Merge branch 'ggerganov:master' into master

This commit is contained in:
R.Kaufmann 2023-03-25 21:23:56 +01:00 committed by GitHub
commit 098eb922b8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
28 changed files with 790 additions and 973 deletions

1
.gitignore vendored
View file

@ -19,6 +19,7 @@ models/*
/main /main
/quantize /quantize
/result /result
/perplexity
arm_neon.h arm_neon.h
compile_commands.json compile_commands.json

View file

@ -211,17 +211,6 @@ endif()
# Build libraries # Build libraries
# #
add_library(utils OBJECT
utils.cpp
utils.h)
target_include_directories(utils PUBLIC .)
target_compile_features(utils PUBLIC cxx_std_11) # don't bump
target_link_libraries(utils PRIVATE ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS)
set_target_properties(utils PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
add_library(ggml OBJECT add_library(ggml OBJECT
ggml.c ggml.c
ggml.h) ggml.h)
@ -239,22 +228,12 @@ add_library(llama
target_include_directories(llama PUBLIC .) target_include_directories(llama PUBLIC .)
target_compile_features(llama PUBLIC cxx_std_11) # don't bump target_compile_features(llama PUBLIC cxx_std_11) # don't bump
target_link_libraries(llama PRIVATE utils ggml ${LLAMA_EXTRA_LIBS}) target_link_libraries(llama PRIVATE ggml ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS) if (BUILD_SHARED_LIBS)
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON) set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD) target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
endif() endif()
#
# Executables
#
add_executable(main main.cpp)
target_link_libraries(main PRIVATE llama ggml utils)
add_executable(quantize quantize.cpp)
target_link_libraries(quantize PRIVATE llama ggml utils)
# #
# programs, examples and tests # programs, examples and tests
# #
@ -264,6 +243,6 @@ if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
add_subdirectory(tests) add_subdirectory(tests)
endif () endif ()
#if (LLAMA_BUILD_EXAMPLES) if (LLAMA_BUILD_EXAMPLES)
# add_subdirectory(examples) add_subdirectory(examples)
#endif() endif()

View file

@ -212,7 +212,7 @@ $(info I CC: $(CCV))
$(info I CXX: $(CXXV)) $(info I CXX: $(CXXV))
$(info ) $(info )
default: main quantize default: main quantize perplexity
# #
# Build library # Build library
@ -224,20 +224,23 @@ ggml.o: ggml.c ggml.h
llama.o: llama.cpp llama.h llama.o: llama.cpp llama.h
$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o $(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
utils.o: utils.cpp utils.h common.o: examples/common.cpp examples/common.h
$(CXX) $(CXXFLAGS) -c utils.cpp -o utils.o $(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
clean: clean:
rm -f *.o main quantize rm -vf *.o main quantize perplexity
main: main.cpp ggml.o llama.o utils.o main: examples/main/main.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) main.cpp ggml.o llama.o utils.o -o main $(LDFLAGS) $(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
@echo @echo
@echo '==== Run ./main -h for help. ====' @echo '==== Run ./main -h for help. ===='
@echo @echo
quantize: quantize.cpp ggml.o llama.o utils.o quantize: examples/quantize/quantize.cpp ggml.o llama.o
$(CXX) $(CXXFLAGS) quantize.cpp ggml.o llama.o utils.o -o quantize $(LDFLAGS) $(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS)
# #
# Tests # Tests

View file

@ -179,7 +179,10 @@ Here is an example few-shot interaction, invoked with the command
```bash ```bash
# default arguments using 7B model # default arguments using 7B model
./chat.sh ./examples/chat.sh
# advanced chat with 13B model
./examples/chat-13B.sh
# custom arguments using 13B model # custom arguments using 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt ./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
@ -195,7 +198,7 @@ Note the use of `--color` to distinguish between user input and generated text.
2. Run the `main` tool like this: 2. Run the `main` tool like this:
``` ```
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins ./examples/alpaca.sh
``` ```
Sample run: Sample run:

View file

@ -1,6 +0,0 @@
#!/bin/bash
#
# Temporary script - will be removed in the future
#
./main -m ./models/7B/ggml-model-q4_0.bin -b 128 -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt

36
examples/CMakeLists.txt Normal file
View file

@ -0,0 +1,36 @@
# dependencies
find_package(Threads REQUIRED)
# third-party
# ...
# common
set(TARGET common)
add_library(${TARGET} OBJECT
common.h
common.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(main)
add_subdirectory(quantize)
add_subdirectory(perplexity)
add_subdirectory(embedding)
endif()

View file

@ -1,6 +1,10 @@
#!/bin/bash #!/bin/bash
# #
# Temporary script - will be removed in the future # Temporary script - will be removed in the future
# #
cd `dirname $0`
cd ..
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 ./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins -b 256 --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7

16
examples/chat.sh Executable file
View file

@ -0,0 +1,16 @@
#!/bin/bash
#
# Temporary script - will be removed in the future
#
cd `dirname $0`
cd ..
# Important:
#
# "--keep 48" is based on the contents of prompts/chat-with-bob.txt
#
./main -m ./models/7B/ggml-model-q4_0.bin -c 512 -b 1024 -n 256 --keep 48 \
--repeat_penalty 1.0 --color -i \
-r "User:" -f prompts/chat-with-bob.txt

View file

@ -1,6 +1,6 @@
#include "ggml.h" #include "common.h"
#include "utils.h" #include "ggml.h"
#include <cassert> #include <cassert>
#include <cstring> #include <cstring>
@ -112,6 +112,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} }
params.n_batch = std::stoi(argv[i]); params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch); params.n_batch = std::min(512, params.n_batch);
} else if (arg == "--keep") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_keep = std::stoi(argv[i]);
} else if (arg == "-m" || arg == "--model") { } else if (arg == "-m" || arg == "--model") {
if (++i >= argc) { if (++i >= argc) {
invalid_param = true; invalid_param = true;
@ -134,7 +140,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.use_mlock = true; params.use_mlock = true;
} else if (arg == "--mtest") { } else if (arg == "--mtest") {
params.mem_test = true; params.mem_test = true;
} else if (arg == "--verbose_prompt") { } else if (arg == "--verbose-prompt") {
params.verbose_prompt = true; params.verbose_prompt = true;
} else if (arg == "-r" || arg == "--reverse-prompt") { } else if (arg == "-r" || arg == "--reverse-prompt") {
if (++i >= argc) { if (++i >= argc) {
@ -198,7 +204,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n"); fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
fprintf(stderr, " -f FNAME, --file FNAME\n"); fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " prompt file to start generation.\n"); fprintf(stderr, " prompt file to start generation.\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict); fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 - infinity)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k); fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p); fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n); fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n);
@ -210,6 +216,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n"); fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n");
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch); fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --perplexity compute perplexity over the prompt\n"); fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
fprintf(stderr, " --keep number of tokens to keep from the initial prompt\n");
if (ggml_mlock_supported()) { if (ggml_mlock_supported()) {
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n"); fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
} }

View file

@ -21,6 +21,7 @@ struct gpt_params {
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions) int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 8; // batch size for prompt processing int32_t n_batch = 8; // batch size for prompt processing
int32_t n_keep = 0; // number of tokens to keep from initial prompt
// sampling parameters // sampling parameters
int32_t top_k = 40; int32_t top_k = 40;

View file

@ -0,0 +1,4 @@
set(TARGET embedding)
add_executable(${TARGET} embedding.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,3 @@
# embedding
TODO

View file

@ -0,0 +1,101 @@
#include "common.h"
#include "llama.h"
int main(int argc, char ** argv) {
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
params.embedding = true;
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
if (params.seed <= 0) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_context * ctx;
// load the model
{
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.logits_all = params.perplexity;
lparams.use_mlock = params.use_mlock;
lparams.embedding = params.embedding;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "\n");
}
if (params.embedding){
if (embd_inp.size() > 0) {
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++) {
printf("%f ", embeddings[i]);
}
printf("\n");
}
llama_print_timings(ctx);
llama_free(ctx);
return 0;
}

View file

@ -0,0 +1,4 @@
set(TARGET main)
add_executable(${TARGET} main.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

3
examples/main/README.md Normal file
View file

@ -0,0 +1,3 @@
# main
TODO

View file

@ -1,5 +1,4 @@
#include "utils.h" #include "common.h"
#include "ggml.h"
#include "llama.h" #include "llama.h"
#include <cassert> #include <cassert>
@ -45,8 +44,18 @@ enum console_state {
static console_state con_st = CONSOLE_STATE_DEFAULT; static console_state con_st = CONSOLE_STATE_DEFAULT;
static bool con_use_color = false; static bool con_use_color = false;
void set_console_state(console_state new_st) void enable_console_colors() {
{ #if defined (_WIN32)
// Enable ANSI colors on Windows 10+
unsigned long dwMode = 0;
void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
}
#endif
}
void set_console_state(console_state new_st) {
if (!con_use_color) return; if (!con_use_color) return;
// only emit color code if state changed // only emit color code if state changed
if (new_st != con_st) { if (new_st != con_st) {
@ -65,79 +74,6 @@ void set_console_state(console_state new_st)
} }
} }
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
float logit = logits[i] - max_logit;
double exp_logit = std::exp(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
return probs;
}
void perplexity(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
int count = 0;
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
auto start_t = std::chrono::high_resolution_clock::now();
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
auto end_t = std::chrono::high_resolution_clock::now();
if (i == 0) {
double seconds = std::chrono::duration<double>(end_t - start_t).count();
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
auto logits = llama_get_logits(ctx);
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
int n_vocab = llama_n_vocab(ctx);
std::vector<float> tok_logits(
logits + j * n_vocab,
logits + (j + 1) * n_vocab);
double prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood)
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
fflush(stdout);
}
printf("\n");
}
static bool is_interacting = false; static bool is_interacting = false;
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
@ -155,9 +91,6 @@ void sigint_handler(int signo) {
#endif #endif
int main(int argc, char ** argv) { int main(int argc, char ** argv) {
// has to be called once at the start of the program to init ggml stuff
ggml_time_init();
gpt_params params; gpt_params params;
params.model = "models/llama-7B/ggml-model.bin"; params.model = "models/llama-7B/ggml-model.bin";
@ -165,6 +98,22 @@ int main(int argc, char ** argv) {
return 1; return 1;
} }
if (params.perplexity) {
printf("\n************\n");
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.embedding) {
printf("\n************\n");
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
printf("************\n\n");
return 0;
}
if (params.n_ctx > 2048) { if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);" fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx); "expect poor results\n", __func__, params.n_ctx);
@ -198,9 +147,7 @@ int main(int argc, char ** argv) {
lparams.n_parts = params.n_parts; lparams.n_parts = params.n_parts;
lparams.seed = params.seed; lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16; lparams.f16_kv = params.memory_f16;
lparams.logits_all = params.perplexity;
lparams.use_mlock = params.use_mlock; lparams.use_mlock = params.use_mlock;
lparams.embedding = params.embedding;
ctx = llama_init_from_file(params.model.c_str(), lparams); ctx = llama_init_from_file(params.model.c_str(), lparams);
@ -236,13 +183,6 @@ int main(int argc, char ** argv) {
return 0; return 0;
} }
if (params.perplexity) {
perplexity(ctx, params);
exit(0);
}
int n_past = 0;
// Add a space in front of the first character to match OG llama tokenizer behavior // Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' '); params.prompt.insert(0, 1, ' ');
@ -251,7 +191,12 @@ int main(int argc, char ** argv) {
const int n_ctx = llama_n_ctx(ctx); const int n_ctx = llama_n_ctx(ctx);
params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size()); if ((int) embd_inp.size() > n_ctx - 4) {
fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
params.n_keep = std::min(params.n_keep, (int) embd_inp.size());
// prefix & suffix for instruct mode // prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true); const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
@ -282,6 +227,13 @@ int main(int argc, char ** argv) {
for (int i = 0; i < (int) embd_inp.size(); i++) { for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i])); fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
} }
if (params.n_keep > 0) {
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "'\n");
}
fprintf(stderr, "\n"); fprintf(stderr, "\n");
} }
@ -298,7 +250,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: interactive mode on.\n", __func__); fprintf(stderr, "%s: interactive mode on.\n", __func__);
if(params.antiprompt.size()) { if (params.antiprompt.size()) {
for (auto antiprompt : params.antiprompt) { for (auto antiprompt : params.antiprompt) {
fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str()); fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
} }
@ -308,14 +260,12 @@ int main(int argc, char ** argv) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str()); fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
} }
} }
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty); fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
fprintf(stderr, "\n\n"); fprintf(stderr, "\n\n");
std::vector<llama_token> embd; // TODO: replace with ring-buffer
std::vector<llama_token> last_n_tokens(n_ctx);
int last_n_size = params.repeat_last_n;
std::vector<llama_token> last_n_tokens(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
if (params.interactive) { if (params.interactive) {
@ -328,48 +278,44 @@ int main(int argc, char ** argv) {
is_interacting = params.interactive_start || params.instruct; is_interacting = params.interactive_start || params.instruct;
} }
int input_consumed = 0;
bool input_noecho = false; bool input_noecho = false;
int remaining_tokens = params.n_predict; int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
#if defined (_WIN32)
if (params.use_color) {
// Enable ANSI colors on Windows 10+
unsigned long dwMode = 0;
void* hConOut = GetStdHandle((unsigned long)-11); // STD_OUTPUT_HANDLE (-11)
if (hConOut && hConOut != (void*)-1 && GetConsoleMode(hConOut, &dwMode) && !(dwMode & 0x4)) {
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
}
}
#endif
// the first thing we will do is to output the prompt, so set color accordingly // the first thing we will do is to output the prompt, so set color accordingly
if (params.use_color) {
enable_console_colors();
}
set_console_state(CONSOLE_STATE_PROMPT); set_console_state(CONSOLE_STATE_PROMPT);
if (params.embedding){ std::vector<llama_token> embd;
embd = embd_inp;
if (embd.size() > 0) { while (n_remain != 0 || params.interactive) {
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const auto embeddings = llama_get_embeddings(ctx);
// TODO: print / use the embeddings
if (params.use_color) {
printf(ANSI_COLOR_RESET);
}
return 0;
}
while (remaining_tokens > 0 || params.interactive) {
// predict // predict
if (embd.size() > 0) { if (embd.size() > 0) {
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
if (n_past + (int) embd.size() > n_ctx) {
const int n_left = n_past - params.n_keep;
n_past = params.n_keep;
// insert n_left/2 tokens at the start of embd from last_n_tokens
embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
//printf("\n---\n");
//printf("resetting: '");
//for (int i = 0; i < (int) embd.size(); i++) {
// printf("%s", llama_token_to_str(ctx, embd[i]));
//}
//printf("'\n");
//printf("\n---\n");
}
if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) { if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__); fprintf(stderr, "%s : failed to eval\n", __func__);
return 1; return 1;
@ -379,7 +325,7 @@ int main(int argc, char ** argv) {
n_past += embd.size(); n_past += embd.size();
embd.clear(); embd.clear();
if ((int) embd_inp.size() <= input_consumed && !is_interacting) { if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// out of user input, sample next token // out of user input, sample next token
const float top_k = params.top_k; const float top_k = params.top_k;
const float top_p = params.top_p; const float top_p = params.top_p;
@ -392,14 +338,12 @@ int main(int argc, char ** argv) {
auto logits = llama_get_logits(ctx); auto logits = llama_get_logits(ctx);
if (params.ignore_eos) { if (params.ignore_eos) {
// set the logit of the eos token to zero to avoid sampling it
//logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
// TODO: this does not work of params.logits_all == true
assert(params.perplexity == false);
logits[llama_token_eos()] = 0; logits[llama_token_eos()] = 0;
} }
id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty); id = llama_sample_top_p_top_k(ctx,
last_n_tokens.data() + n_ctx - params.repeat_last_n,
params.repeat_last_n, top_k, top_p, temp, repeat_penalty);
last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id); last_n_tokens.push_back(id);
@ -422,14 +366,14 @@ int main(int argc, char ** argv) {
input_noecho = false; input_noecho = false;
// decrement remaining sampling budget // decrement remaining sampling budget
--remaining_tokens; --n_remain;
} else { } else {
// some user input remains from prompt or interaction, forward it to processing // some user input remains from prompt or interaction, forward it to processing
while ((int) embd_inp.size() > input_consumed) { while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[input_consumed]); embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin()); last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[input_consumed]); last_n_tokens.push_back(embd_inp[n_consumed]);
++input_consumed; ++n_consumed;
if ((int) embd.size() >= params.n_batch) { if ((int) embd.size() >= params.n_batch) {
break; break;
} }
@ -444,13 +388,13 @@ int main(int argc, char ** argv) {
fflush(stdout); fflush(stdout);
} }
// reset color to default if we there is no pending user input // reset color to default if we there is no pending user input
if (!input_noecho && (int)embd_inp.size() == input_consumed) { if (!input_noecho && (int)embd_inp.size() == n_consumed) {
set_console_state(CONSOLE_STATE_DEFAULT); set_console_state(CONSOLE_STATE_DEFAULT);
} }
// in interactive mode, and not currently processing queued inputs; // in interactive mode, and not currently processing queued inputs;
// check if we should prompt the user for more // check if we should prompt the user for more
if (params.interactive && (int) embd_inp.size() <= input_consumed) { if (params.interactive && (int) embd_inp.size() <= n_consumed) {
// check for reverse prompt // check for reverse prompt
std::string last_output; std::string last_output;
for (auto id : last_n_tokens) { for (auto id : last_n_tokens) {
@ -472,7 +416,7 @@ int main(int argc, char ** argv) {
set_console_state(CONSOLE_STATE_USER_INPUT); set_console_state(CONSOLE_STATE_USER_INPUT);
if (params.instruct) { if (params.instruct) {
input_consumed = embd_inp.size(); n_consumed = embd_inp.size();
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end()); embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
printf("\n> "); printf("\n> ");
@ -506,7 +450,7 @@ int main(int argc, char ** argv) {
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end()); embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
} }
remaining_tokens -= line_inp.size(); n_remain -= line_inp.size();
input_noecho = true; // do not echo this again input_noecho = true; // do not echo this again
} }
@ -527,8 +471,8 @@ int main(int argc, char ** argv) {
} }
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
if (params.interactive && remaining_tokens <= 0) { if (params.interactive && n_remain <= 0) {
remaining_tokens = params.n_predict; n_remain = params.n_predict;
is_interacting = true; is_interacting = true;
} }
} }

View file

@ -0,0 +1,4 @@
set(TARGET perplexity)
add_executable(${TARGET} perplexity.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,3 @@
# perplexity
TODO

View file

@ -0,0 +1,138 @@
#include "common.h"
#include "llama.h"
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
float logit = logits[i] - max_logit;
double exp_logit = std::exp(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
return probs;
}
void perplexity(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
int count = 0;
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
auto start_t = std::chrono::high_resolution_clock::now();
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
auto end_t = std::chrono::high_resolution_clock::now();
if (i == 0) {
double seconds = std::chrono::duration<double>(end_t - start_t).count();
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
}
// We get the logits for all the tokens in the context window (params.n_ctx)
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
// calculate the perplexity over the last half the window (so the model always has
// some context to predict the token).
//
// We rely on the fact that attention in the forward pass only looks at previous
// tokens here, so the logits returned for each token are an accurate representation
// of what the model would have predicted at that point.
//
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
auto logits = llama_get_logits(ctx);
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
int n_vocab = llama_n_vocab(ctx);
std::vector<float> tok_logits(
logits + j * n_vocab,
logits + (j + 1) * n_vocab);
double prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood)
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
fflush(stdout);
}
printf("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
params.perplexity = true;
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
if (params.seed <= 0) {
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
}
llama_context * ctx;
// load the model
{
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.logits_all = params.perplexity;
lparams.use_mlock = params.use_mlock;
lparams.embedding = params.embedding;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
perplexity(ctx, params);
llama_print_timings(ctx);
llama_free(ctx);
return 0;
}

View file

@ -0,0 +1,4 @@
set(TARGET quantize)
add_executable(${TARGET} quantize.cpp)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,3 @@
# quantize
TODO

1093
ggml.c

File diff suppressed because it is too large Load diff

View file

@ -1261,10 +1261,10 @@ static llama_vocab::id llama_sample_top_p_top_k(
double repeat_penalty) { double repeat_penalty) {
auto & rng = lctx.rng; auto & rng = lctx.rng;
const auto & vocab = lctx.vocab; const int n_logits = lctx.model.hparams.n_vocab;
const auto & logits = lctx.logits;
int n_logits = vocab.id_to_token.size(); const auto & logits = lctx.logits;
const auto * plogits = logits.data() + logits.size() - n_logits;
std::vector<std::pair<double, llama_vocab::id>> logits_id; std::vector<std::pair<double, llama_vocab::id>> logits_id;
logits_id.reserve(n_logits); logits_id.reserve(n_logits);
@ -1276,13 +1276,13 @@ static llama_vocab::id llama_sample_top_p_top_k(
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) { if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if (logits[i] < 0.0) { if (plogits[i] < 0.0) {
logits_id.push_back(std::make_pair(logits[i]*scale*repeat_penalty, i)); logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
} else { } else {
logits_id.push_back(std::make_pair(logits[i]*scale/repeat_penalty, i)); logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
} }
} else { } else {
logits_id.push_back(std::make_pair(logits[i]*scale, i)); logits_id.push_back(std::make_pair(plogits[i]*scale, i));
} }
} }
} }
@ -1677,6 +1677,8 @@ struct llama_context * llama_init_from_file(
} }
const auto & hparams = ctx->model.hparams; const auto & hparams = ctx->model.hparams;
// resized during inference
if (params.logits_all) { if (params.logits_all) {
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
} else { } else {
@ -1684,7 +1686,7 @@ struct llama_context * llama_init_from_file(
} }
if (params.embedding){ if (params.embedding){
ctx->embedding.reserve(hparams.n_embd); ctx->embedding.resize(hparams.n_embd);
} }
ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type)); ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type));
@ -1761,6 +1763,10 @@ int llama_n_ctx(struct llama_context * ctx) {
return ctx->model.hparams.n_ctx; return ctx->model.hparams.n_ctx;
} }
int llama_n_embd(struct llama_context * ctx) {
return ctx->model.hparams.n_embd;
}
float * llama_get_logits(struct llama_context * ctx) { float * llama_get_logits(struct llama_context * ctx) {
return ctx->logits.data(); return ctx->logits.data();
} }

View file

@ -109,6 +109,7 @@ extern "C" {
LLAMA_API int llama_n_vocab(struct llama_context * ctx); LLAMA_API int llama_n_vocab(struct llama_context * ctx);
LLAMA_API int llama_n_ctx (struct llama_context * ctx); LLAMA_API int llama_n_ctx (struct llama_context * ctx);
LLAMA_API int llama_n_embd (struct llama_context * ctx);
// Token logits obtained from the last call to llama_eval() // Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row // The logits for the last token are stored in the last row

View file

@ -1,7 +1,7 @@
function(llama_add_test source) function(llama_add_test source)
get_filename_component(TEST_TARGET ${source} NAME_WE) get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source}) add_executable(${TEST_TARGET} ${source})
target_link_libraries(${TEST_TARGET} PRIVATE llama ggml utils) target_link_libraries(${TEST_TARGET} PRIVATE llama)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN}) add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction() endfunction()

View file

@ -1,9 +1,9 @@
#include "utils.h"
#include "llama.h" #include "llama.h"
#include <cstdio> #include <cstdio>
#include <string> #include <string>
#include <map> #include <map>
#include <vector>
static const std::map<std::string, std::vector<llama_token>> k_tests = { static const std::map<std::string, std::vector<llama_token>> k_tests = {
{ "Hello World", { 1, 10994, 2787, }, }, { "Hello World", { 1, 10994, 2787, }, },
@ -48,7 +48,9 @@ int main(int argc, char **argv) {
} }
for (const auto & test_kv : k_tests) { for (const auto & test_kv : k_tests) {
const auto res = ::llama_tokenize(ctx, test_kv.first, true); std::vector<llama_token> res(test_kv.first.size());
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), res.size(), true);
res.resize(n);
bool correct = res.size() == test_kv.second.size(); bool correct = res.size() == test_kv.second.size();