tts : add OuteTTS support (#10784)

* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : be explicit about the pooling type in the tests

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* llama : add OuteTTS support (wip)

* wip

* extract features

* first conv

* group norm

* resnet conv

* resnet

* attn

* pos net

* layer norm

* convnext

* head

* hann window

* fix n_embd + remove llama.cpp hacks

* compute hann window

* fft

* spectrum processing

* clean-up

* tts : receive input text and generate codes

* clip : fix new conv name

* tts : minor fix

* tts : add header + minor fixes

ggml-ci

* tts : add matchematical constant

ggml-ci

* tts : fix sampling + cut initial noise

* tts : fixes

* tts : update default samplers

ggml-ci

* tts : text pre-processing

* tts : outetts-voc -> wavtokenizer-dec

* tts : remove hardcoded constants

ggml-ci

* tts : fix tensor shapes

* llama : refactor wavtokenizer tensors

ggml-ci

* cont

ggml-ci

* cont [no ci]

* llama : update WavTokenizer to non-causal attn

* llama : handle no-vocab detokenization

* tts : add Python example for OuteTTS (wip)

* tts : extend python example to generate spectrogram

ggml-ci

* server : fix rebase artifacts

* tts : enable "return_tokens" in Python example

ggml-ci

* tts : minor fixes

* common : support HF download for vocoder
This commit is contained in:
Georgi Gerganov 2024-12-18 19:27:21 +02:00 committed by GitHub
parent 7bbb5acf12
commit 0bf2d10c55
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 2509 additions and 532 deletions

View file

@ -221,17 +221,17 @@ class Model:
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
n_embd = self.find_hparam(["hidden_size", "n_embd"])
self.gguf_writer.add_embedding_length(n_embd)
logger.info(f"gguf: embedding length = {n_embd}")
if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
self.gguf_writer.add_embedding_length(n_embd)
logger.info(f"gguf: embedding length = {n_embd}")
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
self.gguf_writer.add_feed_forward_length(n_ff)
logger.info(f"gguf: feed forward length = {n_ff}")
n_head = self.find_hparam(["num_attention_heads", "n_head"])
self.gguf_writer.add_head_count(n_head)
logger.info(f"gguf: head count = {n_head}")
if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
self.gguf_writer.add_head_count(n_head)
logger.info(f"gguf: head count = {n_head}")
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
self.gguf_writer.add_head_count_kv(n_head_kv)
@ -296,7 +296,9 @@ class Model:
break
for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
data = data_torch.squeeze().numpy()
# TODO: why do we squeeze here?
# data = data_torch.squeeze().numpy()
data = data_torch.numpy()
# if data ends up empty, it means data_torch was a scalar tensor -> restore
if len(data.shape) == 0:
@ -324,6 +326,8 @@ class Model:
gguf.MODEL_TENSOR.TIME_MIX_W2,
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
gguf.MODEL_TENSOR.POSNET_NORM1,
gguf.MODEL_TENSOR.POSNET_NORM2,
)
)
or not new_name.endswith(".weight")
@ -689,6 +693,9 @@ class Model:
return res
# Marker: End get_vocab_base_pre
def _set_vocab_none(self) -> None:
self.gguf_writer.add_tokenizer_model("none")
def _set_vocab_gpt2(self) -> None:
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
@ -2027,6 +2034,44 @@ class Qwen2VLModel(Model):
yield name, data
@Model.register("WavTokenizerDec")
class WavTokenizerDecModel(Model):
model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if \
name.endswith("codebook.cluster_size") or \
name.endswith("codebook.embed_avg") or \
name.endswith("codebook.inited"):
logger.debug(f"Skipping {name!r}")
return []
logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
return [(self.map_tensor_name(name), data_torch)]
def set_vocab(self):
self._set_vocab_none()
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
self.gguf_writer.add_causal_attention(False)
@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE