_Q8_0: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline; - } break; - case GGML_TYPE_Q2_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline; - } break; - case GGML_TYPE_Q3_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline; - } break; - case GGML_TYPE_Q4_K: - { - nth0 = 4; //1; - nth1 = 8; //32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline; - } break; - case GGML_TYPE_Q5_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline; - } break; - case GGML_TYPE_Q6_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline; - } break; - case GGML_TYPE_IQ2_XXS: - { - nth0 = 4; - nth1 = 16; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline; - } break; - case GGML_TYPE_IQ2_XS: - { - nth0 = 4; - nth1 = 16; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline; - } break; - default: - { - GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); - GGML_ASSERT(false && "not implemented"); - } - }; - - if (ggml_is_quantized(src0t)) { - GGML_ASSERT(ne00 >= nth0*nth1); - } - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; - [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; - [encoder setBytes:&r2 length:sizeof(r2) atIndex:17]; - [encoder setBytes:&r3 length:sizeof(r3) atIndex:18]; - - if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || - src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || - src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { - const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; - [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src0t == GGML_TYPE_Q4_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src0t == GGML_TYPE_Q3_K) { -#ifdef GGML_QKK_64 - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#else - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#endif - } - else if (src0t == GGML_TYPE_Q5_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src0t == GGML_TYPE_Q6_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } else { - const int64_t ny = (ne11 + nrows - 1)/nrows; - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - } - } break; - case GGML_OP_MUL_MAT_ID: - { - //GGML_ASSERT(ne00 == ne10); - //GGML_ASSERT(ne03 == ne13); - - GGML_ASSERT(src0t == GGML_TYPE_I32); - - const int n_as = ((int32_t *) dst->op_params)[1]; - - // TODO: make this more general - GGML_ASSERT(n_as <= 8); - - // max size of the src1ids array in the kernel stack - GGML_ASSERT(ne11 <= 512); - - struct ggml_tensor * src2 = gf->nodes[i]->src[2]; - - const int64_t ne20 = src2 ? src2->ne[0] : 0; - const int64_t ne21 = src2 ? src2->ne[1] : 0; - const int64_t ne22 = src2 ? src2->ne[2] : 0; - const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23); - - const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); - const uint64_t nb21 = src2 ? src2->nb[1] : 0; - const uint64_t nb22 = src2 ? src2->nb[2] : 0; - const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23); - - const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t); - - GGML_ASSERT(!ggml_is_transposed(src2)); - GGML_ASSERT(!ggml_is_transposed(src1)); - - GGML_ASSERT(src1t == GGML_TYPE_F32); - - const uint r2 = ne12/ne22; - const uint r3 = ne13/ne23; - - // find the break-even point where the matrix-matrix kernel becomes more efficient compared - // to the matrix-vector kernel - int ne11_mm_min = n_as; - - const int idx = ((int32_t *) dst->op_params)[0]; - - // batch size - GGML_ASSERT(ne01 == ne11); - - // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs - // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel - // !!! - // TODO: for now, always use mat-vec kernels until we figure out how to improve the - // indirect matrix multiplication - // !!! - if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && - ne20 % 32 == 0 && ne20 >= 64 && - ne11 > ne11_mm_min) { - - id pipeline = nil; - - switch (src2->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; - case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; - case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break; - case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break; - case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break; - case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break; - case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break; - case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break; - case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break; - case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break; - case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break; - case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break; - case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break; - default: GGML_ASSERT(false && "MUL_MAT_ID not implemented"); - } - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3]; - [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; - [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5]; - [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; - [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; - [encoder setBytes:&r2 length:sizeof(r2) atIndex:16]; - [encoder setBytes:&r3 length:sizeof(r3) atIndex:17]; - [encoder setBytes:&idx length:sizeof(idx) atIndex:18]; - // TODO: how to make this an array? read Metal docs - for (int j = 0; j < 8; ++j) { - // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8 - struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)]; - - size_t offs_src_cur = 0; - id id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur); - - [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j]; - } - - [encoder setThreadgroupMemoryLength:8192 atIndex:0]; - - [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; - } else { - int nth0 = 32; - int nth1 = 1; - int nrows = 1; - //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); - - id pipeline = nil; - - // use custom matrix x vector kernel - switch (src2t) { - case GGML_TYPE_F32: - { - GGML_ASSERT(src1t == GGML_TYPE_F32); - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline; - } break; - case GGML_TYPE_F16: - { - GGML_ASSERT(src1t == GGML_TYPE_F32); - nth0 = 32; - nth1 = 1; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline; - } break; - case GGML_TYPE_Q4_0: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline; - } break; - case GGML_TYPE_Q4_1: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline; - } break; - case GGML_TYPE_Q5_0: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline; - } break; - case GGML_TYPE_Q5_1: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline; - } break; - case GGML_TYPE_Q8_0: - { - nth0 = 8; - nth1 = 8; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline; - } break; - case GGML_TYPE_Q2_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline; - } break; - case GGML_TYPE_Q3_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline; - } break; - case GGML_TYPE_Q4_K: - { - nth0 = 4; //1; - nth1 = 8; //32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline; - } break; - case GGML_TYPE_Q5_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline; - } break; - case GGML_TYPE_Q6_K: - { - nth0 = 2; - nth1 = 32; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline; - } break; - case GGML_TYPE_IQ2_XXS: - { - nth0 = 4; - nth1 = 16; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline; - } break; - case GGML_TYPE_IQ2_XS: - { - nth0 = 4; - nth1 = 16; - pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline; - } break; - default: - { - GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t); - GGML_ASSERT(false && "not implemented"); - } - }; - - if (ggml_is_quantized(src2t)) { - GGML_ASSERT(ne20 >= nth0*nth1); - } - - const int64_t _ne1 = 1; // kernels needs a reference in constant memory - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3]; - [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; - [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; - [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6]; - [encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7]; - [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8]; - [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9]; - [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; - [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11]; - [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; - [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; - [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; - [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; - [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17]; - [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19]; - [encoder setBytes:&r2 length:sizeof(r2) atIndex:20]; - [encoder setBytes:&r3 length:sizeof(r3) atIndex:21]; - [encoder setBytes:&idx length:sizeof(idx) atIndex:22]; - // TODO: how to make this an array? read Metal docs - for (int j = 0; j < 8; ++j) { - // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8 - struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)]; - - size_t offs_src_cur = 0; - id id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur); - - [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j]; - } - - if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || - src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || - src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) { - const int mem_size = src2t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; - [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src2t == GGML_TYPE_Q4_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src2t == GGML_TYPE_Q3_K) { -#ifdef GGML_QKK_64 - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#else - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; -#endif - } - else if (src2t == GGML_TYPE_Q5_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - else if (src2t == GGML_TYPE_Q6_K) { - [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } else { - const int64_t ny = (_ne1 + nrows - 1)/nrows; - [encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; - } - } - } break; - case GGML_OP_GET_ROWS: - { - id pipeline = nil; - - switch (src0->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break; - case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break; - case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break; - case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break; - case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break; - case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break; - case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break; - case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break; - case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break; - case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break; - case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break; - case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break; - case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break; - case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; - default: GGML_ASSERT(false && "not implemented"); - } - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5]; - [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6]; - [encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7]; - [encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)]; - } break; - case GGML_OP_RMS_NORM: - { - GGML_ASSERT(ne00 % 4 == 0); - - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - - int nth = 32; // SIMD width - - while (nth < ne00/4 && nth < 1024) { - nth *= 2; - } - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; - [encoder setBytes:&eps length:sizeof( float) atIndex:4]; - [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; - - const int64_t nrows = ggml_nrows(src0); - - [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_GROUP_NORM: - { - GGML_ASSERT(ne00 % 4 == 0); - - //float eps; - //memcpy(&eps, dst->op_params, sizeof(float)); - - const float eps = 1e-6f; // TODO: temporarily hardcoded - - const int32_t n_groups = ((int32_t *) dst->op_params)[0]; - - int nth = 32; // SIMD width - - //while (nth < ne00/4 && nth < 1024) { - // nth *= 2; - //} - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8]; - [encoder setBytes:&eps length:sizeof( float) atIndex:9]; - [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; - - [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_NORM: - { - float eps; - memcpy(&eps, dst->op_params, sizeof(float)); - - const int nth = MIN(256, ne00); - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; - [encoder setBytes:&eps length:sizeof( float) atIndex:4]; - [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0]; - - const int64_t nrows = ggml_nrows(src0); - - [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_ALIBI: - { - GGML_ASSERT((src0t == GGML_TYPE_F32)); - - const int nth = MIN(1024, ne00); - - //const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_head = ((int32_t *) dst->op_params)[1]; - float max_bias; - memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); - - const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); - const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); - const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; - [encoder setBytes:&m1 length:sizeof( float) atIndex:19]; - [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_ROPE: - { - GGML_ASSERT(ne10 == ne02); - - const int nth = MIN(1024, ne00); - - const int n_past = ((int32_t *) dst->op_params)[0]; - const int n_dims = ((int32_t *) dst->op_params)[1]; - const int mode = ((int32_t *) dst->op_params)[2]; - // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal - const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; - - float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; - memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); - memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); - memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); - memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); - memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); - memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); - - id pipeline = nil; - - switch (src0->type) { - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break; - default: GGML_ASSERT(false); - }; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; - [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4]; - [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5]; - [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6]; - [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7]; - [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; - [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; - [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; - [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11]; - [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12]; - [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13]; - [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14]; - [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15]; - [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16]; - [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17]; - [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18]; - [encoder setBytes:&n_past length:sizeof( int) atIndex:19]; - [encoder setBytes:&n_dims length:sizeof( int) atIndex:20]; - [encoder setBytes:&mode length:sizeof( int) atIndex:21]; - [encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22]; - [encoder setBytes:&freq_base length:sizeof( float) atIndex:23]; - [encoder setBytes:&freq_scale length:sizeof( float) atIndex:24]; - [encoder setBytes:&ext_factor length:sizeof( float) atIndex:25]; - [encoder setBytes:&attn_factor length:sizeof( float) atIndex:26]; - [encoder setBytes:&beta_fast length:sizeof( float) atIndex:27]; - [encoder setBytes:&beta_slow length:sizeof( float) atIndex:28]; - - [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_IM2COL: - { - GGML_ASSERT(src0->type == GGML_TYPE_F16); - GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_F16); - - const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; - const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; - const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; - const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; - const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; - const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; - const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; - - const int32_t N = src1->ne[is_2D ? 3 : 2]; - const int32_t IC = src1->ne[is_2D ? 2 : 1]; - const int32_t IH = is_2D ? src1->ne[1] : 1; - const int32_t IW = src1->ne[0]; - - const int32_t KH = is_2D ? src0->ne[1] : 1; - const int32_t KW = src0->ne[0]; - - const int32_t OH = is_2D ? dst->ne[2] : 1; - const int32_t OW = dst->ne[1]; - - const int32_t CHW = IC * KH * KW; - - const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; - const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; - - id pipeline = nil; - - switch (src0->type) { - case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break; - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break; - default: GGML_ASSERT(false); - }; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src1 offset:offs_src1 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2]; - [encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3]; - [encoder setBytes:&IW length:sizeof( int32_t) atIndex:4]; - [encoder setBytes:&IH length:sizeof( int32_t) atIndex:5]; - [encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6]; - [encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7]; - [encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8]; - [encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9]; - [encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10]; - [encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11]; - [encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12]; - - [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)]; - } break; - case GGML_OP_UPSCALE: - { - GGML_ASSERT(src0->type == GGML_TYPE_F32); - - const int sf = dst->op_params[0]; - - const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; - [encoder setBytes:&sf length:sizeof(sf) atIndex:18]; - + } else { const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); - [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_PAD: - { - GGML_ASSERT(src0->type == GGML_TYPE_F32); + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } + } break; + case GGML_OP_ACC: + { + GGML_ASSERT(src0t == GGML_TYPE_F32); + GGML_ASSERT(src1t == GGML_TYPE_F32); + GGML_ASSERT(dstt == GGML_TYPE_F32); - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline; + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; - [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; - [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; - [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; - [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; - [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; - [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; - [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; - [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; - [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; - [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; - [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; - [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; - [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; - [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; - [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; + const size_t pnb1 = ((int32_t *) dst->op_params)[0]; + const size_t pnb2 = ((int32_t *) dst->op_params)[1]; + const size_t pnb3 = ((int32_t *) dst->op_params)[2]; + const size_t offs = ((int32_t *) dst->op_params)[3]; - const int nth = MIN(1024, ne0); + const bool inplace = (bool) ((int32_t *) dst->op_params)[4]; - [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - case GGML_OP_ARGSORT: - { - GGML_ASSERT(src0->type == GGML_TYPE_F32); - GGML_ASSERT( dst->type == GGML_TYPE_I32); + if (!inplace) { + // run a separete kernel to cpy src->dst + // not sure how to avoid this + // TODO: make a simpler cpy_bytes kernel - const int nrows = ggml_nrows(src0); - - enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; - - id pipeline = nil; - - switch (order) { - case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; - case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; - default: GGML_ASSERT(false); - }; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; - - [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)]; - } break; - case GGML_OP_LEAKY_RELU: - { - GGML_ASSERT(src0->type == GGML_TYPE_F32); - - float slope; - memcpy(&slope, dst->op_params, sizeof(float)); - - id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline; - - [encoder setComputePipelineState:pipeline]; - [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; - [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; - [encoder setBytes:&slope length:sizeof(slope) atIndex:2]; - - const int64_t n = ggml_nelements(dst); - - [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; - } break; - case GGML_OP_DUP: - case GGML_OP_CPY: - case GGML_OP_CONT: - { - GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0); - - int nth = MIN(1024, ne00/ggml_blck_size(src0->type)); - - id pipeline = nil; - - switch (src0t) { - case GGML_TYPE_F32: - { - GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0); - - switch (dstt) { - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break; - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break; - case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break; - case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break; - case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break; - //case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break; - //case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break; - default: GGML_ASSERT(false && "not implemented"); - }; - } break; - case GGML_TYPE_F16: - { - switch (dstt) { - case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break; - case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break; - default: GGML_ASSERT(false && "not implemented"); - }; - } break; - default: GGML_ASSERT(false && "not implemented"); - } + const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; [encoder setComputePipelineState:pipeline]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; @@ -2227,31 +1001,1253 @@ static bool ggml_metal_graph_compute( [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; - } break; - default: - { - GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); - GGML_ASSERT(false); } - } + + const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8]; + [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9]; + [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24]; + [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25]; + [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26]; + [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; + + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); + + [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_SCALE: + { + GGML_ASSERT(ggml_is_contiguous(src0)); + + const float scale = *(const float *) dst->op_params; + + int64_t n = ggml_nelements(dst); + + id pipeline = nil; + + if (n % 4 == 0) { + n /= 4; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(gf->nodes[i])) { + case GGML_UNARY_OP_TANH: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_RELU: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_GELU: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); + + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_GELU_QUICK: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); + + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_SILU: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + GGML_ASSERT(n % 4 == 0); + + [encoder dispatchThreadgroups:MTLSizeMake(n/4, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + default: + { + GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } break; + case GGML_OP_SQR: + { + GGML_ASSERT(ggml_is_contiguous(src0)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SUM_ROWS: + { + GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SOFT_MAX: + { + int nth = 32; // SIMD width + + id pipeline = nil; + + if (ne00%4 == 0) { + while (nth < ne00/4 && nth < 256) { + nth *= 2; + } + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline; + } else { + while (nth < ne00 && nth < 1024) { + nth *= 2; + } + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; + } + + const float scale = ((float *) dst->op_params)[0]; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + if (id_src1) { + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + } else { + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; + } + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:6]; + [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_DIAG_MASK_INF: + { + const int n_past = ((int32_t *)(dst->op_params))[0]; + + id pipeline = nil; + + if (ne00%8 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; + + if (ne00%8 == 0) { + [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } + else { + [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } + } break; + case GGML_OP_MUL_MAT: + { + GGML_ASSERT(ne00 == ne10); + + // TODO: assert that dim2 and dim3 are contiguous + GGML_ASSERT(ne12 % ne02 == 0); + GGML_ASSERT(ne13 % ne03 == 0); + + const uint r2 = ne12/ne02; + const uint r3 = ne13/ne03; + + // find the break-even point where the matrix-matrix kernel becomes more efficient compared + // to the matrix-vector kernel + int ne11_mm_min = 1; + +#if 0 + // the numbers below are measured on M2 Ultra for 7B and 13B models + // these numbers do not translate to other devices or model sizes + // TODO: need to find a better approach + if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) { + switch (src0t) { + case GGML_TYPE_F16: ne11_mm_min = 2; break; + case GGML_TYPE_Q8_0: ne11_mm_min = 7; break; + case GGML_TYPE_Q2_K: ne11_mm_min = 15; break; + case GGML_TYPE_Q3_K: ne11_mm_min = 7; break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: ne11_mm_min = 15; break; + case GGML_TYPE_Q4_K: ne11_mm_min = 11; break; + case GGML_TYPE_Q5_0: // not tested yet + case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet + case GGML_TYPE_Q5_K: ne11_mm_min = 7; break; + case GGML_TYPE_Q6_K: ne11_mm_min = 7; break; + default: ne11_mm_min = 1; break; + } + } +#endif + + // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs + // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel + if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && + !ggml_is_transposed(src0) && + !ggml_is_transposed(src1) && + src1t == GGML_TYPE_F32 && + ne00 % 32 == 0 && ne00 >= 64 && + (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) { + //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); + + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; + default: GGML_ASSERT(false && "MUL MAT-MAT not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:13]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:14]; + [encoder setThreadgroupMemoryLength:8192 atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; + } else { + int nth0 = 32; + int nth1 = 1; + int nrows = 1; + //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); + + id pipeline = nil; + + // use custom matrix x vector kernel + switch (src0t) { + case GGML_TYPE_F32: + { + GGML_ASSERT(src1t == GGML_TYPE_F32); + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline; + nrows = 4; + } break; + case GGML_TYPE_F16: + { + nth0 = 32; + nth1 = 1; + if (src1t == GGML_TYPE_F32) { + if (ne11 * ne12 < 4) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline; + } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline; + nrows = ne11; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline; + nrows = 4; + } + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline; + nrows = 4; + } + } break; + case GGML_TYPE_Q4_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline; + } break; + case GGML_TYPE_Q4_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline; + } break; + case GGML_TYPE_Q5_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline; + } break; + case GGML_TYPE_Q5_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline; + } break; + case GGML_TYPE_Q8_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline; + } break; + case GGML_TYPE_Q2_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline; + } break; + case GGML_TYPE_Q3_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline; + } break; + case GGML_TYPE_Q4_K: + { + nth0 = 4; //1; + nth1 = 8; //32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline; + } break; + case GGML_TYPE_Q5_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline; + } break; + case GGML_TYPE_Q6_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XXS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline; + } break; + default: + { + GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); + GGML_ASSERT(false && "not implemented"); + } + }; + + if (ggml_is_quantized(src0t)) { + GGML_ASSERT(ne00 >= nth0*nth1); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:17]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:18]; + + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || + src0t == GGML_TYPE_Q5_0 || src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || + src0t == GGML_TYPE_Q2_K) { // || src0t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { + const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q3_K) { +#ifdef GGML_QKK_64 + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#else + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#endif + } + else if (src0t == GGML_TYPE_Q5_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q6_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else { + const int64_t ny = (ne11 + nrows - 1)/nrows; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + } + } break; + case GGML_OP_MUL_MAT_ID: + { + //GGML_ASSERT(ne00 == ne10); + //GGML_ASSERT(ne03 == ne13); + + GGML_ASSERT(src0t == GGML_TYPE_I32); + + const int n_as = ((int32_t *) dst->op_params)[1]; + + // TODO: make this more general + GGML_ASSERT(n_as <= 8); + + // max size of the src1ids array in the kernel stack + GGML_ASSERT(ne11 <= 512); + + struct ggml_tensor * src2 = gf->nodes[i]->src[2]; + + const int64_t ne20 = src2 ? src2->ne[0] : 0; + const int64_t ne21 = src2 ? src2->ne[1] : 0; + const int64_t ne22 = src2 ? src2->ne[2] : 0; + const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23); + + const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20); + const uint64_t nb21 = src2 ? src2->nb[1] : 0; + const uint64_t nb22 = src2 ? src2->nb[2] : 0; + const uint64_t nb23 = src2 ? src2->nb[3] : 0; GGML_UNUSED(nb23); + + const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t); + + GGML_ASSERT(!ggml_is_transposed(src2)); + GGML_ASSERT(!ggml_is_transposed(src1)); + + GGML_ASSERT(src1t == GGML_TYPE_F32); + + const uint r2 = ne12/ne22; + const uint r3 = ne13/ne23; + + // find the break-even point where the matrix-matrix kernel becomes more efficient compared + // to the matrix-vector kernel + int ne11_mm_min = n_as; + + const int idx = ((int32_t *) dst->op_params)[0]; + + // batch size + GGML_ASSERT(ne01 == ne11); + + // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs + // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel + // !!! + // TODO: for now, always use mat-vec kernels until we figure out how to improve the + // indirect matrix multiplication + // !!! + if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && + ne20 % 32 == 0 && ne20 >= 64 && + ne11 > ne11_mm_min) { + + id pipeline = nil; + + switch (src2->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break; + default: GGML_ASSERT(false && "MUL_MAT_ID not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3]; + [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; + [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:5]; + [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; + [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:7]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:8]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:9]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:16]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:17]; + [encoder setBytes:&idx length:sizeof(idx) atIndex:18]; + // TODO: how to make this an array? read Metal docs + for (int j = 0; j < 8; ++j) { + // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8 + struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)]; + + size_t offs_src_cur = 0; + id id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur); + + [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:19 + j]; + } + + [encoder setThreadgroupMemoryLength:8192 atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne21 + 63)/64, n_as*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; + } else { + int nth0 = 32; + int nth1 = 1; + int nrows = 1; + //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); + + id pipeline = nil; + + // use custom matrix x vector kernel + switch (src2t) { + case GGML_TYPE_F32: + { + GGML_ASSERT(src1t == GGML_TYPE_F32); + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(src1t == GGML_TYPE_F32); + nth0 = 32; + nth1 = 1; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline; + } break; + case GGML_TYPE_Q4_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline; + } break; + case GGML_TYPE_Q4_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline; + } break; + case GGML_TYPE_Q5_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline; + } break; + case GGML_TYPE_Q5_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline; + } break; + case GGML_TYPE_Q8_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline; + } break; + case GGML_TYPE_Q2_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline; + } break; + case GGML_TYPE_Q3_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline; + } break; + case GGML_TYPE_Q4_K: + { + nth0 = 4; //1; + nth1 = 8; //32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline; + } break; + case GGML_TYPE_Q5_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline; + } break; + case GGML_TYPE_Q6_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XXS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline; + } break; + default: + { + GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t); + GGML_ASSERT(false && "not implemented"); + } + }; + + if (ggml_is_quantized(src2t)) { + GGML_ASSERT(ne20 >= nth0*nth1); + } + + const int64_t _ne1 = 1; // kernels needs a reference in constant memory + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:3]; + [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; + [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; + [encoder setBytes:&ne22 length:sizeof(ne22) atIndex:6]; + [encoder setBytes:&nb20 length:sizeof(nb20) atIndex:7]; + [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:8]; + [encoder setBytes:&nb22 length:sizeof(nb22) atIndex:9]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; + [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:11]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17]; + [encoder setBytes:&_ne1 length:sizeof(_ne1) atIndex:18]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:20]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:21]; + [encoder setBytes:&idx length:sizeof(idx) atIndex:22]; + // TODO: how to make this an array? read Metal docs + for (int j = 0; j < 8; ++j) { + // NOTE: this is done like this to avoid uninitialized kernel arguments when n_as < 8 + struct ggml_tensor * src_cur = dst->src[2 + (j % n_as)]; + + size_t offs_src_cur = 0; + id id_src_cur = ggml_metal_get_buffer(ctx, src_cur, &offs_src_cur); + + [encoder setBuffer:id_src_cur offset:offs_src_cur atIndex:23 + j]; + } + + if (src2t == GGML_TYPE_Q4_0 || src2t == GGML_TYPE_Q4_1 || + src2t == GGML_TYPE_Q5_0 || src2t == GGML_TYPE_Q5_1 || src2t == GGML_TYPE_Q8_0 || + src2t == GGML_TYPE_Q2_K) { // || src2t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src2t == GGML_TYPE_IQ2_XXS || src2t == GGML_TYPE_IQ2_XS) { + const int mem_size = src2t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src2t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src2t == GGML_TYPE_Q3_K) { +#ifdef GGML_QKK_64 + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#else + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#endif + } + else if (src2t == GGML_TYPE_Q5_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src2t == GGML_TYPE_Q6_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 1)/2, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else { + const int64_t ny = (_ne1 + nrows - 1)/nrows; + [encoder dispatchThreadgroups:MTLSizeMake(ne21, ny, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + } + } break; + case GGML_OP_GET_ROWS: + { + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break; + case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; + default: GGML_ASSERT(false && "not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5]; + [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7]; + [encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)]; + } break; + case GGML_OP_RMS_NORM: + { + GGML_ASSERT(ne00 % 4 == 0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + int nth = 32; // SIMD width + + while (nth < ne00/4 && nth < 1024) { + nth *= 2; + } + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; + [encoder setBytes:&eps length:sizeof( float) atIndex:4]; + [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; + + const int64_t nrows = ggml_nrows(src0); + + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_GROUP_NORM: + { + GGML_ASSERT(ne00 % 4 == 0); + + //float eps; + //memcpy(&eps, dst->op_params, sizeof(float)); + + const float eps = 1e-6f; // TODO: temporarily hardcoded + + const int32_t n_groups = ((int32_t *) dst->op_params)[0]; + + int nth = 32; // SIMD width + + //while (nth < ne00/4 && nth < 1024) { + // nth *= 2; + //} + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8]; + [encoder setBytes:&eps length:sizeof( float) atIndex:9]; + [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_NORM: + { + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + const int nth = MIN(256, ne00); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; + [encoder setBytes:&eps length:sizeof( float) atIndex:4]; + [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0]; + + const int64_t nrows = ggml_nrows(src0); + + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ALIBI: + { + GGML_ASSERT((src0t == GGML_TYPE_F32)); + + const int nth = MIN(1024, ne00); + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_head = ((int32_t *) dst->op_params)[1]; + float max_bias; + memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); + + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; + [encoder setBytes:&m1 length:sizeof( float) atIndex:19]; + [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ROPE: + { + GGML_ASSERT(ne10 == ne02); + + const int nth = MIN(1024, ne00); + + const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; + + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break; + default: GGML_ASSERT(false); + }; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&n_past length:sizeof( int) atIndex:19]; + [encoder setBytes:&n_dims length:sizeof( int) atIndex:20]; + [encoder setBytes:&mode length:sizeof( int) atIndex:21]; + [encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22]; + [encoder setBytes:&freq_base length:sizeof( float) atIndex:23]; + [encoder setBytes:&freq_scale length:sizeof( float) atIndex:24]; + [encoder setBytes:&ext_factor length:sizeof( float) atIndex:25]; + [encoder setBytes:&attn_factor length:sizeof( float) atIndex:26]; + [encoder setBytes:&beta_fast length:sizeof( float) atIndex:27]; + [encoder setBytes:&beta_slow length:sizeof( float) atIndex:28]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_IM2COL: + { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16); + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; + const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; + + const int32_t N = src1->ne[is_2D ? 3 : 2]; + const int32_t IC = src1->ne[is_2D ? 2 : 1]; + const int32_t IH = is_2D ? src1->ne[1] : 1; + const int32_t IW = src1->ne[0]; + + const int32_t KH = is_2D ? src0->ne[1] : 1; + const int32_t KW = src0->ne[0]; + + const int32_t OH = is_2D ? dst->ne[2] : 1; + const int32_t OW = dst->ne[1]; + + const int32_t CHW = IC * KH * KW; + + const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; + const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; + + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break; + default: GGML_ASSERT(false); + }; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2]; + [encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3]; + [encoder setBytes:&IW length:sizeof( int32_t) atIndex:4]; + [encoder setBytes:&IH length:sizeof( int32_t) atIndex:5]; + [encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6]; + [encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7]; + [encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8]; + [encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9]; + [encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10]; + [encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11]; + [encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12]; + + [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)]; + } break; + case GGML_OP_UPSCALE: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + const int sf = dst->op_params[0]; + + const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; + [encoder setBytes:&sf length:sizeof(sf) atIndex:18]; + + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_PAD: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; + + const int nth = MIN(1024, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ARGSORT: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_I32); + + const int nrows = ggml_nrows(src0); + + enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; + + id pipeline = nil; + + switch (order) { + case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; + case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; + default: GGML_ASSERT(false); + }; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + + [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00, 1, 1)]; + } break; + case GGML_OP_LEAKY_RELU: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + float slope; + memcpy(&slope, dst->op_params, sizeof(float)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&slope length:sizeof(slope) atIndex:2]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_DUP: + case GGML_OP_CPY: + case GGML_OP_CONT: + { + GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0); + + int nth = MIN(1024, ne00/ggml_blck_size(src0->type)); + + id pipeline = nil; + + switch (src0t) { + case GGML_TYPE_F32: + { + GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0); + + switch (dstt) { + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break; + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break; + //case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break; + //case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break; + default: GGML_ASSERT(false && "not implemented"); + }; + } break; + case GGML_TYPE_F16: + { + switch (dstt) { + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break; + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break; + default: GGML_ASSERT(false && "not implemented"); + }; + } break; + default: GGML_ASSERT(false && "not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + default: + { + GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } #ifndef GGML_METAL_NDEBUG - [encoder popDebugGroup]; + [encoder popDebugGroup]; #endif - } + } - if (encoder != nil) { - [encoder endEncoding]; - encoder = nil; - } + if (encoder != nil) { + [encoder endEncoding]; + encoder = nil; + } - [command_buffer commit]; - }); - } - - // wait for all threads to finish - dispatch_barrier_sync(ctx->d_queue, ^{}); + [command_buffer commit]; + }); // check status of command buffers // needed to detect if the device ran out-of-memory for example (#1881) From 862f5e41ab1fdf12d6f59455aad3f5dd8258f805 Mon Sep 17 00:00:00 2001 From: Neuman Vong Date: Wed, 17 Jan 2024 00:47:34 +1100 Subject: [PATCH 27/71] android : introduce starter project example (#4926) * Introduce starter project for Android Based on examples/llama.swiftui. * Add github workflow * Set NDK version * Only build arm64-v8a in CI * Sync bench code * Rename CI prop to skip-armeabi-v7a * Remove unused tests --- .github/workflows/build.yml | 25 ++ examples/llama.android/.gitignore | 33 ++ examples/llama.android/README.md | 0 examples/llama.android/app/.gitignore | 1 + examples/llama.android/app/build.gradle.kts | 91 ++++ examples/llama.android/app/proguard-rules.pro | 21 + .../app/src/main/AndroidManifest.xml | 30 ++ .../app/src/main/cpp/CMakeLists.txt | 50 +++ .../app/src/main/cpp/llama-android.cpp | 394 ++++++++++++++++++ .../java/com/example/llama/Downloadable.kt | 119 ++++++ .../src/main/java/com/example/llama/Llm.kt | 172 ++++++++ .../java/com/example/llama/MainActivity.kt | 154 +++++++ .../java/com/example/llama/MainViewModel.kt | 104 +++++ .../java/com/example/llama/ui/theme/Color.kt | 11 + .../java/com/example/llama/ui/theme/Theme.kt | 70 ++++ .../java/com/example/llama/ui/theme/Type.kt | 34 ++ .../res/drawable/ic_launcher_background.xml | 170 ++++++++ .../res/drawable/ic_launcher_foreground.xml | 30 ++ .../main/res/mipmap-anydpi/ic_launcher.xml | 6 + .../res/mipmap-anydpi/ic_launcher_round.xml | 6 + .../src/main/res/mipmap-hdpi/ic_launcher.webp | Bin 0 -> 1404 bytes .../res/mipmap-hdpi/ic_launcher_round.webp | Bin 0 -> 2898 bytes .../src/main/res/mipmap-mdpi/ic_launcher.webp | Bin 0 -> 982 bytes .../res/mipmap-mdpi/ic_launcher_round.webp | Bin 0 -> 1772 bytes .../main/res/mipmap-xhdpi/ic_launcher.webp | Bin 0 -> 1900 bytes .../res/mipmap-xhdpi/ic_launcher_round.webp | Bin 0 -> 3918 bytes .../main/res/mipmap-xxhdpi/ic_launcher.webp | Bin 0 -> 2884 bytes .../res/mipmap-xxhdpi/ic_launcher_round.webp | Bin 0 -> 5914 bytes .../main/res/mipmap-xxxhdpi/ic_launcher.webp | Bin 0 -> 3844 bytes .../res/mipmap-xxxhdpi/ic_launcher_round.webp | Bin 0 -> 7778 bytes .../app/src/main/res/values/colors.xml | 10 + .../app/src/main/res/values/strings.xml | 3 + .../app/src/main/res/values/themes.xml | 5 + .../app/src/main/res/xml/backup_rules.xml | 13 + .../main/res/xml/data_extraction_rules.xml | 19 + examples/llama.android/build.gradle.kts | 5 + examples/llama.android/gradle.properties | 23 + .../gradle/wrapper/gradle-wrapper.jar | Bin 0 -> 59203 bytes .../gradle/wrapper/gradle-wrapper.properties | 6 + examples/llama.android/gradlew | 185 ++++++++ examples/llama.android/settings.gradle.kts | 17 + 41 files changed, 1807 insertions(+) create mode 100644 examples/llama.android/.gitignore create mode 100644 examples/llama.android/README.md create mode 100644 examples/llama.android/app/.gitignore create mode 100644 examples/llama.android/app/build.gradle.kts create mode 100644 examples/llama.android/app/proguard-rules.pro create mode 100644 examples/llama.android/app/src/main/AndroidManifest.xml create mode 100644 examples/llama.android/app/src/main/cpp/CMakeLists.txt create mode 100644 examples/llama.android/app/src/main/cpp/llama-android.cpp create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/Downloadable.kt create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/Llm.kt create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/MainActivity.kt create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Color.kt create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Theme.kt create mode 100644 examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Type.kt create mode 100644 examples/llama.android/app/src/main/res/drawable/ic_launcher_background.xml create mode 100644 examples/llama.android/app/src/main/res/drawable/ic_launcher_foreground.xml create mode 100644 examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher.xml create mode 100644 examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher_round.xml create mode 100644 examples/llama.android/app/src/main/res/mipmap-hdpi/ic_launcher.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-hdpi/ic_launcher_round.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-mdpi/ic_launcher.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-mdpi/ic_launcher_round.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-xhdpi/ic_launcher.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-xhdpi/ic_launcher_round.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-xxhdpi/ic_launcher.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-xxhdpi/ic_launcher_round.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-xxxhdpi/ic_launcher.webp create mode 100644 examples/llama.android/app/src/main/res/mipmap-xxxhdpi/ic_launcher_round.webp create mode 100644 examples/llama.android/app/src/main/res/values/colors.xml create mode 100644 examples/llama.android/app/src/main/res/values/strings.xml create mode 100644 examples/llama.android/app/src/main/res/values/themes.xml create mode 100644 examples/llama.android/app/src/main/res/xml/backup_rules.xml create mode 100644 examples/llama.android/app/src/main/res/xml/data_extraction_rules.xml create mode 100644 examples/llama.android/build.gradle.kts create mode 100644 examples/llama.android/gradle.properties create mode 100644 examples/llama.android/gradle/wrapper/gradle-wrapper.jar create mode 100644 examples/llama.android/gradle/wrapper/gradle-wrapper.properties create mode 100755 examples/llama.android/gradlew create mode 100644 examples/llama.android/settings.gradle.kts diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 0a28a1111..367df07a7 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -515,6 +515,31 @@ jobs: - name: Build Xcode project run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build + android-build: + runs-on: ubuntu-latest + + steps: + - name: Clone + uses: actions/checkout@v3 + + - name: Set up JDK + uses: actions/setup-java@v3 + with: + java-version: 17 + distribution: zulu + + - name: Setup Android SDK + uses: android-actions/setup-android@v3 + with: + log-accepted-android-sdk-licenses: false + + - name: Build + run: | + cd examples/llama.android + + # Skip armeabi-v7a for now (https://github.com/llvm/llvm-project/issues/65820). + ./gradlew build --no-daemon -Pskip-armeabi-v7a + # freeBSD-latest: # runs-on: macos-12 # steps: diff --git a/examples/llama.android/.gitignore b/examples/llama.android/.gitignore new file mode 100644 index 000000000..347e252ef --- /dev/null +++ b/examples/llama.android/.gitignore @@ -0,0 +1,33 @@ +# Gradle files +.gradle/ +build/ + +# Local configuration file (sdk path, etc) +local.properties + +# Log/OS Files +*.log + +# Android Studio generated files and folders +captures/ +.externalNativeBuild/ +.cxx/ +*.apk +output.json + +# IntelliJ +*.iml +.idea/ +misc.xml +deploymentTargetDropDown.xml +render.experimental.xml + +# Keystore files +*.jks +*.keystore + +# Google Services (e.g. APIs or Firebase) +google-services.json + +# Android Profiling +*.hprof diff --git a/examples/llama.android/README.md b/examples/llama.android/README.md new file mode 100644 index 000000000..e69de29bb diff --git a/examples/llama.android/app/.gitignore b/examples/llama.android/app/.gitignore new file mode 100644 index 000000000..796b96d1c --- /dev/null +++ b/examples/llama.android/app/.gitignore @@ -0,0 +1 @@ +/build diff --git a/examples/llama.android/app/build.gradle.kts b/examples/llama.android/app/build.gradle.kts new file mode 100644 index 000000000..7815a8025 --- /dev/null +++ b/examples/llama.android/app/build.gradle.kts @@ -0,0 +1,91 @@ +plugins { + id("com.android.application") + id("org.jetbrains.kotlin.android") +} + +android { + namespace = "com.example.llama" + compileSdk = 34 + + ndkVersion = "26.1.10909125" + + defaultConfig { + applicationId = "com.example.llama" + minSdk = 33 + targetSdk = 34 + versionCode = 1 + versionName = "1.0" + + testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner" + vectorDrawables { + useSupportLibrary = true + } + ndk { + // Workaround for https://github.com/llvm/llvm-project/issues/65820 + // affecting armeabi-v7a. Skip armeabi-v7a when invoked with + // -Pskip-armeabi-v7a (e.g., ./gradlew build -Pskip-armeabi-v7a). + if (project.hasProperty("skip-armeabi-v7a")) { + abiFilters += listOf("arm64-v8a", "x86_64", "x86") + } + } + externalNativeBuild { + cmake { + cppFlags += listOf() + arguments += listOf() + } + } + } + + buildTypes { + release { + isMinifyEnabled = false + proguardFiles( + getDefaultProguardFile("proguard-android-optimize.txt"), + "proguard-rules.pro" + ) + } + } + compileOptions { + sourceCompatibility = JavaVersion.VERSION_1_8 + targetCompatibility = JavaVersion.VERSION_1_8 + } + kotlinOptions { + jvmTarget = "1.8" + } + buildFeatures { + compose = true + } + composeOptions { + kotlinCompilerExtensionVersion = "1.5.1" + } + packaging { + resources { + excludes += "/META-INF/{AL2.0,LGPL2.1}" + } + } + externalNativeBuild { + cmake { + path = file("src/main/cpp/CMakeLists.txt") + version = "3.22.1" + } + } +} + +dependencies { + + implementation("androidx.core:core-ktx:1.12.0") + implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.6.2") + implementation("androidx.activity:activity-compose:1.8.2") + implementation(platform("androidx.compose:compose-bom:2023.08.00")) + implementation("androidx.compose.ui:ui") + implementation("androidx.compose.ui:ui-graphics") + implementation("androidx.compose.ui:ui-tooling-preview") + implementation("androidx.compose.material3:material3") + testImplementation("junit:junit:4.13.2") + androidTestImplementation("androidx.test.ext:junit:1.1.5") + androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1") + androidTestImplementation(platform("androidx.compose:compose-bom:2023.08.00")) + androidTestImplementation("androidx.compose.ui:ui-test-junit4") + debugImplementation("androidx.compose.ui:ui-tooling") + debugImplementation("androidx.compose.ui:ui-test-manifest") +} diff --git a/examples/llama.android/app/proguard-rules.pro b/examples/llama.android/app/proguard-rules.pro new file mode 100644 index 000000000..f1b424510 --- /dev/null +++ b/examples/llama.android/app/proguard-rules.pro @@ -0,0 +1,21 @@ +# Add project specific ProGuard rules here. +# You can control the set of applied configuration files using the +# proguardFiles setting in build.gradle. +# +# For more details, see +# http://developer.android.com/guide/developing/tools/proguard.html + +# If your project uses WebView with JS, uncomment the following +# and specify the fully qualified class name to the JavaScript interface +# class: +#-keepclassmembers class fqcn.of.javascript.interface.for.webview { +# public *; +#} + +# Uncomment this to preserve the line number information for +# debugging stack traces. +#-keepattributes SourceFile,LineNumberTable + +# If you keep the line number information, uncomment this to +# hide the original source file name. +#-renamesourcefileattribute SourceFile diff --git a/examples/llama.android/app/src/main/AndroidManifest.xml b/examples/llama.android/app/src/main/AndroidManifest.xml new file mode 100644 index 000000000..41a358a29 --- /dev/null +++ b/examples/llama.android/app/src/main/AndroidManifest.xml @@ -0,0 +1,30 @@ + + + + + + + + + + + + + + + + + diff --git a/examples/llama.android/app/src/main/cpp/CMakeLists.txt b/examples/llama.android/app/src/main/cpp/CMakeLists.txt new file mode 100644 index 000000000..85139329a --- /dev/null +++ b/examples/llama.android/app/src/main/cpp/CMakeLists.txt @@ -0,0 +1,50 @@ + +# For more information about using CMake with Android Studio, read the +# documentation: https://d.android.com/studio/projects/add-native-code.html. +# For more examples on how to use CMake, see https://github.com/android/ndk-samples. + +# Sets the minimum CMake version required for this project. +cmake_minimum_required(VERSION 3.22.1) + +# Declares the project name. The project name can be accessed via ${ PROJECT_NAME}, +# Since this is the top level CMakeLists.txt, the project name is also accessible +# with ${CMAKE_PROJECT_NAME} (both CMake variables are in-sync within the top level +# build script scope). +project("llama-android") + +include(FetchContent) +FetchContent_Declare( + llama + GIT_REPOSITORY https://github.com/ggerganov/llama.cpp + GIT_TAG master +) + +# Also provides "common" +FetchContent_MakeAvailable(llama) + +# Creates and names a library, sets it as either STATIC +# or SHARED, and provides the relative paths to its source code. +# You can define multiple libraries, and CMake builds them for you. +# Gradle automatically packages shared libraries with your APK. +# +# In this top level CMakeLists.txt, ${CMAKE_PROJECT_NAME} is used to define +# the target library name; in the sub-module's CMakeLists.txt, ${PROJECT_NAME} +# is preferred for the same purpose. +# +# In order to load a library into your app from Java/Kotlin, you must call +# System.loadLibrary() and pass the name of the library defined here; +# for GameActivity/NativeActivity derived applications, the same library name must be +# used in the AndroidManifest.xml file. +add_library(${CMAKE_PROJECT_NAME} SHARED + # List C/C++ source files with relative paths to this CMakeLists.txt. + llama-android.cpp) + +# Specifies libraries CMake should link to your target library. You +# can link libraries from various origins, such as libraries defined in this +# build script, prebuilt third-party libraries, or Android system libraries. +target_link_libraries(${CMAKE_PROJECT_NAME} + # List libraries link to the target library + llama + common + android + log) diff --git a/examples/llama.android/app/src/main/cpp/llama-android.cpp b/examples/llama.android/app/src/main/cpp/llama-android.cpp new file mode 100644 index 000000000..d5e705dce --- /dev/null +++ b/examples/llama.android/app/src/main/cpp/llama-android.cpp @@ -0,0 +1,394 @@ +#include +#include +#include +#include +#include +#include +#include "llama.h" +#include "common/common.h" + +// Write C++ code here. +// +// Do not forget to dynamically load the C++ library into your application. +// +// For instance, +// +// In MainActivity.java: +// static { +// System.loadLibrary("llama-android"); +// } +// +// Or, in MainActivity.kt: +// companion object { +// init { +// System.loadLibrary("llama-android") +// } +// } + +#define TAG "llama-android.cpp" +#define LOGi(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__) +#define LOGe(...) __android_log_print(ANDROID_LOG_ERROR, TAG, __VA_ARGS__) + +jclass la_int_var; +jmethodID la_int_var_value; +jmethodID la_int_var_inc; + +static void log_callback(ggml_log_level level, const char * fmt, void * data) { + if (level == GGML_LOG_LEVEL_ERROR) __android_log_print(ANDROID_LOG_ERROR, TAG, fmt, data); + else if (level == GGML_LOG_LEVEL_INFO) __android_log_print(ANDROID_LOG_INFO, TAG, fmt, data); + else if (level == GGML_LOG_LEVEL_WARN) __android_log_print(ANDROID_LOG_WARN, TAG, fmt, data); + else __android_log_print(ANDROID_LOG_DEFAULT, TAG, fmt, data); +} + +extern "C" +JNIEXPORT jlong JNICALL +Java_com_example_llama_Llm_load_1model(JNIEnv *env, jobject, jstring filename) { + llama_model_params model_params = llama_model_default_params(); + + auto path_to_model = env->GetStringUTFChars(filename, 0); + LOGi("Loading model from %s", path_to_model); + + auto model = llama_load_model_from_file(path_to_model, model_params); + env->ReleaseStringUTFChars(filename, path_to_model); + + if (!model) { + LOGe("load_model() failed"); + env->ThrowNew(env->FindClass("java/lang/IllegalStateException"), "load_model() failed"); + return 0; + } + + return reinterpret_cast(model); +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_free_1model(JNIEnv *, jobject, jlong model) { + llama_free_model(reinterpret_cast(model)); +} + +extern "C" +JNIEXPORT jlong JNICALL +Java_com_example_llama_Llm_new_1context(JNIEnv *env, jobject, jlong jmodel) { + auto model = reinterpret_cast(jmodel); + + if (!model) { + LOGe("new_context(): model cannot be null"); + env->ThrowNew(env->FindClass("java/lang/IllegalArgumentException"), "Model cannot be null"); + return 0; + } + + int n_threads = std::max(1, std::min(8, (int) sysconf(_SC_NPROCESSORS_ONLN) - 2)); + LOGi("Using %d threads", n_threads); + + llama_context_params ctx_params = llama_context_default_params(); + ctx_params.seed = 1234; + ctx_params.n_ctx = 2048; + ctx_params.n_threads = n_threads; + ctx_params.n_threads_batch = n_threads; + + llama_context * context = llama_new_context_with_model(model, ctx_params); + + if (!context) { + LOGe("llama_new_context_with_model() returned null)"); + env->ThrowNew(env->FindClass("java/lang/IllegalStateException"), + "llama_new_context_with_model() returned null)"); + return 0; + } + + return reinterpret_cast(context); +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_free_1context(JNIEnv *, jobject, jlong context) { + llama_free(reinterpret_cast(context)); +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_backend_1free(JNIEnv *, jobject) { + llama_backend_free(); +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_log_1to_1android(JNIEnv *, jobject) { + llama_log_set(log_callback, NULL); +} + +extern "C" +JNIEXPORT jstring JNICALL +Java_com_example_llama_Llm_bench_1model( + JNIEnv *env, + jobject, + jlong context_pointer, + jlong model_pointer, + jlong batch_pointer, + jint pp, + jint tg, + jint pl, + jint nr + ) { + auto pp_avg = 0.0; + auto tg_avg = 0.0; + auto pp_std = 0.0; + auto tg_std = 0.0; + + const auto context = reinterpret_cast(context_pointer); + const auto model = reinterpret_cast(model_pointer); + const auto batch = reinterpret_cast(batch_pointer); + + const int n_ctx = llama_n_ctx(context); + + LOGi("n_ctx = %d", n_ctx); + + int i, j; + int nri; + for (nri = 0; nri < nr; nri++) { + LOGi("Benchmark prompt processing (pp)"); + + llama_batch_clear(*batch); + + const int n_tokens = pp; + for (i = 0; i < n_tokens; i++) { + llama_batch_add(*batch, 0, i, { 0 }, false); + } + + batch->logits[batch->n_tokens - 1] = true; + llama_kv_cache_clear(context); + + const auto t_pp_start = ggml_time_us(); + if (llama_decode(context, *batch) != 0) { + LOGi("llama_decode() failed during prompt processing"); + } + const auto t_pp_end = ggml_time_us(); + + // bench text generation + + LOGi("Benchmark text generation (tg)"); + + llama_kv_cache_clear(context); + const auto t_tg_start = ggml_time_us(); + for (i = 0; i < tg; i++) { + + llama_batch_clear(*batch); + for (j = 0; j < pl; j++) { + llama_batch_add(*batch, 0, i, { j }, true); + } + + LOGi("llama_decode() text generation: %d", i); + if (llama_decode(context, *batch) != 0) { + LOGi("llama_decode() failed during text generation"); + } + } + + const auto t_tg_end = ggml_time_us(); + + llama_kv_cache_clear(context); + + const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0; + const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0; + + const auto speed_pp = double(pp) / t_pp; + const auto speed_tg = double(pl * tg) / t_tg; + + pp_avg += speed_pp; + tg_avg += speed_tg; + + pp_std += speed_pp * speed_pp; + tg_std += speed_tg * speed_tg; + + LOGi("pp %f t/s, tg %f t/s", speed_pp, speed_tg); + } + + pp_avg /= double(nr); + tg_avg /= double(nr); + + if (nr > 1) { + pp_std = sqrt(pp_std / double(nr - 1) - pp_avg * pp_avg * double(nr) / double(nr - 1)); + tg_std = sqrt(tg_std / double(nr - 1) - tg_avg * tg_avg * double(nr) / double(nr - 1)); + } else { + pp_std = 0; + tg_std = 0; + } + + char model_desc[128]; + llama_model_desc(model, model_desc, sizeof(model_desc)); + + const auto model_size = double(llama_model_size(model)) / 1024.0 / 1024.0 / 1024.0; + const auto model_n_params = double(llama_model_n_params(model)) / 1e9; + + const auto backend = "(Android)"; // TODO: What should this be? + + std::stringstream result; + result << std::setprecision(2); + result << "| model | size | params | backend | test | t/s |\n"; + result << "| --- | --- | --- | --- | --- | --- |\n"; + result << "| " << model_desc << " | " << model_size << "GiB | " << model_n_params << "B | " << backend << " | pp " << pp << " | " << pp_avg << " ± " << pp_std << " |\n"; + result << "| " << model_desc << " | " << model_size << "GiB | " << model_n_params << "B | " << backend << " | tg " << tg << " | " << tg_avg << " ± " << tg_std << " |\n"; + + return env->NewStringUTF(result.str().c_str()); +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_free_1batch(JNIEnv *, jobject, jlong batch_pointer) { + llama_batch_free(*reinterpret_cast(batch_pointer)); +} + +extern "C" +JNIEXPORT jlong JNICALL +Java_com_example_llama_Llm_new_1batch(JNIEnv *, jobject, jint n_tokens, jint embd, jint n_seq_max) { + + // Source: Copy of llama.cpp:llama_batch_init but heap-allocated. + + llama_batch *batch = new llama_batch { + 0, + nullptr, + nullptr, + nullptr, + nullptr, + nullptr, + nullptr, + 0, + 0, + 0, + }; + + if (embd) { + batch->embd = (float *) malloc(sizeof(float) * n_tokens * embd); + } else { + batch->token = (llama_token *) malloc(sizeof(llama_token) * n_tokens); + } + + batch->pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens); + batch->n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens); + batch->seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens); + for (int i = 0; i < n_tokens; ++i) { + batch->seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max); + } + batch->logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens); + + return reinterpret_cast(batch); +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_backend_1init(JNIEnv *, jobject, jboolean numa) { + llama_backend_init(numa); +} + +extern "C" +JNIEXPORT jstring JNICALL +Java_com_example_llama_Llm_system_1info(JNIEnv *env, jobject) { + return env->NewStringUTF(llama_print_system_info()); +} + +extern "C" +JNIEXPORT jint JNICALL +Java_com_example_llama_Llm_completion_1init( + JNIEnv *env, + jobject, + jlong context_pointer, + jlong batch_pointer, + jstring jtext, + jint n_len + ) { + + const auto text = env->GetStringUTFChars(jtext, 0); + const auto context = reinterpret_cast(context_pointer); + const auto batch = reinterpret_cast(batch_pointer); + + const auto tokens_list = llama_tokenize(context, text, 1); + + auto n_ctx = llama_n_ctx(context); + auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size()); + + LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req); + + if (n_kv_req > n_ctx) { + LOGe("error: n_kv_req > n_ctx, the required KV cache size is not big enough"); + } + + for (auto id : tokens_list) { + LOGi("%s", llama_token_to_piece(context, id).c_str()); + } + + llama_batch_clear(*batch); + + // evaluate the initial prompt + for (auto i = 0; i < tokens_list.size(); i++) { + llama_batch_add(*batch, tokens_list[i], i, { 0 }, false); + } + + // llama_decode will output logits only for the last token of the prompt + batch->logits[batch->n_tokens - 1] = true; + + if (llama_decode(context, *batch) != 0) { + LOGe("llama_decode() failed"); + } + + env->ReleaseStringUTFChars(jtext, text); + + return batch->n_tokens; +} + +extern "C" +JNIEXPORT jstring JNICALL +Java_com_example_llama_Llm_completion_1loop( + JNIEnv * env, + jobject, + jlong context_pointer, + jlong batch_pointer, + jint n_len, + jobject intvar_ncur +) { + const auto context = reinterpret_cast(context_pointer); + const auto batch = reinterpret_cast(batch_pointer); + const auto model = llama_get_model(context); + + if (!la_int_var) la_int_var = env->GetObjectClass(intvar_ncur); + if (!la_int_var_value) la_int_var_value = env->GetMethodID(la_int_var, "getValue", "()I"); + if (!la_int_var_inc) la_int_var_inc = env->GetMethodID(la_int_var, "inc", "()V"); + + auto n_vocab = llama_n_vocab(model); + auto logits = llama_get_logits_ith(context, batch->n_tokens - 1); + + std::vector candidates; + candidates.reserve(n_vocab); + + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f }); + } + + llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; + + // sample the most likely token + const auto new_token_id = llama_sample_token_greedy(context, &candidates_p); + + const auto n_cur = env->CallIntMethod(intvar_ncur, la_int_var_value); + if (new_token_id == llama_token_eos(model) || n_cur == n_len) { + return env->NewStringUTF(""); + } + + auto new_token_chars = llama_token_to_piece(context, new_token_id); + LOGi("new_token_chars: `%s`", new_token_chars.c_str()); + auto new_token = env->NewStringUTF(new_token_chars.c_str()); + + llama_batch_clear(*batch); + llama_batch_add(*batch, new_token_id, n_cur, { 0 }, true); + + env->CallVoidMethod(intvar_ncur, la_int_var_inc); + + if (llama_decode(context, *batch) != 0) { + LOGe("llama_decode() returned null"); + } + + return new_token; +} + +extern "C" +JNIEXPORT void JNICALL +Java_com_example_llama_Llm_kv_1cache_1clear(JNIEnv *, jobject, jlong context) { + llama_kv_cache_clear(reinterpret_cast(context)); +} diff --git a/examples/llama.android/app/src/main/java/com/example/llama/Downloadable.kt b/examples/llama.android/app/src/main/java/com/example/llama/Downloadable.kt new file mode 100644 index 000000000..78c231ae5 --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/Downloadable.kt @@ -0,0 +1,119 @@ +package com.example.llama + +import android.app.DownloadManager +import android.net.Uri +import android.util.Log +import androidx.compose.material3.Button +import androidx.compose.material3.Text +import androidx.compose.runtime.Composable +import androidx.compose.runtime.getValue +import androidx.compose.runtime.mutableDoubleStateOf +import androidx.compose.runtime.mutableStateOf +import androidx.compose.runtime.remember +import androidx.compose.runtime.rememberCoroutineScope +import androidx.compose.runtime.setValue +import androidx.core.database.getLongOrNull +import androidx.core.net.toUri +import kotlinx.coroutines.delay +import kotlinx.coroutines.launch +import java.io.File + +data class Downloadable(val name: String, val source: Uri, val destination: File) { + companion object { + @JvmStatic + private val tag: String? = this::class.qualifiedName + + sealed interface State + data object Ready: State + data class Downloading(val id: Long): State + data class Downloaded(val downloadable: Downloadable): State + data class Error(val message: String): State + + @JvmStatic + @Composable + fun Button(viewModel: MainViewModel, dm: DownloadManager, item: Downloadable) { + var status: State by remember { + mutableStateOf( + if (item.destination.exists()) Downloaded(item) + else Ready + ) + } + var progress by remember { mutableDoubleStateOf(0.0) } + + val coroutineScope = rememberCoroutineScope() + + suspend fun waitForDownload(result: Downloading, item: Downloadable): State { + while (true) { + val cursor = dm.query(DownloadManager.Query().setFilterById(result.id)) + + if (cursor == null) { + Log.e(tag, "dm.query() returned null") + return Error("dm.query() returned null") + } + + if (!cursor.moveToFirst() || cursor.count < 1) { + cursor.close() + Log.i(tag, "cursor.moveToFirst() returned false or cursor.count < 1, download canceled?") + return Ready + } + + val pix = cursor.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR) + val tix = cursor.getColumnIndex(DownloadManager.COLUMN_TOTAL_SIZE_BYTES) + val sofar = cursor.getLongOrNull(pix) ?: 0 + val total = cursor.getLongOrNull(tix) ?: 1 + cursor.close() + + if (sofar == total) { + return Downloaded(item) + } + + progress = (sofar * 1.0) / total + + delay(1000L) + } + } + + fun onClick() { + when (val s = status) { + is Downloaded -> { + viewModel.load(item.destination.path) + } + + is Downloading -> { + coroutineScope.launch { + status = waitForDownload(s, item) + } + } + + else -> { + item.destination.delete() + + val request = DownloadManager.Request(item.source).apply { + setTitle("Downloading model") + setDescription("Downloading model: ${item.name}") + setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI) + setDestinationUri(item.destination.toUri()) + } + + viewModel.log("Saving ${item.name} to ${item.destination.path}") + Log.i(tag, "Saving ${item.name} to ${item.destination.path}") + + val id = dm.enqueue(request) + status = Downloading(id) + onClick() + } + } + } + + Button(onClick = { onClick() }, enabled = status !is Downloading) { + when (status) { + is Downloading -> Text(text = "Downloading ${(progress * 100).toInt()}%") + is Downloaded -> Text("Load ${item.name}") + is Ready -> Text("Download ${item.name}") + is Error -> Text("Download ${item.name}") + } + } + } + + } +} diff --git a/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt b/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt new file mode 100644 index 000000000..5f3270372 --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/Llm.kt @@ -0,0 +1,172 @@ +package com.example.llama + +import android.util.Log +import kotlinx.coroutines.CoroutineDispatcher +import kotlinx.coroutines.asCoroutineDispatcher +import kotlinx.coroutines.flow.Flow +import kotlinx.coroutines.flow.flow +import kotlinx.coroutines.flow.flowOn +import kotlinx.coroutines.withContext +import java.util.concurrent.Executors +import kotlin.concurrent.thread + +class Llm { + private val tag: String? = this::class.simpleName + + private val threadLocalState: ThreadLocal = ThreadLocal.withInitial { State.Idle } + + private val runLoop: CoroutineDispatcher = Executors.newSingleThreadExecutor { + thread(start = false, name = "Llm-RunLoop") { + Log.d(tag, "Dedicated thread for native code: ${Thread.currentThread().name}") + + // No-op if called more than once. + System.loadLibrary("llama-android") + + // Set llama log handler to Android + log_to_android() + backend_init(false) + + Log.d(tag, system_info()) + + it.run() + }.apply { + uncaughtExceptionHandler = Thread.UncaughtExceptionHandler { _, exception: Throwable -> + Log.e(tag, "Unhandled exception", exception) + } + } + }.asCoroutineDispatcher() + + private val nlen: Int = 64 + + private external fun log_to_android() + private external fun load_model(filename: String): Long + private external fun free_model(model: Long) + private external fun new_context(model: Long): Long + private external fun free_context(context: Long) + private external fun backend_init(numa: Boolean) + private external fun backend_free() + private external fun free_batch(batch: Long) + private external fun new_batch(nTokens: Int, embd: Int, nSeqMax: Int): Long + private external fun bench_model( + context: Long, + model: Long, + batch: Long, + pp: Int, + tg: Int, + pl: Int, + nr: Int + ): String + + private external fun system_info(): String + + private external fun completion_init( + context: Long, + batch: Long, + text: String, + nLen: Int + ): Int + + private external fun completion_loop( + context: Long, + batch: Long, + nLen: Int, + ncur: IntVar + ): String + + private external fun kv_cache_clear(context: Long) + + suspend fun bench(pp: Int, tg: Int, pl: Int, nr: Int = 1): String { + return withContext(runLoop) { + when (val state = threadLocalState.get()) { + is State.Loaded -> { + Log.d(tag, "bench(): $state") + bench_model(state.context, state.model, state.batch, pp, tg, pl, nr) + } + + else -> throw IllegalStateException("No model loaded") + } + } + } + + suspend fun load(pathToModel: String) { + withContext(runLoop) { + when (threadLocalState.get()) { + is State.Idle -> { + val model = load_model(pathToModel) + if (model == 0L) throw IllegalStateException("load_model() failed") + + val context = new_context(model) + if (context == 0L) throw IllegalStateException("new_context() failed") + + val batch = new_batch(512, 0, 1) + if (batch == 0L) throw IllegalStateException("new_batch() failed") + + Log.i(tag, "Loaded model $pathToModel") + threadLocalState.set(State.Loaded(model, context, batch)) + } + else -> throw IllegalStateException("Model already loaded") + } + } + } + + fun send(message: String): Flow = flow { + when (val state = threadLocalState.get()) { + is State.Loaded -> { + val ncur = IntVar(completion_init(state.context, state.batch, message, nlen)) + while (ncur.value <= nlen) { + val str = completion_loop(state.context, state.batch, nlen, ncur) + if (str.isEmpty()) { + break + } + emit(str) + } + kv_cache_clear(state.context) + } + else -> {} + } + }.flowOn(runLoop) + + /** + * Unloads the model and frees resources. + * + * This is a no-op if there's no model loaded. + */ + suspend fun unload() { + withContext(runLoop) { + when (val state = threadLocalState.get()) { + is State.Loaded -> { + free_context(state.context) + free_model(state.model) + free_batch(state.batch) + + threadLocalState.set(State.Idle) + } + else -> {} + } + } + } + + companion object { + private class IntVar(value: Int) { + @Volatile + var value: Int = value + private set + + fun inc() { + synchronized(this) { + value += 1 + } + } + } + + private sealed interface State { + data object Idle: State + data class Loaded(val model: Long, val context: Long, val batch: Long): State + } + + // Enforce only one instance of Llm. + private val _instance: Llm = Llm() + + fun instance(): Llm = _instance + } +} diff --git a/examples/llama.android/app/src/main/java/com/example/llama/MainActivity.kt b/examples/llama.android/app/src/main/java/com/example/llama/MainActivity.kt new file mode 100644 index 000000000..9da04f7d3 --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/MainActivity.kt @@ -0,0 +1,154 @@ +package com.example.llama + +import android.app.ActivityManager +import android.app.DownloadManager +import android.content.ClipData +import android.content.ClipboardManager +import android.net.Uri +import android.os.Bundle +import android.os.StrictMode +import android.os.StrictMode.VmPolicy +import android.text.format.Formatter +import androidx.activity.ComponentActivity +import androidx.activity.compose.setContent +import androidx.activity.viewModels +import androidx.compose.foundation.layout.Box +import androidx.compose.foundation.layout.Column +import androidx.compose.foundation.layout.Row +import androidx.compose.foundation.layout.fillMaxSize +import androidx.compose.foundation.layout.padding +import androidx.compose.foundation.lazy.LazyColumn +import androidx.compose.foundation.lazy.items +import androidx.compose.foundation.lazy.rememberLazyListState +import androidx.compose.material3.Button +import androidx.compose.material3.LocalContentColor +import androidx.compose.material3.MaterialTheme +import androidx.compose.material3.OutlinedTextField +import androidx.compose.material3.Surface +import androidx.compose.material3.Text +import androidx.compose.runtime.Composable +import androidx.compose.ui.Modifier +import androidx.compose.ui.unit.dp +import androidx.core.content.getSystemService +import com.example.llama.ui.theme.LlamaAndroidTheme +import java.io.File + +class MainActivity( + activityManager: ActivityManager? = null, + downloadManager: DownloadManager? = null, + clipboardManager: ClipboardManager? = null, +): ComponentActivity() { + private val tag: String? = this::class.simpleName + + private val activityManager by lazy { activityManager ?: getSystemService()!! } + private val downloadManager by lazy { downloadManager ?: getSystemService()!! } + private val clipboardManager by lazy { clipboardManager ?: getSystemService()!! } + + private val viewModel: MainViewModel by viewModels() + + // Get a MemoryInfo object for the device's current memory status. + private fun availableMemory(): ActivityManager.MemoryInfo { + return ActivityManager.MemoryInfo().also { memoryInfo -> + activityManager.getMemoryInfo(memoryInfo) + } + } + + override fun onCreate(savedInstanceState: Bundle?) { + super.onCreate(savedInstanceState) + + StrictMode.setVmPolicy( + VmPolicy.Builder(StrictMode.getVmPolicy()) + .detectLeakedClosableObjects() + .build() + ) + + val free = Formatter.formatFileSize(this, availableMemory().availMem) + val total = Formatter.formatFileSize(this, availableMemory().totalMem) + + viewModel.log("Current memory: $free / $total") + viewModel.log("Downloads directory: ${getExternalFilesDir(null)}") + + val extFilesDir = getExternalFilesDir(null) + + val models = listOf( + Downloadable( + "Phi-2 7B (Q4_0, 1.6 GiB)", + Uri.parse("https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true"), + File(extFilesDir, "phi-2-q4_0.gguf"), + ), + Downloadable( + "TinyLlama 1.1B (f16, 2.2 GiB)", + Uri.parse("https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true"), + File(extFilesDir, "tinyllama-1.1-f16.gguf"), + ), + Downloadable( + "Phi 2 DPO (Q3_K_M, 1.48 GiB)", + Uri.parse("https://huggingface.co/TheBloke/phi-2-dpo-GGUF/resolve/main/phi-2-dpo.Q3_K_M.gguf?download=true"), + File(extFilesDir, "phi-2-dpo.Q3_K_M.gguf") + ), + ) + + setContent { + LlamaAndroidTheme { + // A surface container using the 'background' color from the theme + Surface( + modifier = Modifier.fillMaxSize(), + color = MaterialTheme.colorScheme.background + ) { + MainCompose( + viewModel, + clipboardManager, + downloadManager, + models, + ) + } + + } + } + } +} + +@Composable +fun MainCompose( + viewModel: MainViewModel, + clipboard: ClipboardManager, + dm: DownloadManager, + models: List +) { + Column { + val scrollState = rememberLazyListState() + + Box(modifier = Modifier.weight(1f)) { + LazyColumn(state = scrollState) { + items(viewModel.messages) { + Text( + it, + style = MaterialTheme.typography.bodyLarge.copy(color = LocalContentColor.current), + modifier = Modifier.padding(16.dp) + ) + } + } + } + OutlinedTextField( + value = viewModel.message, + onValueChange = { viewModel.updateMessage(it) }, + label = { Text("Message") }, + ) + Row { + Button({ viewModel.send() }) { Text("Send") } + Button({ viewModel.bench(8, 4, 1) }) { Text("Bench") } + Button({ viewModel.clear() }) { Text("Clear") } + Button({ + viewModel.messages.joinToString("\n").let { + clipboard.setPrimaryClip(ClipData.newPlainText("", it)) + } + }) { Text("Copy") } + } + + Column { + for (model in models) { + Downloadable.Button(viewModel, dm, model) + } + } + } +} diff --git a/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt b/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt new file mode 100644 index 000000000..be95e2221 --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/MainViewModel.kt @@ -0,0 +1,104 @@ +package com.example.llama + +import android.util.Log +import androidx.compose.runtime.getValue +import androidx.compose.runtime.mutableStateOf +import androidx.compose.runtime.setValue +import androidx.lifecycle.ViewModel +import androidx.lifecycle.viewModelScope +import kotlinx.coroutines.flow.catch +import kotlinx.coroutines.launch + +class MainViewModel(private val llm: Llm = Llm.instance()): ViewModel() { + companion object { + @JvmStatic + private val NanosPerSecond = 1_000_000_000.0 + } + + private val tag: String? = this::class.simpleName + + var messages by mutableStateOf(listOf("Initializing...")) + private set + + var message by mutableStateOf("") + private set + + override fun onCleared() { + super.onCleared() + + viewModelScope.launch { + try { + llm.unload() + } catch (exc: IllegalStateException) { + messages += exc.message!! + } + } + } + + fun send() { + val text = message + message = "" + + // Add to messages console. + messages += text + messages += "" + + viewModelScope.launch { + llm.send(text) + .catch { + Log.e(tag, "send() failed", it) + messages += it.message!! + } + .collect { messages = messages.dropLast(1) + (messages.last() + it) } + } + } + + fun bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) { + viewModelScope.launch { + try { + val start = System.nanoTime() + val warmupResult = llm.bench(pp, tg, pl, nr) + val end = System.nanoTime() + + messages += warmupResult + + val warmup = (end - start).toDouble() / NanosPerSecond + messages += "Warm up time: $warmup seconds, please wait..." + + if (warmup > 5.0) { + messages += "Warm up took too long, aborting benchmark" + return@launch + } + + messages += llm.bench(512, 128, 1, 3) + } catch (exc: IllegalStateException) { + Log.e(tag, "bench() failed", exc) + messages += exc.message!! + } + } + } + + fun load(pathToModel: String) { + viewModelScope.launch { + try { + llm.load(pathToModel) + messages += "Loaded $pathToModel" + } catch (exc: IllegalStateException) { + Log.e(tag, "load() failed", exc) + messages += exc.message!! + } + } + } + + fun updateMessage(newMessage: String) { + message = newMessage + } + + fun clear() { + messages = listOf() + } + + fun log(message: String) { + messages += message + } +} diff --git a/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Color.kt b/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Color.kt new file mode 100644 index 000000000..40c30e8d9 --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Color.kt @@ -0,0 +1,11 @@ +package com.example.llama.ui.theme + +import androidx.compose.ui.graphics.Color + +val Purple80 = Color(0xFFD0BCFF) +val PurpleGrey80 = Color(0xFFCCC2DC) +val Pink80 = Color(0xFFEFB8C8) + +val Purple40 = Color(0xFF6650a4) +val PurpleGrey40 = Color(0xFF625b71) +val Pink40 = Color(0xFF7D5260) diff --git a/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Theme.kt b/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Theme.kt new file mode 100644 index 000000000..e742220a8 --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Theme.kt @@ -0,0 +1,70 @@ +package com.example.llama.ui.theme + +import android.app.Activity +import android.os.Build +import androidx.compose.foundation.isSystemInDarkTheme +import androidx.compose.material3.MaterialTheme +import androidx.compose.material3.darkColorScheme +import androidx.compose.material3.dynamicDarkColorScheme +import androidx.compose.material3.dynamicLightColorScheme +import androidx.compose.material3.lightColorScheme +import androidx.compose.runtime.Composable +import androidx.compose.runtime.SideEffect +import androidx.compose.ui.graphics.toArgb +import androidx.compose.ui.platform.LocalContext +import androidx.compose.ui.platform.LocalView +import androidx.core.view.WindowCompat + +private val DarkColorScheme = darkColorScheme( + primary = Purple80, + secondary = PurpleGrey80, + tertiary = Pink80 +) + +private val LightColorScheme = lightColorScheme( + primary = Purple40, + secondary = PurpleGrey40, + tertiary = Pink40 + + /* Other default colors to override + background = Color(0xFFFFFBFE), + surface = Color(0xFFFFFBFE), + onPrimary = Color.White, + onSecondary = Color.White, + onTertiary = Color.White, + onBackground = Color(0xFF1C1B1F), + onSurface = Color(0xFF1C1B1F), + */ +) + +@Composable +fun LlamaAndroidTheme( + darkTheme: Boolean = isSystemInDarkTheme(), + // Dynamic color is available on Android 12+ + dynamicColor: Boolean = true, + content: @Composable () -> Unit +) { + val colorScheme = when { + dynamicColor && Build.VERSION.SDK_INT >= Build.VERSION_CODES.S -> { + val context = LocalContext.current + if (darkTheme) dynamicDarkColorScheme(context) else dynamicLightColorScheme(context) + } + + darkTheme -> DarkColorScheme + else -> LightColorScheme + } + val view = LocalView.current + if (!view.isInEditMode) { + SideEffect { + val window = (view.context as Activity).window + window.statusBarColor = colorScheme.primary.toArgb() + WindowCompat.getInsetsController(window, view).isAppearanceLightStatusBars = darkTheme + } + } + + MaterialTheme( + colorScheme = colorScheme, + typography = Typography, + content = content + ) +} diff --git a/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Type.kt b/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Type.kt new file mode 100644 index 000000000..0b87946ca --- /dev/null +++ b/examples/llama.android/app/src/main/java/com/example/llama/ui/theme/Type.kt @@ -0,0 +1,34 @@ +package com.example.llama.ui.theme + +import androidx.compose.material3.Typography +import androidx.compose.ui.text.TextStyle +import androidx.compose.ui.text.font.FontFamily +import androidx.compose.ui.text.font.FontWeight +import androidx.compose.ui.unit.sp + +// Set of Material typography styles to start with +val Typography = Typography( + bodyLarge = TextStyle( + fontFamily = FontFamily.Default, + fontWeight = FontWeight.Normal, + fontSize = 16.sp, + lineHeight = 24.sp, + letterSpacing = 0.5.sp + ) + /* Other default text styles to override + titleLarge = TextStyle( + fontFamily = FontFamily.Default, + fontWeight = FontWeight.Normal, + fontSize = 22.sp, + lineHeight = 28.sp, + letterSpacing = 0.sp + ), + labelSmall = TextStyle( + fontFamily = FontFamily.Default, + fontWeight = FontWeight.Medium, + fontSize = 11.sp, + lineHeight = 16.sp, + letterSpacing = 0.5.sp + ) + */ +) diff --git a/examples/llama.android/app/src/main/res/drawable/ic_launcher_background.xml b/examples/llama.android/app/src/main/res/drawable/ic_launcher_background.xml new file mode 100644 index 000000000..07d5da9cb --- /dev/null +++ b/examples/llama.android/app/src/main/res/drawable/ic_launcher_background.xml @@ -0,0 +1,170 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/examples/llama.android/app/src/main/res/drawable/ic_launcher_foreground.xml b/examples/llama.android/app/src/main/res/drawable/ic_launcher_foreground.xml new file mode 100644 index 000000000..7706ab9e6 --- /dev/null +++ b/examples/llama.android/app/src/main/res/drawable/ic_launcher_foreground.xml @@ -0,0 +1,30 @@ + + + + + + + + + + + diff --git a/examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher.xml b/examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher.xml new file mode 100644 index 000000000..b3e26b4c6 --- /dev/null +++ b/examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher.xml @@ -0,0 +1,6 @@ + + + + + + diff --git a/examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher_round.xml b/examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher_round.xml new file mode 100644 index 000000000..b3e26b4c6 --- /dev/null +++ b/examples/llama.android/app/src/main/res/mipmap-anydpi/ic_launcher_round.xml @@ -0,0 +1,6 @@ + + + + + + diff --git a/examples/llama.android/app/src/main/res/mipmap-hdpi/ic_launcher.webp b/examples/llama.android/app/src/main/res/mipmap-hdpi/ic_launcher.webp new file mode 100644 index 0000000000000000000000000000000000000000..c209e78ecd372343283f4157dcfd918ec5165bb3 GIT binary patch literal 1404 zcmV-?1%vuhNk&F=1pok7MM6+kP&il$0000G0000-002h-06|PpNX!5L00Dqw+t%{r zzW2vH!KF=w&cMnnN@{whkTw+#mAh0SV?YL=)3MimFYCWp#fpdtz~8$hD5VPuQgtcN zXl<@<#Cme5f5yr2h%@8TWh?)bSK`O z^Z@d={gn7J{iyxL_y_%J|L>ep{dUxUP8a{byupH&!UNR*OutO~0{*T4q5R6@ApLF! z5{w?Z150gC7#>(VHFJZ-^6O@PYp{t!jH(_Z*nzTK4 zkc{fLE4Q3|mA2`CWQ3{8;gxGizgM!zccbdQoOLZc8hThi-IhN90RFT|zlxh3Ty&VG z?Fe{#9RrRnxzsu|Lg2ddugg7k%>0JeD+{XZ7>Z~{=|M+sh1MF7~ zz>To~`~LVQe1nNoR-gEzkpe{Ak^7{{ZBk2i_<+`Bq<^GB!RYG+z)h;Y3+<{zlMUYd zrd*W4w&jZ0%kBuDZ1EW&KLpyR7r2=}fF2%0VwHM4pUs}ZI2egi#DRMYZPek*^H9YK zay4Iy3WXFG(F14xYsoDA|KXgGc5%2DhmQ1gFCkrgHBm!lXG8I5h*uf{rn48Z!_@ z4Bk6TJAB2CKYqPjiX&mWoW>OPFGd$wqroa($ne7EUK;#3VYkXaew%Kh^3OrMhtjYN?XEoY`tRPQsAkH-DSL^QqyN0>^ zmC>{#F14jz4GeW{pJoRpLFa_*GI{?T93^rX7SPQgT@LbLqpNA}<@2wH;q493)G=1Y z#-sCiRNX~qf3KgiFzB3I>4Z%AfS(3$`-aMIBU+6?gbgDb!)L~A)je+;fR0jWLL-Fu z4)P{c7{B4Hp91&%??2$v9iRSFnuckHUm}or9seH6 z>%NbT+5*@L5(I9j@06@(!{ZI?U0=pKn8uwIg&L{JV14+8s2hnvbRrU|hZCd}IJu7*;;ECgO%8_*W Kmw_-CKmY()leWbG literal 0 HcmV?d00001 diff --git a/examples/llama.android/app/src/main/res/mipmap-hdpi/ic_launcher_round.webp b/examples/llama.android/app/src/main/res/mipmap-hdpi/ic_launcher_round.webp new file mode 100644 index 0000000000000000000000000000000000000000..b2dfe3d1ba5cf3ee31b3ecc1ced89044a1f3b7a9 GIT binary patch literal 2898 zcmV-Y3$650Nk&FW3jhFDMM6+kP&il$0000G0000-002h-06|PpNWB9900E$G+qN-D z+81ABX7q?;bwx%xBg?kcwr$(C-Tex-ZCkHUw(Y9#+`E5-zuONG5fgw~E2WDng@Bc@ z24xy+R1n%~6xI#u9vJ8zREI)sb<&Il(016}Z~V1n^PU3-_H17A*Bf^o)&{_uBv}Py zulRfeE8g(g6HFhk_?o_;0@tz?1I+l+Y#Q*;RVC?(ud`_cU-~n|AX-b`JHrOIqn(-t&rOg-o`#C zh0LPxmbOAEb;zHTu!R3LDh1QO zZTf-|lJNUxi-PpcbRjw3n~n-pG;$+dIF6eqM5+L();B2O2tQ~|p{PlpNcvDbd1l%c zLtXn%lu(3!aNK!V#+HNn_D3lp z2%l+hK-nsj|Bi9;V*WIcQRTt5j90A<=am+cc`J zTYIN|PsYAhJ|=&h*4wI4ebv-C=Be#u>}%m;a{IGmJDU`0snWS&$9zdrT(z8#{OZ_Y zxwJx!ZClUi%YJjD6Xz@OP8{ieyJB=tn?>zaI-4JN;rr`JQbb%y5h2O-?_V@7pG_+y z(lqAsqYr!NyVb0C^|uclHaeecG)Sz;WV?rtoqOdAAN{j%?Uo%owya(F&qps@Id|Of zo@~Y-(YmfB+chv^%*3g4k3R0WqvuYUIA+8^SGJ{2Bl$X&X&v02>+0$4?di(34{pt* zG=f#yMs@Y|b&=HyH3k4yP&goF2LJ#tBLJNNDo6lG06r}ghC-pC4Q*=x3;|+W04zte zAl>l4kzUBQFYF(E`KJy?ZXd1tnfbH+Z~SMmA21KokJNs#eqcXWKUIC>{TuoKe^vhF z);H)o`t9j~`$h1D`#bxe@E`oE`cM9w(@)5Bp8BNukIwM>wZHfd0S;5bcXA*5KT3bj zc&_~`&{z7u{Et!Z_k78H75gXf4g8<_ul!H$eVspPeU3j&&Au=2R*Zp#M9$9s;fqwgzfiX=E_?BwVcfx3tG9Q-+<5fw z%Hs64z)@Q*%s3_Xd5>S4dg$s>@rN^ixeVj*tqu3ZV)biDcFf&l?lGwsa zWj3rvK}?43c{IruV2L`hUU0t^MemAn3U~x3$4mFDxj=Byowu^Q+#wKRPrWywLjIAp z9*n}eQ9-gZmnd9Y0WHtwi2sn6n~?i#n9VN1B*074_VbZZ=WrpkMYr{RsI ztM_8X1)J*DZejxkjOTRJ&a*lrvMKBQURNP#K)a5wIitfu(CFYV4FT?LUB$jVwJSZz zNBFTWg->Yk0j&h3e*a5>B=-xM7dE`IuOQna!u$OoxLlE;WdrNlN)1 z7**de7-hZ!(%_ZllHBLg`Ir#|t>2$*xVOZ-ADZKTN?{(NUeLU9GbuG-+Axf*AZ-P1 z0ZZ*fx+ck4{XtFsbcc%GRStht@q!m*ImssGwuK+P@%gEK!f5dHymg<9nSCXsB6 zQ*{<`%^bxB($Z@5286^-A(tR;r+p7B%^%$N5h%lb*Vlz-?DL9x;!j<5>~kmXP$E}m zQV|7uv4SwFs0jUervsxVUm>&9Y3DBIzc1XW|CUZrUdb<&{@D5yuLe%Xniw^x&{A2s z0q1+owDSfc3Gs?ht;3jw49c#mmrViUfX-yvc_B*wY|Lo7; zGh!t2R#BHx{1wFXReX*~`NS-LpSX z#TV*miO^~B9PF%O0huw!1Zv>^d0G3$^8dsC6VI!$oKDKiXdJt{mGkyA`+Gwd4D-^1qtNTUK)`N*=NTG-6}=5k6suNfdLt*dt8D| z%H#$k)z#ZRcf|zDWB|pn<3+7Nz>?WW9WdkO5(a^m+D4WRJ9{wc>Y}IN)2Kbgn;_O? zGqdr&9~|$Y0tP=N(k7^Eu;iO*w+f%W`20BNo)=Xa@M_)+o$4LXJyiw{F?a633SC{B zl~9FH%?^Rm*LVz`lkULs)%idDX^O)SxQol(3jDRyBVR!7d`;ar+D7do)jQ}m`g$TevUD5@?*P8)voa?kEe@_hl{_h8j&5eB-5FrYW&*FHVt$ z$kRF9Nstj%KRzpjdd_9wO=4zO8ritN*NPk_9avYrsF(!4))tm{Ga#OY z(r{0buexOzu7+rw8E08Gxd`LTOID{*AC1m*6Nw@osfB%0oBF5sf<~wH1kL;sd zo)k6^VyRFU`)dt*iX^9&QtWbo6yE8XXH?`ztvpiOLgI3R+=MOBQ9=rMVgi<*CU%+d1PQQ0a1U=&b0vkF207%xU0ssI2 literal 0 HcmV?d00001 diff --git a/examples/llama.android/app/src/main/res/mipmap-mdpi/ic_launcher.webp b/examples/llama.android/app/src/main/res/mipmap-mdpi/ic_launcher.webp new file mode 100644 index 0000000000000000000000000000000000000000..4f0f1d64e58ba64d180ce43ee13bf9a17835fbca GIT binary patch literal 982 zcmV;{11bDcNk&G_0{{S5MM6+kP&il$0000G0000l001ul06|PpNU8t;00Dqo+t#w^ z^1csucXz7-Qrhzl9HuHB%l>&>1tG2^vb*E&k^T3$FG1eQZ51g$uv4V+kI`0<^1Z@N zk?Jjh$olyC%l>)Xq;7!>{iBj&BjJ`P&$fsCfpve_epJOBkTF?nu-B7D!hO=2ZR}

C%4 zc_9eOXvPbC4kzU8YowIA8cW~Uv|eB&yYwAObSwL2vY~UYI7NXPvf3b+c^?wcs~_t{ ze_m66-0)^{JdOMKPwjpQ@Sna!*?$wTZ~su*tNv7o!gXT!GRgivP}ec?5>l1!7<(rT zds|8x(qGc673zrvYIz;J23FG{9nHMnAuP}NpAED^laz3mAN1sy+NXK)!6v1FxQ;lh zOBLA>$~P3r4b*NcqR;y6pwyhZ3_PiDb|%n1gGjl3ZU}ujInlP{eks-#oA6>rh&g+!f`hv#_%JrgYPu z(U^&XLW^QX7F9Z*SRPpQl{B%x)_AMp^}_v~?j7 zapvHMKxSf*Mtyx8I}-<*UGn3)oHd(nn=)BZ`d$lDBwq_GL($_TPaS{UeevT(AJ`p0 z9%+hQb6z)U9qjbuXjg|dExCLjpS8$VKQ55VsIC%@{N5t{NsW)=hNGI`J=x97_kbz@ E0Of=7!TQj4N+cqN`nQhxvX7dAV-`K|Ub$-q+H-5I?Tx0g9jWxd@A|?POE8`3b8fO$T))xP* z(X?&brZw({`)WU&rdAs1iTa0x6F@PIxJ&&L|dpySV!ID|iUhjCcKz(@mE z!x@~W#3H<)4Ae(4eQJRk`Iz3<1)6^m)0b_4_TRZ+cz#eD3f8V;2r-1fE!F}W zEi0MEkTTx}8i1{`l_6vo0(Vuh0HD$I4SjZ=?^?k82R51bC)2D_{y8mi_?X^=U?2|F{Vr7s!k(AZC$O#ZMyavHhlQ7 zUR~QXuH~#o#>(b$u4?s~HLF*3IcF7023AlwAYudn0FV~|odGH^05AYPEfR)8p`i{n zwg3zPVp{+wOsxKc>)(pMupKF!Y2HoUqQ3|Yu|8lwR=?5zZuhG6J?H`bSNk_wPoM{u zSL{c@pY7+c2kck>`^q1^^gR0QB7Y?KUD{vz-uVX~;V-rW)PDcI)$_UjgVV?S?=oLR zf4}zz{#*R_{LkiJ#0RdQLNC^2Vp%JPEUvG9ra2BVZ92(p9h7Ka@!yf9(lj#}>+|u* z;^_?KWdzkM`6gqPo9;;r6&JEa)}R3X{(CWv?NvgLeOTq$cZXqf7|sPImi-7cS8DCN zGf;DVt3Am`>hH3{4-WzH43Ftx)SofNe^-#|0HdCo<+8Qs!}TZP{HH8~z5n`ExcHuT zDL1m&|DVpIy=xsLO>8k92HcmfSKhflQ0H~9=^-{#!I1g(;+44xw~=* zxvNz35vfsQE)@)Zsp*6_GjYD};Squ83<_?^SbALb{a`j<0Gn%6JY!zhp=Fg}Ga2|8 z52e1WU%^L1}15Ex0fF$e@eCT(()_P zvV?CA%#Sy08_U6VPt4EtmVQraWJX` zh=N|WQ>LgrvF~R&qOfB$!%D3cGv?;Xh_z$z7k&s4N)$WYf*k=|*jCEkO19{h_(%W4 zPuOqbCw`SeAX*R}UUsbVsgtuG?xs(#Ikx9`JZoQFz0n*7ZG@Fv@kZk`gzO$HoA9kN z8U5{-yY zvV{`&WKU2$mZeoBmiJrEdzUZAv1sRxpePdg1)F*X^Y)zp^Y*R;;z~vOv-z&)&G)JQ{m!C9cmziu1^nHA z`#`0c>@PnQ9CJKgC5NjJD8HM3|KC(g5nnCq$n0Gsu_DXk36@ql%npEye|?%RmG)

FJ$wK}0tWNB{uH;AM~i literal 0 HcmV?d00001 diff --git a/examples/llama.android/app/src/main/res/mipmap-xhdpi/ic_launcher.webp b/examples/llama.android/app/src/main/res/mipmap-xhdpi/ic_launcher.webp new file mode 100644 index 0000000000000000000000000000000000000000..948a3070fe34c611c42c0d3ad3013a0dce358be0 GIT binary patch literal 1900 zcmV-y2b1_xNk&Fw2LJ$9MM6+kP&il$0000G0001A003VA06|PpNH75a00DqwTbm-~ zullQTcXxO9ki!OCRx^i?oR|n!<8G0=kI^!JSjFi-LL*`V;ET0H2IXfU0*i>o6o6Gy zRq6Ap5(_{XLdXcL-MzlN`ugSdZY_`jXhcENAu)N_0?GhF))9R;E`!bo9p?g?SRgw_ zEXHhFG$0{qYOqhdX<(wE4N@es3VIo$%il%6xP9gjiBri+2pI6aY4 zJbgh-Ud|V%3O!IcHKQx1FQH(_*TK;1>FQWbt^$K1zNn^cczkBs=QHCYZ8b&l!UV{K z{L0$KCf_&KR^}&2Fe|L&?1I7~pBENnCtCuH3sjcx6$c zwqkNkru);ie``q+_QI;IYLD9OV0ZxkuyBz|5<$1BH|vtey$> z5oto4=l-R-Aaq`Dk0}o9N0VrkqW_#;!u{!bJLDq%0092{Ghe=F;(kn} z+sQ@1=UlX30+2nWjkL$B^b!H2^QYO@iFc0{(-~yXj2TWz?VG{v`Jg zg}WyYnwGgn>{HFaG7E~pt=)sOO}*yd(UU-D(E&x{xKEl6OcU?pl)K%#U$dn1mDF19 zSw@l8G!GNFB3c3VVK0?uyqN&utT-D5%NM4g-3@Sii9tSXKtwce~uF zS&Jn746EW^wV~8zdQ1XC28~kXu8+Yo9p!<8h&(Q({J*4DBglPdpe4M_mD8AguZFn~ ztiuO~{6Bx?SfO~_ZV(GIboeR9~hAym{{fV|VM=77MxDrbW6`ujX z<3HF(>Zr;#*uCvC*bpoSr~C$h?_%nXps@A)=l_;({Fo#6Y1+Zv`!T5HB+)#^-Ud_; zBwftPN=d8Vx)*O1Mj+0oO=mZ+NVH*ptNDC-&zZ7Hwho6UQ#l-yNvc0Cm+2$$6YUk2D2t#vdZX-u3>-Be1u9gtTBiMB^xwWQ_rgvGpZ6(C@e23c!^K=>ai-Rqu zhqT`ZQof;9Bu!AD(i^PCbYV%yha9zuoKMp`U^z;3!+&d@Hud&_iy!O-$b9ZLcSRh? z)R|826w}TU!J#X6P%@Zh=La$I6zXa#h!B;{qfug}O%z@K{EZECu6zl)7CiNi%xti0 zB{OKfAj83~iJvmpTU|&q1^?^cIMn2RQ?jeSB95l}{DrEPTW{_gmU_pqTc)h@4T>~& zluq3)GM=xa(#^VU5}@FNqpc$?#SbVsX!~RH*5p0p@w z;~v{QMX0^bFT1!cXGM8K9FP+=9~-d~#TK#ZE{4umGT=;dfvWi?rYj;^l_Zxywze`W z^Cr{55U@*BalS}K%Czii_80e0#0#Zkhlij4-~I@}`-JFJ7$5{>LnoJSs??J8kWVl6|8A}RCGAu9^rAsfCE=2}tHwl93t0C?#+jMpvr7O3`2=tr{Hg$=HlnjVG^ewm|Js0J*kfPa6*GhtB>`fN!m#9J(sU!?(OSfzY*zS(FJ<-Vb zfAIg+`U)YaXv#sY(c--|X zEB+TVyZ%Ie4L$gi#Fc++`h6%vzsS$pjz9aLt+ZL(g;n$Dzy5=m=_TV(3H8^C{r0xd zp#a%}ht55dOq?yhwYPrtp-m1xXp;4X;)NhxxUpgP%XTLmO zcjaFva^}dP3$&sfFTIR_jC=2pHh9kpI@2(6V*GQo7Ws)`j)hd+tr@P~gR*2gO@+1? zG<`_tB+LJuF|SZ9tIec;h%}}6WClT`L>HSW?E{Hp1h^+mlbf_$9zA>!ug>NALJsO{ mU%z=YwVD?}XMya)Bp;vlyE5&E_6!fzx9pwrdz474!~g(M6R?N? literal 0 HcmV?d00001 diff --git a/examples/llama.android/app/src/main/res/mipmap-xhdpi/ic_launcher_round.webp b/examples/llama.android/app/src/main/res/mipmap-xhdpi/ic_launcher_round.webp new file mode 100644 index 0000000000000000000000000000000000000000..1b9a6956b3acdc11f40ce2bb3f6efbd845cc243f GIT binary patch literal 3918 zcmV-U53%r4Nk&FS4*&pHMM6+kP&il$0000G0001A003VA06|PpNSy@$00HoY|G(*G z+qV7x14$dSO^Re!iqt-AAIE9iwr$(CZQJL$blA4B`>;C3fBY6Q8_YSjb2%a=fc}4E zrSzssacq<^nmW|Rs93PJni30R<8w<(bK_$LO4L?!_OxLl$}K$MUEllnMK|rg=f3;y z*?;3j|Nh>)p0JQ3A~rf(MibH2r+)3cyV1qF&;8m{w-S*y+0mM){KTK^M5}ksc`qX3 zy>rf^b>~l>SSHds8(I@hz3&PD@LmEs4&prkT=BjsBCXTMhN$_)+kvnl0bLKW5rEsj z*d#KXGDB4P&>etx0X+`R19yC=LS)j!mgs5M0L~+o-T~Jl!p!AJxnGAhV%~rhYUL4hlWhgES3Kb5oA&X z{}?3OBSS-{!v$nCIGj->(-TAG)8LR{htr41^gxsT8yqt2@DEG6Yl`Uma3Nd4;YUoW zTbkYl3CMU5ypMF3EIkYmWL|*BknM`0+Kq6CpvO(y$#j94e+q{vI{Zp8cV_6RK!`&C zob$*5Q|$IZ09dW=L!V zw@#2wviu|<#3lgGE8GEhcx+zBt`} zOwP8j9X%^f7i_bth4PiJ$LYtFJSCN$3xwDN;8mr*B;CJwBP2G0TMq0uNt7S^DO_wE zepk!Wrn#Z#03j{`c*Rf~y3o7?J}w?tEELRUR2cgxB*Y{LzA#pxHgf}q?u5idu>077 zd^=p)`nA}6e`|@`p?u}YU66PP_MA}Zqqe!c{nK&z%Jwq1N4e_q<#4g^xaz=ao;u|6 zwpRcW2Lax=ZGbx=Q*HhlJ`Ns#Y*r0*%!T?P*TTiX;rb)$CGLz=rSUum$)3Qyv{BL2 zO*=OI2|%(Yz~`pNEOnLp>+?T@glq-DujlIp?hdJeZ7ctP4_OKx|5@EOps3rr(pWzg zK4d3&oN-X2qN(d_MkfwB4I)_)!I_6nj2iA9u^pQ{;GckGLxBGrJUM2Wdda!k)Y>lq zmjws>dVQ*vW9lvEMkiN3wE-__6OWD0txS&Qn0n22cyj4Q*8(nG4!G{6OOwNvsrPIL zCl-$W9UwkEUVuLwyD%|inbOF*xMODZ4VMEVAq_zUxZ+K#Gdqf!DW$5f)?7UNOFMz! zrB~tuu=6X2FE(p^iqgxr+?ZK;=yz`e;C$#_@D9Lj-+TDVOrva>(#*PVbaHO>A)mhl z07OJWCqYC60518$!&c`eNBcBW%GnfaQ*$eazV^2_AW?j)h;J1nUjN(I9=0+!RVx~% z3@Tf!P0TE+98jA?WceK-}A1% zW!K)lyKcGqy#M~})315-A#2NXQ`?6NR#Apo=S!oF=JfpX>iR*49ec{7AN$xxpK{D$ z2d%Fz&rdfSqourN$~Y^NFIMV1CZ?J*bMx~H3k&meGtH@q9ra2vZxmA$S(#jaaj-g4 ztJmxG+DLV<*q<|sDXPp$X>E)#S}Vm&sRaO5P&goh2><}FEdZSXDqsL$06sAkh(e+v zAsBhKSRexgwg6tIy~GFJzaTxXD(}|+0eOwFDA%rn`X;MVwDHT9=4=g%OaJ9s%3b9>9EUTnnp0t;2Zpa{*>mk~hZqItE_!dQ zOtC>8`$l|mV43Jbudf0N6&&X;{=z}Zi}d1`2qmJ}i|0*GsulD3>GgQXHN)pkR6sf1 z?5ZU%&xtL}oH;YiAA)d*^Ndw2T$+Mjuzyzz@-SM`9df7LqTxLuIwC~S0092~+=qYv z@*ja;?Wt!T!{U?c*Z0YtGe)XbI&y-?B&G2$`JDM)(dIV9G`Sc#6?sI60de6kv+)Qb zUW~2|WjvJq3TA8`0+sWA3zRhY9a~ow)O~&StBkG2{*{TGiY~S8ep{V&Vo2l<6LWsu z^#p0-v*t2?3&aA1)ozu|%efSR=XnpX$lvTeRdKlvM!@|pM5p2w3u-6 zU>}t2xiYLS+{|%C65AzX+23Mtlq?BS&YdYcYsVjoiE&rT>;Necn6l^K)T^lmE`5u{ zm1i+-a-gc;Z&v-{;8r)z6NYfBUv+=_L}ef}qa9FX01)+Aaf+;xj(mL6|JUzGJR1|fnanb%?BPPIp>SCjP|8qE5qJ{=n5ZGw?81z3(k;pzH%1CtlX50{E7h)$h{qGKfzC`e2o`*IqA#tjA z`Fz&^%$b9F*N`)U-#6>a)Z`55`$Dd0cfcs0$d13^ONrdCu9xcv_=n#WQo8stcz3jP9|2EvdI-RhJM3%Q%oM&!OlShM|0 z?gz?wHZSnm45njLtsz8PVT1S&jAlbKg5kVam$p16=EK@Sj4EP0OtH zmJDmdc^v)x>56Qg_wmYHz6h)>kl_h$>0@J!ypv%APmjZTAQVLy6Fu50RGY&JAVNhx zrF_qG6`x9MkT;1SFWo$)l{M$;3qUDn9JwE}z zRl#E_bDRJFii61kPgBybIgp8dNW!Cc1b*^YYk-#oWLJvtM_v^hQx~9?8LD4VFFxBF z3MlrsSC%f9Oupn*ctPL0U1fwfX?`tRhPD{PSLFPQOmIt$mDy0SgpNVvHS+f#Do>h1Gn?LZU9(KaN>Q_=Y*_T zvtD7%_u^^+{g`0VGzg(VZrpVQ6Ub5M=tI_p7T93R8@3Zulu3|#{iNcu!oiHxZ4Rf*( zfmiN$$ru(*_Zqn=`Gq#OuHRTSwp7uH_SokR&|)RuW5yo=Z|_4?qU-JU+tpt>!B&Is z@N(=SG;bpVc;AO@zbmMM zScqq1)b-ZQIrs={oD}|?6y{$HNB1U0^LsBh8JI&3!GBZxOXI<}&5-$lgkAaYqhOTb z?2vEnZ$-kk;*M_17(upJF3%+iH*s0-r{vttXVB2OUwI1s^+G(Ft(U8gYFXC}#P&E^ z>T@C^tS`Z7{6HT4_nF~n>JlZtk5&qDBl6r|^kzQYe`wq!C)n@$c>WOPA61NDFj<<6 zGW71NMMhwAl!U-yqrq2xrSFqRCI8acw7?}3j;ynxo*-b7Co;g5r%^j=H@9({PXXBf z@r>U>>N;E)81wx`B4f%{PB~MHka_);%kBCb(d|Jy5!MqJ%2p`t&@L)4$T2j&-WHvG zv3(uyA_gwqNu(k?jQTtv3dgPKRZoH8prxe7>pQBW5L&dpumS&5Ld2?(sCpJjvc4L5 zEnh&?91WVm)ZdTj=fjJ$pPDdgAttLXuke+?KdKxu*;kTC(r!tQk6;gxj4h%FdHAt(^M3YvYj(!tOeN)+Hvj6+< zzyJRG?^lZfWuR#t!tUKP&(?%3v&Zd$R2YN>lB(Lq`OInY48%4%yTv2 zYe1{G`3)(PDEio5Y@-I5tUf`c%%OCJMtSW56g3iEg%3`$7XSJJHyA z<|7&N)5Xrlgv~%BO24eFd;Hd;uiK%D`EdK|quUeRZDqbh9l)%j%J#0lfrZumvA<_w zu&=AVvdChf6}eqh(bUz`(`Ue*p01{fBAcTgKyDYLs_I+YyJEk+rM@avU~>fB$n)HS zM7pfJydu`i%gfS<{PF94kZDv$t>06sAkheDzu40NJ$5CMW%n^Lls?8^p^QGWURbKu3ZduZQZ((s2? zzE`}<{;Zt7<$C|9R8A~DJ~@%x>TfP zF>TX8)@v|t)q4GjRt<}5s6hLHwRel7>V@&r-O|Av(yh;Q1A{E>Ir>p+%dHD|=l+lT zpr(Dg&>#Nu=!)6bCLr-ZS%|;h)Ij$+e@r8_{qO19QvDe=&1tmpY*0lcA^Cc-#{9fQ z<~$*<&P$Q<_jy#<$40PMofM7aQ}C=jphI`4kLg}Z7CIN#26D{-4v-_CA-LiE@(%{y!BzsU%gG`Q?sjLUf%qFSl0y)2#ae*+EI>s|i`d^V$Dn)qmzqRq6VJRY|{4ujsIU%#bnqU6MR&-1I_43=|5(6Jr;Jvert) zE?S|Tmn}Tv<-??sxV5@9t}3D=>YZ0JrQe$CO~|EY=Lj9RM&4svQHPQL6%pV5fPFiH zfXDx;l@~et{*{U*#c#Dvzu)|znDO7$#CRx)Z&yp-}SrD{&|(MQtfUz~n35@RLfUy=aqrhCX0M}J_r5QsK~NmRCR|Nm&L z41UdsLjWxSUlL41r^0K&nCCK>fdR-!MYjFg(z9_mF^C|#ZQw?`)f6uVzF^`bRnVY& zo}@M06J&_+>w9@jpaO4snmU;0t-(zYW1qVBHtuD!d?%?AtN7Plp><-1Y8Rqb20ZaP zTCgn*-Sri4Q8Xn>=gNaWQ57%!D35UkA@ksOlPB*Dvw}t02ENAqw|kFhn%ZyyW%+t{ zNdM!uqEM^;2}f+tECHbwLmH*!nZVrb$-az%t50Y2pg(HqhvY-^-lb}>^6l{$jOI6} zo_kBzj%8aX|6H5M0Y<)7pzz_wLkIpRm!;PzY)9+24wk2&TT{w--phDGDCOz{cN_ca zpnm7`$oDy=HX%0i-`769*0M6(e5j-?(?24%)<)&46y0e&6@HCDZAm9W6Ib#Y#BF6- z=30crHGg+RRTe%VBC>T00OV6F+gQDAK38Ne3N9bm|62tPccBJi)5{B z4zc^Db72XiBd}v$CF|yU{Z=M|DZ%-(XarYNclODlb1Kz1_EKLy(NSLCN`eUl(rBCL zT*jx@wNvze0|TSqgE(QArOZU)_?qH(sj#TwzElLs9q)(0u!_P|R%Cy_0JFQxgGV>1 zz4?_uq<8_gM0`c*Hh|;UMz~vrg1gQXp{ufg`hM_qU;U>+zmvc5blCLSq@PrEBSGR# z&8=2Z4uXN`F3p73ueD1l{s{k$WipAvSh5W7ABe?4)t;r@V?y`bNB5FvBuE|0VRTb< zM1Hn^?DSsJY+sX@T5xW=#>T9VEV|?<(=6|ge$X6Sb05!LFdjDcoq*gM(Zq=t;_)Le&jyt(&9jzR73noru`a# zN*<`KwGa^gZU3-)MSLF0aFag#f0<>E(bYTeHmtdbns#|I)-$)mJ`q9ctQ8g0=ET?| zdO}eZ*b_p>ygRTtR^5Ggdam=Zb5wmd{}np+Jn1d_=M`~P=M67jj})fH4ztb5yQqQW z^C|C&^LHAK-u+ooIK)yM)QM?t;|<{P;;{`p=BclzAN#JzL4jCwXkQB1Dy{=^KR`=~ zTrr)y7eiYBzSNs_DvO=4A6#EgGS-zY%Vi)N*Yb`U;6o}KR}dq{r9pT5wqZ@3NOE8- z9-(}D|Nc5732CSYQbL)!gPQ#RbD8BhK3dl{sUuPvei0tkvnJBxDEAYTesU8H$)g(Plra{VH(v3u^CO1~(+ zU0O7#)jaS4{NcwA+LuSm&VBcX2#Im3xg)W}ySNw%->orn1taZ&+d)}8gJTqA!u|5P z{yv?zol_3|(1(%M(EVU=cp?L`{Pi|ixk{U)*guFML3P!OSlz;zGA#T+E@8@cgQ_mv1o7RSU=Zo_82F?&&2r;WE z@wk}JHYEZ9nYUc(Vv~iTCa3u8e4q(yq<29VoNbKk|`mq%I6u)My=gPIDuUb&lzf4`MEA9^g8u z)vp8|$$HE9m_BTV?lOosIGa4jud=jIbw)O2eCMfyw2*S8?hjWw^nqws$O*M$3I1)x zR0PWFb3$ySOcGTe1dz%N0l;RPc`x%05FtT^f^j{YCP}*Q=lvp4$ZXrTZQHhO+w%wJn3c8j%+5C3UAFD&%8dBl_qi9D5g8fry}6Ev z2_Q~)5^N$!IU`BPh1O|=BxQ#*C5*}`lluC515$lxc-vNC)IgW=K|=z7o%cWFpndn= zX}f{`!VK02_kU+Q5a3m37J;c} zTzbxteE{GNf?yLt5X=Bzc-mio^Up0nunMCgp*ZJ;%MJvPM3QK)BryP(_v@ei4UvHr z6+sbCifQaOkL6-;5fL8$W($zZ_;CZp305C;~$hhRquZr-r)jjd1z z31%ZK{-(`P#|Um_Sivn@p$-vz46uqT>QG0B1w9znfS9A8PB2LaHdzA|_)yjXVR*l{ zkcu3@vEf7bxH0nkh`q?8FmoO_Ucui*>_a~P?qQrlZ9@+D7%MTpSnztpylXrt5!-k8_QPB?YL8Kx_On8WD zgT+111d(Op$^$&KLAN5+@?>f7F4~wFi(8TL8+szgVmcMDTp5l&k6~=rA{Dt}!gb^r zSWY<)M7D|Z2P0cEodj6E42PV>&>DFmQpgt)E-|#sSUU@uKed+F680H@<;-x{p|nuH4!_mn85rx>wz;0mPi2ZkL#k6;sznu?cXh!T0S>{w6 zL^gvR05NY64l*<+_L>On$rjx9!US;l;LX6@z}yi#2XHh)F@Oo+l)h%fq$v}DNmF2> zfs^_t0)3N-W<9-N?uedVv{)-J0W5mh#29QM5R5h&KuiRM=0Zvnf#lF=K#WlCgc#9c zS;qvh(P$!_a8JwyhI^ZJV2k+B6Z^64?w|1?5gyo6y{}923CRZfYVe1#?F% z7h2SUiNO3;T#JUOyovSs@@C1GtwipycA=*x5{BpIZ_#GCMuV8XK=x;qCNy{d7?wA~ zC+=vjls;ci&zW=6$H~4^K%v{p}Ab?U%C6Z4p%eC<3ExqU$XR<}LLF67A$Sr20DR_pJ3yeBa~ z^sw{V0FI5;UpwXsScYuhbqGQ`YQ25;6p6W^+tgL&;Ml;>S3CGpSZ>VrTn0m1$y$HU z&65)I!c?oREz};c=nLCliriqQX->4uivHTgd${GqeAlf*!P^B|jkU|*IdNP(&6C>4 zqOW$)Nw9nvjy^&`?E|gotDV{JmJ9Q~vuhy<`^C4XIUDt|j4o6rK^e8_(=YqC zuaR6TRVf@tUFHB079o4MBIh{M~4>WwnGgesQH*3?w(RA%hCZ*7)b!aNV=yOQ%o_Y=Lt0Sl*(9^jfRnC210Om$=y>*o|3z} zAR&vAdrB#mWoaB0fJSw9xw|Am$fzK>rx-~R#7IFSAwdu_EI|SRfB*yl0w8oX09H^q zAjl2?0I)v*odGJ40FVGaF&2qJq9Gv`>V>2r0|c`GX8h>CX8eHcOy>S0@<;M3<_6UM z7yCEpug5NZL!H_0>Hg_HasQGxR`rY&Z{geOy?N92Z z{lER^um|$*?*G63*njwc(R?NT)Bei*3jVzR>FWUDb^gKhtL4A=kE_1p-%Fo2`!8M} z(0AjuCiS;G{?*^1tB-uY%=)SRx&D)pK4u@>f6@KPe3}2j_har$>HqzH;UCR^ssFD0 z7h+VLO4o@_Yt>>AeaZKUxqyvxWCAjKB>qjQ30UA)#w z&=RmdwlT`7a8J8Yae=7*c8XL|{@%wA8uvCqfsNX^?UZsS>wX}QD{K}ad4y~iO*p%4 z_cS{u7Ek%?WV6em2(U9#d8(&JDirb^u~7wK4+xP$iiI6IlD|a&S)6o=kG;59N|>K1 zn(0mUqbG3YIY7dQd+*4~)`!S9m7H6HP6YcKHhBc#b%1L}VIisp%;TckEkcu0>lo@u995$<*Em;XNodjTiCdC%R+TX|_ZR#|1`RR|`^@Teh zl#w@8fI1FTx2Dy+{blUT{`^kY*V-AZUd?ZZqCS4gW(kY5?retkLbF=>p=59Nl|=sf zo1Pc|{{N4>5nt#627ylGF`3n>X%`w%bw-Y~zWM_{Si$dc82|=YhISal{N7OY?O`C4 zD|qb}6nLWJ`hUyL+E>-;ricg9J@ZNYP(x(Sct&OI$Y!QWr*=^VN;G3#i>^1n4e#Je zOVhbFbLpXVu*16enDM+ic;97@R~u&kh__kgP#!R`*rQEnA+_dLkNP~L`0alC|J;c; zeiK=s8;BsLE)KbG3BD&Br@(Ha@SBT&$?xX`=$;eeel=|R_dIr6-Ro?=HEjnsJ_b`1 zK6Yg^-6;^2aW!xeTK)A~3Rm|L^FCHB_I>jIju7ZGo&N_1*QHkxH2!!%@o4iZ?vntS;&zJdPe1dH#04YD93A44o-MpfD zP{rn_aq>U%RDvC2+bp;xPlsOzauIi3*Lf42`jVKKZCRuKdYhi>FDuL2l=v{$BCN#Q6796s%r-AG$Q^t(3c@ zD?w0UhYr11@feiyl9kY_@H8~|xlmO<8PfQmj1!$@WieW@VxR@Psxfe-v9WCi1+f>F4VL?0O~K7T?m4-u|pSkBpUJZZe*16_wAp zSYZ@;k`3;W3UHKUWc8QeI}0jH5Ly=cGWQPw(Kr2fm=-5L(d`lcXofy8tJY3@Tuadz zYWXR{mW7XT!RF#RVCe%}=tM*O6!AD3^(!8un~opNI%Uko7$5t@<8+?; zTxDys(MyyGsUjtSu9$+|_-t!U3fVb1dkK?l`17<+jfl=hrBHnDSV>^R1=TnQeyqbW z>ov#l%!1|S!1>8UUxIdhQq`_klcHVx0{?#>K3#$4GlXncwldt!g17TcvKq-jo_996 z>oA=tH9CqRl6Yw?Uc`am!V?lHJbizOJaVaScf1UP5e7Dbgabq=b!B~T&_F6?ooU>w%x0A zH~&MHJ=q`fCH{U<7MDXE4SD32cDZA)WJeWkllJ`UspWaS#eDe^kg^oU_A14UE9zG-a^g{xaXf$})Wik>gT zl#dkzGr(;h0JZDuFn(+k8wNq?PZ5grQ<+sM?wBGt@JnH6v0#or-5wBQWKU~(S_> zkE!tc*ZJ1Y&*p(xX84POb3cClRMd!^qJ#CAZfIepEj-<`VURS_yCz0(?*Ixcj4 z-!zV1_QZhpm=0<;*(nm+F>T=)o?ep@CK5I%g^VAA+RB25ab?7)A~z~egru=I1S|@v zH7tXV!0wmGS^qj#e+MY;C5eUjEAp$Y?LDkS^QPZ}8WN85?r$u<-Epi;yZ1|J2J`se z$D6DpH~2F=eI0B&=UFAUnJvZAmClJlK)sutJ?M>xpZiWV&0=G4MZP+x+p>EX=HbCz zxls%Mw?*u^;LbHWIWCyq+yi)`GmFn9J112CZda_u@YIP%i;srFg_paU02Ifij*7}l z&CF-(3|>*a|+vbNR`^RP=9G?ymEJ0Z~)d&c*UE$UMepZ zcITr{0WqhxkjUnM15js_gW=e3Uh|y6ZReaXHIz-=p`x5VvB&rH9y>Amv@^WmXFEw) zQXYrk3feir=a{jMQ+wDIkkFnZ$k{sJakHn*?u za%4b!00ev8NVLM1TY=cl?KB&55BY_MU-sg?c>=Dbz_W{(Z~c?HJi*XpYL)C6Bd8WH zt+v-#0&o~@t4qESi*)+eW%@VD0|o^yF)n0hME$UtXF$*Lvh}7sso{`|pn*JDIy5^Fm3s$5*zEE=?u5<=l8FJc3r%+H} zdfoNl2J0^~!-*mOL5o-x32|e0Im*E!yY7F7E5N)W3>+v_LBydlEx?4$RL5f2oYRD# zaR0wv(-p~wO0eLDl3K=%`{5+0Gd$ktO=W)gWlGZJ0`K z$_RNA=ckrfa;H0KA~dR^p�(p-{x$&=IACIfoAR!za)F-^da-t3#0Dycnp zwO~NVXwXCl;jE<}>%@xz|=8fIJAB?>+E{7)|4l${4ngA3G|=r z2Dyv;VVWSgZx9Wj>qUjleGl3Ei9K4>h!(lPS%8VOG>Xu0%6VDz^O=bjJmuP7>DeUv zrbI}MlHB^^d?{zv6d=@_ZD2lg1&G7UjnVN{1}9WkaM3H~btX0GtSzB+tZ^qRgWo4m z!GmimlG$=wgXCnr6j@m<1gAL46#T~5Bnm=2{^@>|t&`9mkEPddj zAvG~@Tv~TAm2i%VW}R-g(Z0)z-Y|szHr@rk>4MAyG*Ma*7Yh#H7(!-5>DZ@8r;_dx z{prSe<>~099F8vsYd2xff7uAS%7{S)f(|@me3t2$iy&NEc7OUEchp@9A|X;;IA>8!oX+y(BKJ$EzV* znR$z;!L$s7uy@{OT~nG#B!NRraT8(X##Ho!0r_o@gg0CA-9H^;-uE&?$2$nHv_00o z%cbuUc-tCx$Uh&EZ4Nf4Zgqv)Y6>usG3>GeQnxx_Z6+PcbX-+ysbt1hQ`K1LDpOE? zrAhIZhSN9yVIAOa22gn577tbc&i3|3V8NWy&!tw##`}9*x}gtI^h1DzZRA>UuaJG) zaZ7j)dq!O}{?#8Y7~7i6fHh4{`pL?>-18|p!S75Y#^DM>-S3)vuZG+Q7l@ek zQP~#cBpWgg#mApc_sPYjpw8odQuRokmTkzcNl`^CcKB7e&;zViV;{Y{o^Y$%7i0m# z62%#1Lq!RC?}lK>%mp}T!3Xv;L*0v*>USLm``N%>w>@fwC+#T&Tx2bN4w(20JB}oU zuSa6v^kXi0xPs?pbaOHnyiqq6By1EZY9OZ^^QA>{q-Hsd&m`pbQ%8121aWG-F5xf zlZ%;B{;C>X19|`^_?dVyCq>n+41w7|!tUS!{9rHlbhX=SZO5CQ^;!Du_E7*`GiR^Q w)2!4MKjfSAeNo!9>IaV6aUZ*?W>} zs4%E?srLW`CJh0GCIK@hTkrW7A15Iu%N&?Q^$0+!{Tv&|t^Y@u%!L zglTg&?Q5q#ijZ;&HBQ?FNPp;k3J5!&{^+SGq?AX~SiOM9jJMRpyP?RCr@z38AQyy&WRMaC;n4una$~nJKSp?q|s8F00c9?Q! zY_ovvjTFm+DeQM^LXJ#v0}6HRt3R1%5PT*}W!k8BEM;Jrj8dIceFo2fhzTqaB3KKk zGlCLI)gU25(#u6ch6GeB1k@eHq7l{EHXv0n6xE#ws#ri}08kkCf8hUt{|Ejb`2YW* zvg}0nSSX1m=76s?sZhRY$K=3dpJ+y*eDULGnL2}4>4nvW^7_<~wIM_5fjvwt4h1|g z)g0Z6ZFq9j<~9~b8((~TN{Z?ZQfw|is&Xp~AC61sj;xItKyCHdI|tCMC_LbXF>~vR z=w6V3^H=W4CbAgR4#xw}ETTwu2guW~=Crl@SMXv85jQ=%y!s^?m4PI0My7MWICO;- z175jm%&PcPWh8QdOU(#8bp4!N7ET-+)N}N2zk2)8ch|4Q&lPFNQgT-thu053`r*h3 z_8dI@G;`zn;lH$zX3RzIk`E8~`J=BBdR}qD%n@vVG1834)!pS1Y?zVkJGtsa(sB~y zNfMYKsOJb%5J(0ivK8d+l2D2y&5X!cg3BG!AJ}910|_${nF}sC1QF^nLIhzXk-Y#x z0)&1iK!O;Og0Ky!;`b~v%b$`S4E&fB)1NB4v@8wr( z&+NX4e^&o)ecb=)dd~C!{(1e6t?&9j{l8%U*k4)?`(L3;Qjw z#w7FS+U(94MaJKS!J9O8^$)36_J8;thW#2$y9i{bB{?M{QS_inZIJ!jwqAbfXYVd$ zQ5fC$6Nc9hFi8m^;oI-%C#BS|c8vy+@{jx6hFcf^_;2VRgkoN(0h!_VSGmgNPRsxI z8$rTo0LaYq-H5i&gtj81=&xU?H-Y2==G@uQV7E`@+2E9XQW@{&j`?EOktk|Ho{HU>ZqDzvgjwBmdex z&uZNd2C1h{{}2k6Ys9$*nFP3;K%u!MhW`uZy7Sn`1M1zs@Es&;z*Z>Gsh@-3Fe6pE zQD2@cqF((NrRevgvLsvM_8;;iNyJ5nyPyy?e!kvKjGj`6diRFBEe49Oa7wwkJFV7Z z$YT&DWloYu-H?3<0BKn9L&JYDT-SK~*6c5pi18P26$JESKRYj{T7Zk6KiRJcbvOO*{P56Q6s8msbeI3>|j>K9}Q9UBeq*inXKemCm`-<5|-$ZyN4u$(3 z&HcvqehFD%5Yrmykg-^d`=BSa8(i=>ZoC77^mWY{evp(km@aHqhUECBz76YiR+VYK zY_avFC~V3$=`6C4JhfHAQ@DZtUOwH`L;oYX6zK0-uI^?hS$ALfq}A7evR;ohJHij} zHSZdW?EKv9U1s4oD*<(0oQ*;MaQ6@cvGL zuHCPgm_NhVsgp^sfr*ia^Db}swo1?O(_Q2)y+S$CBm+g=9wCOUPbz(x)_GbaKa@A7 zuI&!ynLiZRT#V%_y_-D`0Z5lT*auoe{(U5NylTzFSJW()W-#F6*&A`LNO1bV#Y;QJ zSbLBnp|B^dtK|KIWC|No>JjWBWE@n7O)x{&^E(WMeMvp57#qA8m* zeTow*U@_86B#Fm*rxyYu5PRWaWHx8y> z*qmHEp(AMDl0v)ij(AY8fnH=~ZwwjVAbu*m5;xPfidh@ov6d8g zfJsi&!QyK53Es%sC39ts;54V68koALD4b|%tNHW0bIkZAJKa=W&FomJSEDT>W1xIX z1x%Z>AvNIsSPLcn3RTcHXb@KB?cuM)=x6fcIx>&(GxqZ8w3p#jJ(GVgc*`c0HG}dv zIop&Qim!K1NFwic%07KcjWgHBPUkq7f~lj;TPqVGTiT#cUeim>;nY`>h@a*S{qQex zQ`z62WK|Mj)Y{tfF{;T4P;c8$Q|KU?Joh zIkA^z%X7z|r>4aTh@|StTi!-r1D!g=zb#3d#{{&K3CqE$Iz-UH<%37c zRfkO`&uM%#AD3PHv`g5t0e^O%nVL0d{Xlx^EjEC3#skF@`zl-7PF^0oxW)1!C!JxR zWvuAHH?)61FKA1QeT*_sY7;_Id#!GmV4n`MO{~sv}VLSK` zXRw=Y=Clz*00B(5y^K;gCZMAzjT5+c3IC=)l(9VIDdatpxj3y89WwI|bH&$!ZEvp` zPR!T@#!(|KfI-w?!&+7$N3F6>tD{YO4Qg$d_`nNEdfVCha9vaPn0jI0`)`@*72hq! zpU5ND^P*RoEkbD5o#az(-g=Y)L>HH>Oc%}$ zT3Rs_ih0;4+Lv4Y;@Iv(;fUbQ=i-G(#>vghec~*j(I#r|5mqFiJBpzi&hzEcD{u$< zRsm0BVYn=pT;0>R(itW|*D&;O%bOc7et9ACaH#J>z3A1A~6fdP>pmbM%xzm4>|;c_?B+%sl;Qs2{t!60$^u zH1t@9^6>;?!FuusnISi$f5CL&;z?EqJN$FBuWDA#D5`cy_UvCFIVvf{c?4N0teh;d zET$7aVbj08KTQS!x?Nd1Is8q8qFzs}a=!@nJ;7FSfCY^T@D-gpw`w<6e#X3+;O}1h z$%I!M)0bg|EKUA04Qjn@+x{Rj8vt6Wn!R|3A92z}^$KfF5(#CWr4y#~re1CN4i4w0 z#GsypBR{xA3Er7sgAi(|}1-W?s~n$7?K|9WL8kpVfw-;#b9 z+mn;=ep!162U5R>_t}fOt~tE?s#m( zO-S$7>Ay6*hHdZ)7_oU915WYYCIX;hFI-U2EWYX!pllONr@Q--2o~`!isi6vTPLJ4@(|o=%NHYjo0_S&q*UQIROw@*N-By@PaQ&;YxFZ0aR zX&}LeOEz);#m~Hwm^VAY8DK}b$F4bo{jMN?d!lxKPhNklzr^Cd`0f4oJr^z=I|l`* zm8AHm*fPV`0=lF3Pnnp}&J0N1X@}-D94YvmUabFrLGSnTz7Mu^21F#O5tN#CuY9Vh zUZBH=ez%h*wkf0hBtXJh1SN3d+IF{gzT7lp)j}n?03lt;XSQRAh7qd&v;RwTYDuQ# zbI2*r<>?x-G0@hM{;%{VBD7nLKt~D`T~-HAt5;h%i0_=Ifs=yHma5dhJ+QMG?Ux(a z|E?1CMy1!~oA`FP!k~iG=t&5#>bVdz=peT8HMB6Y)#7PpETtNryT^+Rv3vpJaF^zP z{H}0-LyV9Fu21ID%wO9f1IKlFr1p4c{o-?03vyB-tr5duk^&L$;m_|f$vs`^Sl{j2 z95}oY{LlY+=ZS%J+tZoXCd0*sSU7w^gjovXn+g7uyra5{cU49@yHf#Z^Jl-$9cIfo z+AJuxH$VLb=#+uBbVmUjnx zxb1pZ@-O9=AIk4@S)m6fJ2?{HrNYwwnL3a45muuNjr;6$O`bGEM0T4A2_S$t=86*- zcO+0mywg*j#A4mU}enR_!cGmIYQ;qwfchWtFEXL)AK%*;=j znYne+hS4EMy3S)C*mZ1KI>!+)0V@9!N6H$Y}~MJ{rYuf zz^KljIWvFi-?#?V@LPR&c6Nn{!=XM z>}-h$S76;$H{E{Y%@^zlmOl^efBwa%UU+jJD9UVukQ3ti_kH-?H*RC0?M1W%FCvMB zM_+v6fk$6X2sx)-p~B3&Kl{nscK}pNLM*qjtpaf9>AU{-iPKQZR8yCg!TY}Qg*(;) z)gdvCcB%kppZc$VdvsK@)3l1{&DG!d_6OHOS`y=ITLEVu`unSKA2E%JD*DVX{LJ}K z9l>hMRDqxQh0lnpGHpVYneX}eA3Pt|2v%=q;rt)``R|#bDyB)OXY&vI_@|*}h}G?^ z@aZ4_!7cQPX`!fW_?{oT1NTwHs#l5L-0`E|y@48<3Q^HFf8=Idi zpJYD%1MkII!~|7I^WGo)IF=?{>ACnjJ_WUi39C}!Q{QnheVJqeKKqq5^o5CBde(g9 zvw$X6^jz_^E2$wSw4!q5*RG(C2_^XO$HBn_55vbl44OnTTRwRaePP0vo{K)U1#99& z<>rq7V&V(<&@I%MFoN5zrY}sz=(*-L&}1QQ*a%`u25h{cFj===17eB_uGuzG&byQ< zrm8BJZl4r_E$3k|Wo6FW0-6M7>qac5uFQsQcmkLWGfeH74S3Z_rJ!jgN++!@i=HW8 zkyjI(oPH-+-N#Qc^-mpNO`bc6r=2-<%&Wy5K1vfFJB(L_IkpS6fY^NmuL8qsgj>MD zn~BHH9WM~32_3vd=W&B)k7F9q%stJx+b_L_X-4zr^LVUMCmyCTA3sWtkvsmME?Xiy z?xOSfB=_$oY06~J-HcCq&)qcW{j;uP;?Dm}=hkq?zh&n!;m((-G-u_t|6x399Q;>A zgNpxoJNj{u|MFDH7Rhq@FCAl0dE|ddnl!oh9{Lq?@JDoR6L;C941IK`ISfdE$4S zE0AUQ8+2|Ncl_q5QkSp#AODp~(^mfP&%Au@@|TBQwoP`UU+V{6u8|)6ZA{~uKmQ*M zmrMTDU8S~8Eqi{^v0Ug&5Upcm#y7Z1(RbgZAG8jB$eRwCspQ)>5;U)oGZ&E5aeR*K z8Yt`Y0$G))Yd(Y3KH}tA4`-_QmNke5hU_|nq=xtyjwW(_o?itz>B>WM&^63bNdQ)k@-IgDHW*RW$Xo9#RzrTrCn7L2H{9Amq|qNg@#eZY=|P zCoI?2s+L)zsM%WX(NbVEY^`C>lFjIBYmJ6@DKJ0ZT4&F&WHW!dwa%QzOG!?jY_2(S zDcEzZbz*2Q!43|z))9yOP9X1Xt%DXzwY(3tl-TR=Qb_MbZYRrooh;dYYmS!U_as1(=YVB?Q_A|tNu5Ut&_q3jbfDM zoFxT^uEuH`nX3*sB%K?GuHUkweYReBwnHqh3P)~`+s3+Tj!rDA1e)8vuBv5J*IsxC zkd^~b(aGzArj08{>cnzOuy04C+C`}gb|Yz-1avxeWzev3NzcHbz_&4W@QCr$z3~w=8Ua- z`;vfG1~BP8CyLb=F7t1am~ph_#|O%$khSJ9%Vtcn)YmpgQxF?xM^_Vb+5fnpB^W0I`f%X8gb9#X{Q-yJG0{Z56aWeI&zPxnf5pdJA38bM`cYnS#x)% z`n1tFf$i)W-hGm(f9mde^=X@NcV_lFb=P`4&CI&H=IArijGwdCk&X@uQ$5xmj!~^? z#$ROCI)V-~t%L%GS#wo@U27ddR`4`3)WoB{R-4snfNrfee|kI8^bu#yDgYqOwas9# zmcb`3!kRJ`Cr=_tq)8aMt{aGtUZsqwVlj6DgCGre>AEt&x8H_in!x@uwgExIh|-mA zjdaC(29~CTVSaaF7HPbql&*9Uo8P@f)>LqCXclr}peS7_1BQ28u9PO8Eq1@`l3q9o zkfKCaO2?T?ZyA6loW<#9_c^O=m<&h}CA!ineAD@=(gbq`vyT|tiJ6#^B1$P;;qax` z55k&Q?wEh#87niLo*+n4L@65J(Nz~=Ya%7^(miLb(E>A3B@|Jjl;FU&D>o|9#7PJH z?|ago!o;WC^h=|T7PVBg(DAB}72cyUS zb(f>Bwbr!F1eTCO5fpj<{PqhY5>143p?~5ZA5H40);=@M#MYvrB6gqHbU_!GSY??i z%s=>-ciA4*zOOZHds0a(kWewZ4h(k8h(ua7HX)Au&mY~H8KY6(_cb$_&fA@QjIW-*heP3%$d!m5^AdnT}`12qA^c@!g3DOwZ5WwE2?)-yU z!)Vx#Mtxt?FzFTwK!77sy7)sMzUd->w4^bxtpM2j!b1pjgyk zGKwWGeb4)^zjy{9Es&PU1}gwg?|J#L$KJB7ett9@4M%-nGtIQr0>Fl@8-yh`-+1ed zS6r}(MeSvgSoFmH*_WPu@i?}!AB~2?;i&IxrkNg~cQ9Som98tcq)k^|eeER|Zl77t za-TVUc;DNvzVXJ%w52+#weN?+;i#{f#!Oc&z?81*N>^e~ltRS%ZI@lR{rs()HmqG! zx*}ZrI-EZ}ckJMiy>A^oofwDfC~IH)z8{VHKGT@#E5I(Ll&+MnMCl>~AV7+>Gi%mF zkU1QlKASdR0B80!YhP<$Ywi0?W2Ux45oPfxv9QolWzJPD^weBfvo4SONxP35106sAmh(e+vAs0GboFD@PvNs)jNPvarhW}0YliZEg{Gazv z+JDIpoojRVPr<*C|BTq<`6ga{5q^8^!|0cxe=rZ!zxH3%f5ZO0cQ*Z<^$Yt2{|Ek0 zyT|*F+CO@K;(owBKtGg!S^xj-Z~rga2m6nxKl9J=fBSuNKW_dLKWhJKeg^-Xe`^1? z`TyJj)8E!#>_3Y?uKrwqq3LJ#SGU>AzUO|6`nR^u&3FNN_jGOc zw)Nw`wr3yIKhgcee6IaN=ws>M{6677%)hPwx&HzC(f&u~&)6@b2kNRzBDQAP0*H73 zq%McOmRk{B3i47qRe=DA*$&odrbEJZ*pV9XXa&p@wlW~@Yfs>V{yiTtplMhgM*-Bz zsSnlq&pG;z0OUN%$~$3=g1UF+G*>+17eRbBf3=y79J}KR8owon@$1Z7MIrvvWWH)34nK2SD)GsrJ{l z1Cl#oVo3A8qY3e=aF)qzms~FG#2$LzT=gs&aVMOj>(%{y<&O0cG!nCiESl~x=^dF{ zKvj8F1K8Ng171wwM5Fh4KoQw`_c6#y$(5cAm7e}~nJ#A*fx+c9;y#&W!#VukR)ugk zKp3=+;Ut+IYn%m+r4d*<`L2h%aDnX5}^!5R|H;(34AoVWjRx(msBZvk;rCI*|~ zdOijqI@9Z{Vu!~jvHW{lBa$rnl4+!s_5sfK3bCGk-B%iDe&@-}+%fOKU|(9?V1 zHE8&@4z)Kx!RAvAs z!Wic9=o#(bg?kc-G68-m(jZ`^=XGUXb)}t(%&~sjFnV^sEX%hSy6UKC4iOhgV=BHV z2w`4g7Y=s#Vu2B_?#VQ|hP39@eArgfX>-0S+dd&^mx0*wp}>)x;c4RUgxz%;oNe?& z-7-lJ@Y^2^C;=qJsxx5|xF)*pTGhch2B&kxtn;f!7=gznk}I3}Dh}(CoMXgA5-p&kS202!l?!fT3t|HG*rIP~mS* z$Wjo}jq3}z$Qq!9yrtd3fM0N629ZM?LU$nv@Tv9b7I;D|;0H2dsA~g7Z7zp1| zB)XmrkMgF6OQr|R)HHD^TE{Y#j!~SR?b`Xt3Qs`B+x<hxexYeAjMUWdZ-*n9%(1)Wb(n2U<><7&9dwGJmrob)4%H? zlQ%z+L-^$dFhhH|@u$%97Qz?*Ynh2VG@q|?8vY&L74&fs&_b&3$x&Oyjl~LQDRRap zJU4U*R+(2Dd!G+lh8!V{pT_UJn+^1Qg6$` zqkNm(a#hWyc6SP+p5=C4HL8-m`pO`5o~`-LI?_h5CsH?F_%?nDodmz&pWR20WTpJE z?N|wSzLjMUK8E)a2tI}Lf;+;*M|h3Y(U#>)g1>zk9|Hd}oZAa2 zLYBWBoSW!Ts!RwXr^8h+U*@{9{zqS^iH)Op<;r`Uw~nc}<^$V~_i%$GFjaG?X1@E|M`h)nekvFKt`Dh-f>@|0-`Xoq)o` zx;JmzDfOV9qCx|EVpogEe0LK~tGS?5$$L_i6P$P6wIsCQaP_;d{{N=iV@+8LI}o#( zvo*Ejy=IIn{rdIQh1&q-{EuohpVOjJ^Q3lD*YTp37$^RRgn8ihpdu5{Ct%5-KO!VL zcNB6dUajXI9jkm-P|i3~GB-A(X`P1Oqqb$tcku)UJw0w3GeUijb__#QT4j%64z%EeB7S?jlWwx_7&+EEvB|6N=kV}DwnyAlX=?j`) zmU#!$*^@NIu#n_d7;WoJV@*Fbv9|yJO4;n|BNF2xy(54RyB>t~8lUOUW$&2%Nwi1y zx6JxW88>U2$#qhl^6KUbtmg9}D0o5vYDT7kWJthLGkpGnN4T>{St^_EU>4;DmLF9o zr|LqsA8_MoNLQ=}w?8u!ziSZ@PC#Y<#9uJFo-ozVo6D;<8j^1$c|qAE3ZTE5i~zmE z$BU5lw6l=EWsg^y^;8>r9qH{xfL|~PZYK#md$zZ0?o11gV<*WSW~cgy2GYGQir%wf zt4iW8D+;s*;RGrmd(-T<@2&j(Cb9xhV*l-x`TpK`xq|7p?5R%5*s!69?2c!cC*VY* z2DE^9pvOPLU!1e}wA8S8opcTJ3`NB>hY=JQnL~QFXR4K8A$BqJnoEB$wn-%u@E6Mh zCfMF4kusv3N!(aHC}4)Xs^xoOwXd%e^6pi5|DZo=Q25j+6HlJ^7FodH6y1bMROR^q zGu6)fopS`h%Sw<;ZH%TEPf+#81-#_v+@8nlR0jLcIDKQtLleOC)6yLZgC!D9X3GgS zohwU{v$jl=quD#Go^hB{`@Qw*a%`(^jyT~=q^bWgGzRj;|12J55HWdCWV}EB|K=%N z3Nq-qxJJ`>^|1MNN+q}zTB&ooE3j==AgK@^UW<^oSbeALa2peF)Th6{@sj0KyMNHZ zksk1+MXN2tv+22A%cQOGpS9)77(uP9mh+!5T5ERLvF@b}$+WvXM45Z?-kCa)fb~f1 znVbTD$Gx-0Zxc`0D@YgHakge6SL0H`-vN_x?AP0>iGH0_EE&=v83hMJgaKAI0jJXm zVxVz;X<$v6WW7}fxROO7vr#YLP;;lij5VrX{;>7kK6TtOH&6|Ar^xo>00%+u$C4@# z>!jOt6*3><171+WxoZnKDTzJtDRw+T030;yI}~uV@9fCnei^I*j>Bp&mzP2d=FPb_ zCM*l_+$LDR3B*a!A$g#>xsrZvw0lckxmMg>0aQd7tPyN=t{dgXb;Ie+T8{fZH=gdu zM7Rg9c(kg(Jg0?ARRRl=AONFKrvFj)lTY$KfT%6^6s`mk*ABGhsce*LsoD>K{z_M2 ziPpnu+lw22PfF!CoId^6n*G4H(Ix+#+N{C(da7t1BYMGEaE#PdpOLxsVD5riQXHp@OX;`S`8VnpM~)I920w~<3|mo0 zf8~Az`*?2?H&gZ&*K&bRkV@qzvMlRHXys8*Ze2+1c?5o!^+$&MHxB@4Ee5cke52R! zmn7AZtY6ST%ixgU5)%$%QcwHj7Es-Qu^kLAPwy%7pGBw_4Q9#da^W2$}axNHr03)_nw z5?yuNmXrI5HgS46)c5&}B)Tts49oU92>3xBLLy}FMUW=84DQbVq^;7_e7|(Sdz|&J z73N+M`rc2rt*oSWu#7S{*s~nH6HRHJS1SmzeXk|;CA)FI4bat3<%}nkB%;;?=F>B7ms9QSxv#@+69;@>QaR?REYX4&)=itG>rM{<{A79Rmk)`5ON#GL`*KX%}Ihk3w(RtM-WLt z?f&FLF}4N^yE!(pZ&Yj&Bc`~K0@4_}*0Om?wN|}4WJ>WL;G^H2*QpgEkGA~OET-Km zkwz|5{6dnz1U<2Pe9DNL>3g5FEIvp1jzP&2K#z~j%g6!7B;^zF+o95?fV{3mnB8*RMhCDNp>Am-3e@jNfMj?jHV$MWjk!DDKP zkAz$Y?Sr)!GUOX}qTQ5aMh|wq1uq}~joWyKl=b_LboM#wi{CMuz5x6BKlA-qy++cM01D3b7`uD z#l6M4pI;JCypO8JZ6?U&wNxR!{4oB_ zlV!x9+-&Qy6{%MQ{~yoZGkKiTSC`YS_j22~G;xUV855g2&C(zm^V!(wpcm@zn{%!g z4}JGo(sGZ1O~to-}le

UmY2RIYtNPVDpE$%vda+HD#3m z&VuXJ{BK&Qe+rBa7eq}Q(bq|tn(RrJAk|ztj2(i{d>nmQnM?;HF2k&9sA6up5tmjl z7lySlzMbifH17-m-Lwa_F&e7nOH?ESi3#ckR3tsM+jsck3`oG!uMS}|eAwVXv>}qxwq?QY%QJ0}r@^;fhuUA9W z*BVl>TGo&N004@xSiwDUXUvp51sVmqO3m)=B55aPwf@0=e}cN+$-BdKxY`YrT_4)0 z_d10#i44Q*rFr8MC>*)v$EJvz``(pb{e&*6k+b zsMz%($|1+8hn8c2?P(l@;Rb&CsZeYoCI3?2!LqjbwPXW3z4G$Qfj=cT5Yb%vY0(AX oeb?AaKtwrnc|$|zzw9vfvn^aJJ!zd)XFXqqy0000001=f@-~a#s literal 0 HcmV?d00001 diff --git a/examples/llama.android/app/src/main/res/values/colors.xml b/examples/llama.android/app/src/main/res/values/colors.xml new file mode 100644 index 000000000..ca1931bca --- /dev/null +++ b/examples/llama.android/app/src/main/res/values/colors.xml @@ -0,0 +1,10 @@ + + + #FFBB86FC + #FF6200EE + #FF3700B3 + #FF03DAC5 + #FF018786 + #FF000000 + #FFFFFFFF + diff --git a/examples/llama.android/app/src/main/res/values/strings.xml b/examples/llama.android/app/src/main/res/values/strings.xml new file mode 100644 index 000000000..7a9d314e2 --- /dev/null +++ b/examples/llama.android/app/src/main/res/values/strings.xml @@ -0,0 +1,3 @@ + + LlamaAndroid + diff --git a/examples/llama.android/app/src/main/res/values/themes.xml b/examples/llama.android/app/src/main/res/values/themes.xml new file mode 100644 index 000000000..8a24fda56 --- /dev/null +++ b/examples/llama.android/app/src/main/res/values/themes.xml @@ -0,0 +1,5 @@ + + + +