llama : make model stateless and context stateful
This commit is contained in:
parent
4de0334f5c
commit
0a30fc99fd
2 changed files with 127 additions and 59 deletions
169
llama.cpp
169
llama.cpp
|
@ -168,6 +168,19 @@ struct llama_kv_cache {
|
|||
}
|
||||
};
|
||||
|
||||
struct llama_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
struct token_score {
|
||||
token tok;
|
||||
float score;
|
||||
};
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_score> id_to_token;
|
||||
};
|
||||
|
||||
struct llama_model {
|
||||
e_model type = MODEL_UNKNOWN;
|
||||
|
||||
|
@ -184,10 +197,6 @@ struct llama_model {
|
|||
// context
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
// key + value cache for the self attention
|
||||
// TODO: move to llama_state
|
||||
struct llama_kv_cache kv_self;
|
||||
|
||||
// the model memory buffer
|
||||
llama_ctx_buffer buf;
|
||||
|
||||
|
@ -201,6 +210,11 @@ struct llama_model {
|
|||
// for quantize-stats only
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
|
||||
llama_vocab vocab;
|
||||
|
||||
~llama_model() {
|
||||
if (ctx) {
|
||||
ggml_free(ctx);
|
||||
|
@ -218,24 +232,11 @@ struct llama_model {
|
|||
}
|
||||
};
|
||||
|
||||
struct llama_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
|
||||
struct token_score {
|
||||
token tok;
|
||||
float score;
|
||||
};
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_score> id_to_token;
|
||||
};
|
||||
|
||||
struct llama_context {
|
||||
llama_context(const llama_model& model, const llama_vocab& vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
|
||||
|
||||
std::mt19937 rng;
|
||||
|
||||
int64_t t_load_us = 0;
|
||||
int64_t t_start_us = 0;
|
||||
bool has_evaluated_once = false;
|
||||
|
||||
int64_t t_sample_us = 0;
|
||||
|
@ -246,8 +247,16 @@ struct llama_context {
|
|||
int32_t n_eval = 0; // number of eval calls
|
||||
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
||||
|
||||
llama_model model;
|
||||
llama_vocab vocab;
|
||||
const llama_model& model;
|
||||
const llama_vocab& vocab;
|
||||
|
||||
bool model_owner = false;
|
||||
|
||||
int64_t t_load_us;
|
||||
int64_t t_start_us;
|
||||
|
||||
// key + value cache for the self attention
|
||||
struct llama_kv_cache kv_self;
|
||||
|
||||
size_t mem_per_token = 0;
|
||||
|
||||
|
@ -974,7 +983,8 @@ static const char *llama_model_type_name(e_model type) {
|
|||
|
||||
static void llama_model_load_internal(
|
||||
const std::string & fname,
|
||||
llama_context & lctx,
|
||||
llama_model & model,
|
||||
llama_vocab & vocab,
|
||||
int n_ctx,
|
||||
int n_batch,
|
||||
int n_gpu_layers,
|
||||
|
@ -987,12 +997,11 @@ static void llama_model_load_internal(
|
|||
llama_progress_callback progress_callback,
|
||||
void * progress_callback_user_data) {
|
||||
|
||||
lctx.t_start_us = ggml_time_us();
|
||||
model.t_start_us = ggml_time_us();
|
||||
|
||||
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
|
||||
|
||||
lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
|
||||
auto & model = lctx.model;
|
||||
vocab = std::move(ml->file_loaders.at(0)->vocab);
|
||||
model.hparams = ml->file_loaders.at(0)->hparams;
|
||||
model.n_gpu_layers = n_gpu_layers;
|
||||
llama_file_version file_version = ml->file_loaders.at(0)->file_version;
|
||||
|
@ -1056,15 +1065,15 @@ static void llama_model_load_internal(
|
|||
|
||||
// create the ggml context
|
||||
{
|
||||
lctx.model.buf.resize(ctx_size);
|
||||
model.buf.resize(ctx_size);
|
||||
if (use_mlock) {
|
||||
lctx.model.mlock_buf.init(lctx.model.buf.addr);
|
||||
lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
|
||||
model.mlock_buf.init(model.buf.addr);
|
||||
model.mlock_buf.grow_to(model.buf.size);
|
||||
}
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ lctx.model.buf.size,
|
||||
/*.mem_buffer =*/ lctx.model.buf.addr,
|
||||
/*.mem_size =*/ model.buf.size,
|
||||
/*.mem_buffer =*/ model.buf.addr,
|
||||
/*.no_alloc =*/ ml->use_mmap,
|
||||
};
|
||||
|
||||
|
@ -1196,7 +1205,7 @@ static void llama_model_load_internal(
|
|||
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
|
||||
}
|
||||
|
||||
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
||||
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
|
||||
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
{
|
||||
|
@ -1256,12 +1265,13 @@ static void llama_model_load_internal(
|
|||
|
||||
// loading time will be recalculate after the first eval, so
|
||||
// we take page faults deferred by mmap() into consideration
|
||||
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
|
||||
model.t_load_us = ggml_time_us() - model.t_start_us;
|
||||
}
|
||||
|
||||
static bool llama_model_load(
|
||||
const std::string & fname,
|
||||
llama_context & lctx,
|
||||
llama_model & model,
|
||||
llama_vocab & vocab,
|
||||
int n_ctx,
|
||||
int n_batch,
|
||||
int n_gpu_layers,
|
||||
|
@ -1274,7 +1284,7 @@ static bool llama_model_load(
|
|||
llama_progress_callback progress_callback,
|
||||
void *progress_callback_user_data) {
|
||||
try {
|
||||
llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type,
|
||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type,
|
||||
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
||||
return true;
|
||||
} catch (const std::exception & err) {
|
||||
|
@ -1312,7 +1322,7 @@ static bool llama_eval_internal(
|
|||
const auto & model = lctx.model;
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const auto & kv_self = model.kv_self;
|
||||
const auto & kv_self = lctx.kv_self;
|
||||
|
||||
LLAMA_ASSERT(!!kv_self.ctx);
|
||||
|
||||
|
@ -1631,7 +1641,7 @@ static bool llama_eval_internal(
|
|||
//memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N);
|
||||
|
||||
// update kv token count
|
||||
lctx.model.kv_self.n = n_past + N;
|
||||
lctx.kv_self.n = n_past + N;
|
||||
|
||||
// extract logits
|
||||
{
|
||||
|
@ -2521,12 +2531,38 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
// interface implementation
|
||||
//
|
||||
|
||||
struct llama_context * llama_init_from_file(
|
||||
struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params) {
|
||||
ggml_time_init();
|
||||
|
||||
llama_context * ctx = new llama_context;
|
||||
llama_model *model = new llama_model;
|
||||
|
||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
||||
params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock,
|
||||
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
|
||||
fprintf(stderr, "%s: failed to load model\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return model;
|
||||
}
|
||||
|
||||
void llama_free_model(struct llama_model * model) {
|
||||
delete model;
|
||||
}
|
||||
|
||||
struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params) {
|
||||
|
||||
if(!model) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
llama_context * ctx = new llama_context(*model, model->vocab);
|
||||
|
||||
if (params.seed < 0) {
|
||||
params.seed = time(NULL);
|
||||
|
@ -2554,24 +2590,16 @@ struct llama_context * llama_init_from_file(
|
|||
|
||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers,
|
||||
params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock,
|
||||
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
|
||||
fprintf(stderr, "%s: failed to load model\n", __func__);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// reserve memory for context buffers
|
||||
if (!params.vocab_only) {
|
||||
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
|
||||
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx)) {
|
||||
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
{
|
||||
const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
|
||||
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
|
@ -2619,7 +2647,7 @@ struct llama_context * llama_init_from_file(
|
|||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size));
|
||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size));
|
||||
|
||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size));
|
||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size));
|
||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size));
|
||||
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size));
|
||||
#undef LLAMA_METAL_CHECK_BUF
|
||||
|
@ -2629,7 +2657,23 @@ struct llama_context * llama_init_from_file(
|
|||
return ctx;
|
||||
}
|
||||
|
||||
struct llama_context * llama_init_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params) {
|
||||
|
||||
struct llama_model * model = llama_load_model_from_file(path_model, params);
|
||||
if (!model) {
|
||||
return nullptr;
|
||||
}
|
||||
struct llama_context * ctx = llama_new_context_with_model(model, params);
|
||||
ctx->model_owner = true;
|
||||
return ctx;
|
||||
}
|
||||
|
||||
void llama_free(struct llama_context * ctx) {
|
||||
if (ctx->model_owner) {
|
||||
delete &ctx->model;
|
||||
}
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
|
@ -2646,11 +2690,9 @@ int llama_model_quantize(
|
|||
}
|
||||
}
|
||||
|
||||
int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||
int llama_apply_lora_from_file_internal(const struct llama_model& model/* struct llama_context * ctx */, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
||||
|
||||
auto & model = ctx->model;
|
||||
|
||||
const int64_t t_start_lora_us = ggml_time_us();
|
||||
|
||||
auto fin = std::ifstream(path_lora, std::ios::binary);
|
||||
|
@ -2893,7 +2935,16 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
|
|||
|
||||
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||
try {
|
||||
return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
|
||||
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
|
||||
try {
|
||||
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
||||
return 1;
|
||||
|
@ -2901,7 +2952,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|||
}
|
||||
|
||||
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
|
||||
return ctx->model.kv_self.n;
|
||||
return ctx->kv_self.n;
|
||||
}
|
||||
|
||||
#define LLAMA_MAX_RNG_STATE (64*1024)
|
||||
|
@ -2926,7 +2977,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
|
|||
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
|
||||
const size_t s_kv_size = sizeof(size_t);
|
||||
const size_t s_kv_ntok = sizeof(int);
|
||||
const size_t s_kv = ctx->model.kv_self.buf.size;
|
||||
const size_t s_kv = ctx->kv_self.buf.size;
|
||||
|
||||
const size_t s_total = (
|
||||
+ s_rng_size
|
||||
|
@ -2992,7 +3043,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|||
|
||||
// copy kv cache
|
||||
{
|
||||
const auto & kv_self = ctx->model.kv_self;
|
||||
const auto & kv_self = ctx->kv_self;
|
||||
const auto & hparams = ctx->model.hparams;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_embd = hparams.n_embd;
|
||||
|
@ -3098,7 +3149,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|||
|
||||
// set kv cache
|
||||
{
|
||||
const auto & kv_self = ctx->model.kv_self;
|
||||
const auto & kv_self = ctx->kv_self;
|
||||
const auto & hparams = ctx->model.hparams;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_embd = hparams.n_embd;
|
||||
|
@ -3144,7 +3195,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|||
ggml_free(cpy_ctx);
|
||||
}
|
||||
|
||||
ctx->model.kv_self.n = kv_ntok;
|
||||
ctx->kv_self.n = kv_ntok;
|
||||
}
|
||||
|
||||
const size_t nread = inp - src;
|
||||
|
@ -3375,6 +3426,6 @@ const char * llama_print_system_info(void) {
|
|||
}
|
||||
|
||||
// For internal test use
|
||||
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
||||
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
||||
return ctx->model.tensors_by_name;
|
||||
}
|
||||
|
|
17
llama.h
17
llama.h
|
@ -53,6 +53,7 @@ extern "C" {
|
|||
// TODO: show sample usage
|
||||
//
|
||||
|
||||
struct llama_model;
|
||||
struct llama_context;
|
||||
|
||||
typedef int llama_token;
|
||||
|
@ -136,6 +137,16 @@ extern "C" {
|
|||
|
||||
LLAMA_API int64_t llama_time_us();
|
||||
|
||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
LLAMA_API struct llama_context * llama_new_context_with_model(
|
||||
struct llama_model * model,
|
||||
struct llama_context_params params);
|
||||
|
||||
// Various functions for loading a ggml llama model.
|
||||
// Allocate (almost) all memory needed for the model.
|
||||
// Return NULL on failure
|
||||
|
@ -164,6 +175,12 @@ extern "C" {
|
|||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
LLAMA_API int llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
// Returns the number of tokens in the KV cache
|
||||
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue