tts : add OuteTTS support (#10784)

* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
This commit is contained in:
Georgi Gerganov 2024-12-18 19:27:21 +02:00 committed by GitHub
parent 7bbb5acf12
commit 0bf2d10c55
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 2509 additions and 532 deletions

View file

@ -119,29 +119,33 @@ std::string common_arg::to_string() {
// utils
//
static void common_params_handle_model_default(common_params & params) {
if (!params.hf_repo.empty()) {
static void common_params_handle_model_default(
std::string & model,
std::string & model_url,
std::string & hf_repo,
std::string & hf_file) {
if (!hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (params.hf_file.empty()) {
if (params.model.empty()) {
if (hf_file.empty()) {
if (model.empty()) {
throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
}
params.hf_file = params.model;
} else if (params.model.empty()) {
hf_file = model;
} else if (model.empty()) {
// this is to avoid different repo having same file name, or same file name in different subdirs
std::string filename = params.hf_repo + "_" + params.hf_file;
std::string filename = hf_repo + "_" + hf_file;
// to make sure we don't have any slashes in the filename
string_replace_all(filename, "/", "_");
params.model = fs_get_cache_file(filename);
model = fs_get_cache_file(filename);
}
} else if (!params.model_url.empty()) {
if (params.model.empty()) {
auto f = string_split<std::string>(params.model_url, '#').front();
} else if (!model_url.empty()) {
if (model.empty()) {
auto f = string_split<std::string>(model_url, '#').front();
f = string_split<std::string>(f, '?').front();
params.model = fs_get_cache_file(string_split<std::string>(f, '/').back());
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (params.model.empty()) {
params.model = DEFAULT_MODEL_PATH;
} else if (model.empty()) {
model = DEFAULT_MODEL_PATH;
}
}
@ -276,7 +280,9 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
}
common_params_handle_model_default(params);
// TODO: refactor model params in a common struct
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file);
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file);
if (params.escape) {
string_process_escapes(params.prompt);
@ -842,7 +848,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_sparam());
add_opt(common_arg(
{"--sampling-seq"}, "SEQUENCE",
{"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
[](common_params & params, const std::string & value) {
params.sampling.samplers = common_sampler_types_from_chars(value);
@ -1581,6 +1587,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE"));
add_opt(common_arg(
{"-hfrv", "--hf-repo-v"}, "REPO",
"Hugging Face model repository for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO_V"));
add_opt(common_arg(
{"-hffv", "--hf-file-v"}, "FILE",
"Hugging Face model file for the vocoder model (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.hf_file = value;
}
).set_env("LLAMA_ARG_HF_FILE_V"));
add_opt(common_arg(
{"-hft", "--hf-token"}, "TOKEN",
"Hugging Face access token (default: value from HF_TOKEN environment variable)",
@ -2178,5 +2198,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
add_opt(common_arg(
{"-mv", "--model-vocoder"}, "FNAME",
"vocoder model for audio generation (default: unused)",
[](common_params & params, const std::string & value) {
params.vocoder.model = value;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
return ctx_arg;
}

View file

@ -1095,7 +1095,7 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
@ -1119,7 +1119,6 @@ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_
}
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
if (!curl) {
@ -1192,11 +1191,13 @@ static bool common_download_file(const std::string & url, const std::string & pa
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata;
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);

View file

@ -80,6 +80,7 @@ enum llama_example {
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_COUNT,
};
@ -159,6 +160,7 @@ struct common_params_sampling {
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
@ -172,6 +174,14 @@ struct common_params_speculative {
std::string model = ""; // draft model for speculative decoding // NOLINT
};
struct common_params_vocoder {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
@ -214,8 +224,9 @@ struct common_params {
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
struct common_params_sampling sampling;
struct common_params_sampling sampling;
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
std::string model = ""; // model path // NOLINT
std::string model_alias = ""; // model alias // NOLINT