diff --git a/common/common.cpp b/common/common.cpp index b6143e41c..06f252ea6 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -2328,10 +2328,10 @@ std::vector llama_tokenize( std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), true); GGML_ASSERT(check == -n_tokens); } else { result.resize(n_tokens); diff --git a/llama.cpp b/llama.cpp index 8ca9650de..e527d21ee 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1600,12 +1600,12 @@ struct llama_mlock { }; using llama_mlocks = std::vector>; -static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { +static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) { std::vector result(8, 0); - const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); if (n_tokens < 0) { result.resize(-n_tokens); - int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special); GGML_ASSERT(check == -n_tokens); } else { @@ -13312,7 +13312,8 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c for (size_t i = 0; i < candidates->size; ++i) { const llama_token id = candidates->data[i].id; - const std::string piece = llama_token_to_piece(ctx, id); + const std::string piece = llama_token_to_piece(ctx, id, false); + if (llama_token_is_eog(&ctx->model, id)) { if (!allow_eog) { candidates->data[i].logit = -INFINITY; @@ -13512,7 +13513,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar GGML_ASSERT(false); } - const std::string piece = llama_token_to_piece(ctx, token); + const std::string piece = llama_token_to_piece(ctx, token, false); // Note terminating 0 in decoded string const auto decoded = decode_utf8(piece, grammar->partial_utf8); @@ -16991,7 +16992,7 @@ static std::string llama_decode_text(const std::string & text) { } // does not write null-terminator to buf -int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) { +int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) { if (0 <= token && token < llama_n_vocab(model)) { switch (llama_vocab_get_type(model->vocab)) { case LLAMA_VOCAB_TYPE_WPM: @@ -17006,7 +17007,9 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token } memcpy(buf, result.c_str(), result.length()); return result.length(); - } else if (llama_is_user_defined_token(model->vocab, token)) { + } else if ( + (llama_is_user_defined_token(model->vocab, token)) || + (llama_is_control_token (model->vocab, token) && special)) { std::string result = model->vocab.id_to_token[token].text; if (length < (int) result.length()) { return -(int) result.length(); @@ -17019,8 +17022,6 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token } memcpy(buf, "\xe2\x96\x85", 3); return 3; - } else if (llama_is_control_token(model->vocab, token)) { - ; } else if (llama_is_byte_token(model->vocab, token)) { if (length < 1) { return -1; @@ -17041,15 +17042,15 @@ int32_t llama_token_to_piece(const struct llama_model * model, llama_token token } memcpy(buf, result.c_str(), result.length()); return result.length(); - } else if (llama_is_user_defined_token(model->vocab, token)) { + } else if ( + (llama_is_user_defined_token(model->vocab, token)) || + (llama_is_control_token (model->vocab, token) && special)) { std::string result = model->vocab.id_to_token[token].text; if (length < (int) result.length()) { return -(int) result.length(); } memcpy(buf, result.c_str(), result.length()); return result.length(); - } else if (llama_is_control_token(model->vocab, token)) { - ; } break; } diff --git a/llama.h b/llama.h index 5bed97ad1..4effca42c 100644 --- a/llama.h +++ b/llama.h @@ -828,11 +828,13 @@ extern "C" { // Uses the vocabulary in the provided context. // Does not write null terminator to the buffer. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens. + // @param special If true, special tokens are rendered in the output. LLAMA_API int32_t llama_token_to_piece( const struct llama_model * model, llama_token token, char * buf, - int32_t length); + int32_t length, + bool special); /// Apply chat template. Inspired by hf apply_chat_template() on python. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"