diff --git a/.clang-tidy b/.clang-tidy index 1a42b9abc..3078beacc 100644 --- a/.clang-tidy +++ b/.clang-tidy @@ -3,6 +3,7 @@ Checks: > bugprone-*, -bugprone-easily-swappable-parameters, -bugprone-implicit-widening-of-multiplication-result, + -bugprone-misplaced-widening-cast, -bugprone-narrowing-conversions, readability-*, -readability-avoid-unconditional-preprocessor-if, @@ -15,4 +16,8 @@ Checks: > -clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling, performance-*, portability-*, + misc-*, + -misc-const-correctness, + -misc-non-private-member-variables-in-classes, + -misc-no-recursion, FormatStyle: none diff --git a/.devops/full-cuda.Dockerfile b/.devops/full-cuda.Dockerfile index e5fcb37d6..360602d65 100644 --- a/.devops/full-cuda.Dockerfile +++ b/.devops/full-cuda.Dockerfile @@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build ARG CUDA_DOCKER_ARCH=all RUN apt-get update && \ - apt-get install -y build-essential python3 python3-pip + apt-get install -y build-essential python3 python3-pip git COPY requirements.txt requirements.txt diff --git a/.devops/main-cuda.Dockerfile b/.devops/main-cuda.Dockerfile index 30c01196a..2b7faf7c1 100644 --- a/.devops/main-cuda.Dockerfile +++ b/.devops/main-cuda.Dockerfile @@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build ARG CUDA_DOCKER_ARCH=all RUN apt-get update && \ - apt-get install -y build-essential + apt-get install -y build-essential git WORKDIR /app diff --git a/CMakeLists.txt b/CMakeLists.txt index d4ed6179e..e6242dc31 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -426,7 +426,7 @@ if (LLAMA_ALL_WARNINGS) ) if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU") # g++ only - set(cxx_flags ${cxx_flags} -Wno-format-truncation) + set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds) endif() else() # todo : msvc @@ -551,12 +551,64 @@ else() message(STATUS "Unknown architecture") endif() +# +# POSIX conformance +# + +# clock_gettime came in POSIX.1b (1993) +# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional +# posix_memalign came in POSIX.1-2001 / SUSv3 +# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985) +add_compile_definitions(_XOPEN_SOURCE=600) + +# Somehow in OpenBSD whenever POSIX conformance is specified +# some string functions rely on locale_t availability, +# which was introduced in POSIX.1-2008, forcing us to go higher +if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD") + remove_definitions(-D_XOPEN_SOURCE=600) + add_compile_definitions(_XOPEN_SOURCE=700) +endif() + +# Data types, macros and functions related to controlling CPU affinity and +# some memory allocation are available on Linux through GNU extensions in libc +if (CMAKE_SYSTEM_NAME MATCHES "Linux") + add_compile_definitions(_GNU_SOURCE) +endif() + +# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1, +# and on macOS its availability depends on enabling Darwin extensions +# similarly on DragonFly, enabling BSD extensions is necessary +if (CMAKE_SYSTEM_NAME MATCHES "Darwin") + add_compile_definitions(_DARWIN_C_SOURCE) +endif() +if (CMAKE_SYSTEM_NAME MATCHES "DragonFly") + add_compile_definitions(_DARWIN_C_SOURCE) +endif() + +# alloca is a non-standard interface that is not visible on BSDs when +# POSIX conformance is specified, but not all of them provide a clean way +# to enable it in such cases +if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD") + add_compile_definitions(__BSD_VISIBLE) +endif() +if (CMAKE_SYSTEM_NAME MATCHES "NetBSD") + add_compile_definitions(_NETBSD_SOURCE) +endif() +if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD") + add_compile_definitions(_BSD_SOURCE) +endif() + # # libraries # # ggml +if (GGML_USE_CPU_HBM) + add_definitions(-DGGML_USE_CPU_HBM) + find_library(memkind memkind REQUIRED) +endif() + add_library(ggml OBJECT ggml.c ggml.h @@ -572,6 +624,9 @@ add_library(ggml OBJECT target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES}) target_compile_features(ggml PUBLIC c_std_11) # don't bump target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS}) +if (GGML_USE_CPU_HBM) + target_link_libraries(ggml PUBLIC memkind) +endif() add_library(ggml_static STATIC $) if (BUILD_SHARED_LIBS) diff --git a/Makefile b/Makefile index 4334761a4..a774dc50f 100644 --- a/Makefile +++ b/Makefile @@ -42,9 +42,9 @@ endif default: $(BUILD_TARGETS) -test: - @echo "Running tests..." - @for test_target in $(TEST_TARGETS); do \ +test: $(TEST_TARGETS) + @failures=0; \ + for test_target in $(TEST_TARGETS); do \ if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \ ./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \ elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \ @@ -52,10 +52,21 @@ test: elif [ "$$test_target" = "tests/test-tokenizer-1" ]; then \ continue; \ else \ + echo "Running test $$test_target..."; \ ./$$test_target; \ fi; \ - done - @echo "All tests have been run." + if [ $$? -ne 0 ]; then \ + printf 'Test $$test_target FAILED!\n\n' $$test_target; \ + failures=$$(( failures + 1 )); \ + else \ + printf 'Test %s passed.\n\n' $$test_target; \ + fi; \ + done; \ + if [ $$failures -gt 0 ]; then \ + printf '\n%s tests failed.\n' $$failures; \ + exit 1; \ + fi + @echo 'All tests passed.' all: $(BUILD_TARGETS) $(TEST_TARGETS) @@ -91,10 +102,60 @@ else OPT = -O3 endif MK_CPPFLAGS = -I. -Icommon -MK_CFLAGS = $(CPPFLAGS) $(OPT) -std=c11 -fPIC -MK_CXXFLAGS = $(CPPFLAGS) $(OPT) -std=c++11 -fPIC +MK_CFLAGS = $(OPT) -std=c11 -fPIC +MK_CXXFLAGS = $(OPT) -std=c++11 -fPIC MK_LDFLAGS = +# clock_gettime came in POSIX.1b (1993) +# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional +# posix_memalign came in POSIX.1-2001 / SUSv3 +# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985) +MK_CFLAGS += -D_XOPEN_SOURCE=600 +MK_CXXFLAGS += -D_XOPEN_SOURCE=600 + +# Somehow in OpenBSD whenever POSIX conformance is specified +# some string functions rely on locale_t availability, +# which was introduced in POSIX.1-2008, forcing us to go higher +ifeq ($(UNAME_S),OpenBSD) + MK_CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700 + MK_CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700 +endif + +# Data types, macros and functions related to controlling CPU affinity and +# some memory allocation are available on Linux through GNU extensions in libc +ifeq ($(UNAME_S),Linux) + MK_CFLAGS += -D_GNU_SOURCE + MK_CXXFLAGS += -D_GNU_SOURCE +endif + +# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1, +# and on macOS its availability depends on enabling Darwin extensions +# similarly on DragonFly, enabling BSD extensions is necessary +ifeq ($(UNAME_S),Darwin) + MK_CFLAGS += -D_DARWIN_C_SOURCE + MK_CXXFLAGS += -D_DARWIN_C_SOURCE +endif +ifeq ($(UNAME_S),DragonFly) + MK_CFLAGS += -D__BSD_VISIBLE + MK_CXXFLAGS += -D__BSD_VISIBLE +endif + +# alloca is a non-standard interface that is not visible on BSDs when +# POSIX conformance is specified, but not all of them provide a clean way +# to enable it in such cases +ifeq ($(UNAME_S),FreeBSD) + MK_CFLAGS += -D__BSD_VISIBLE + MK_CXXFLAGS += -D__BSD_VISIBLE +endif +ifeq ($(UNAME_S),NetBSD) + MK_CFLAGS += -D_NETBSD_SOURCE + MK_CXXFLAGS += -D_NETBSD_SOURCE +endif +ifeq ($(UNAME_S),OpenBSD) + MK_CFLAGS += -D_BSD_SOURCE + MK_CXXFLAGS += -D_BSD_SOURCE +endif + ifdef LLAMA_DEBUG MK_CFLAGS += -O0 -g MK_CXXFLAGS += -O0 -g @@ -123,7 +184,7 @@ MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-m ifeq '' '$(findstring clang++,$(CXX))' # g++ only - MK_CXXFLAGS += -Wno-format-truncation + MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds endif # OS specific @@ -381,9 +442,8 @@ k_quants.o: k_quants.c k_quants.h endif # LLAMA_NO_K_QUANTS # combine build flags with cmdline overrides -override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) -override CFLAGS := $(MK_CFLAGS) $(CFLAGS) -override CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS) +override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS) +override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS) override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS) # diff --git a/Package.swift b/Package.swift index 96f52c4f0..fb95ef7eb 100644 --- a/Package.swift +++ b/Package.swift @@ -2,8 +2,30 @@ import PackageDescription +#if arch(arm) || arch(arm64) +let platforms: [SupportedPlatform]? = [ + .macOS(.v11), + .iOS(.v14), + .watchOS(.v4), + .tvOS(.v14) +] +let exclude: [String] = [] +let additionalSources: [String] = ["ggml-metal.m"] +let additionalSettings: [CSetting] = [ + .unsafeFlags(["-fno-objc-arc"]), + .define("GGML_SWIFT"), + .define("GGML_USE_METAL") +] +#else +let platforms: [SupportedPlatform]? = nil +let exclude: [String] = ["ggml-metal.metal"] +let additionalSources: [String] = [] +let additionalSettings: [CSetting] = [] +#endif + let package = Package( name: "llama", + platforms: platforms, products: [ .library(name: "llama", targets: ["llama"]), ], @@ -11,23 +33,23 @@ let package = Package( .target( name: "llama", path: ".", - exclude: ["ggml-metal.metal"], + exclude: exclude, sources: [ "ggml.c", "llama.cpp", "ggml-alloc.c", - "k_quants.c" - ], + "k_quants.c", + ] + additionalSources, publicHeadersPath: "spm-headers", cSettings: [ .unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_K_QUANTS"), .define("GGML_USE_ACCELERATE") - ], + ] + additionalSettings, linkerSettings: [ .linkedFramework("Accelerate") ] - ), + ) ], cxxLanguageStandard: .cxx11 ) diff --git a/README.md b/README.md index 17a5c2cbf..fe7391e01 100644 --- a/README.md +++ b/README.md @@ -11,21 +11,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++ ### Hot topics -- #### IMPORTANT: Tokenizer fixes and API change (developers and projects using `llama.cpp` built-in tokenization must read): https://github.com/ggerganov/llama.cpp/pull/2810 +- Local Falcon 180B inference on Mac Studio -- GGUFv2 adds support for 64-bit sizes + backwards compatible: https://github.com/ggerganov/llama.cpp/pull/2821 - -- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717 - -- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398) - - Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) - - ### Current `master` should be considered in Beta - expect some issues for a few days! - - ### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up! - - ### Issues with non-GGUF models will be considered with low priority! + https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e ---- @@ -413,7 +401,7 @@ Building the program with BLAS support may lead to some performance improvements - #### hipBLAS - This provide BLAS acceleation on HIP supported GPU like AMD GPU. + This provides BLAS acceleration on HIP-supported AMD GPUs. Make sure to have ROCm installed. You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html). Windows support is coming soon... @@ -737,12 +725,12 @@ python3 convert.py pygmalion-7b/ --outtype q4_1 - Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data. - Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including: - - [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGML) - - [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGML) - - [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGML) - - [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML) - - [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML) - - [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML) + - [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGUF) + - [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGUF) + - [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGUF) + - [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF) + - [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF) + - [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF) ### Verifying the model files diff --git a/common/common.cpp b/common/common.cpp index 28b7c6300..6e5d5b4d5 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -57,7 +57,7 @@ int32_t get_num_physical_cores() { siblings.insert(line); } } - if (siblings.size() > 0) { + if (!siblings.empty()) { return static_cast(siblings.size()); } #elif defined(__APPLE__) && defined(__MACH__) diff --git a/common/common.h b/common/common.h index 85ac0df9b..012bf5e13 100644 --- a/common/common.h +++ b/common/common.h @@ -20,6 +20,9 @@ #define DIRECTORY_SEPARATOR '/' #endif // _WIN32 +#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) +#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", ##__VA_ARGS__); exit(1); } while (0) + // // CLI argument parsing // diff --git a/common/grammar-parser.cpp b/common/grammar-parser.cpp index e76bd11c3..177d1e3a8 100644 --- a/common/grammar-parser.cpp +++ b/common/grammar-parser.cpp @@ -415,6 +415,7 @@ namespace grammar_parser { std::vector parse_state::c_rules() { std::vector ret; + ret.reserve(rules.size()); for (const auto & rule : rules) { ret.push_back(rule.data()); } diff --git a/convert.py b/convert.py index 59d75141d..4ac5030db 100755 --- a/convert.py +++ b/convert.py @@ -145,7 +145,6 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { class Params: n_vocab: int n_embd: int - n_mult: int n_layer: int n_ctx: int n_ff: int @@ -161,15 +160,6 @@ class Params: # path to the directory containing the model files path_model: Path | None = None - @staticmethod - def find_n_mult(n_ff: int, n_embd: int) -> int: - # hardcoded magic range - for n_mult in range(8192, 1, -1): - calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult - if calc_ff == n_ff: - return n_mult - raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).") - @staticmethod def guessed(model: LazyModel) -> Params: # try transformer naming first @@ -197,7 +187,6 @@ class Params: return Params( n_vocab = n_vocab, n_embd = n_embd, - n_mult = n_mult, n_layer = n_layer, n_ctx = -1, n_ff = n_ff, @@ -225,8 +214,6 @@ class Params: else: f_rope_scale = None - n_mult = Params.find_n_mult(n_ff, n_embd) - if "max_sequence_length" in config: n_ctx = config["max_sequence_length"] elif "max_position_embeddings" in config: @@ -238,7 +225,6 @@ class Params: return Params( n_vocab = n_vocab, n_embd = n_embd, - n_mult = n_mult, n_layer = n_layer, n_ctx = n_ctx, n_ff = n_ff, @@ -250,7 +236,7 @@ class Params: ) # LLaMA v2 70B params.json - # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1 + # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} @staticmethod def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: config = json.load(open(config_path)) @@ -258,7 +244,6 @@ class Params: n_vocab = config["vocab_size"] if "vocab_size" in config else -1 n_embd = config["dim"] n_layer = config["n_layers"] - n_mult = config["multiple_of"] n_ff = -1 n_head = config["n_heads"] n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head @@ -266,7 +251,7 @@ class Params: f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None # hack to determine LLaMA v1 vs v2 vs CodeLlama - if f_rope_freq_base and f_rope_freq_base == 1000000: + if f_rope_freq_base == 1000000: # CodeLlama n_ctx = 16384 elif config["norm_eps"] == 1e-05: @@ -285,7 +270,6 @@ class Params: return Params( n_vocab = n_vocab, n_embd = n_embd, - n_mult = n_mult, n_layer = n_layer, n_ctx = n_ctx, n_ff = n_ff, @@ -841,9 +825,9 @@ class OutputFile: name = "LLaMA" # TODO: better logic to determine model name - if (params.n_ctx == 4096): + if params.n_ctx == 4096: name = "LLaMA v2" - elif params.path_model: + elif params.path_model is not None: name = str(params.path_model.parent).split('/')[-1] self.gguf.add_name (name) @@ -856,13 +840,13 @@ class OutputFile: self.gguf.add_head_count_kv (params.n_head_kv) self.gguf.add_layer_norm_rms_eps (params.f_norm_eps) - if params.f_rope_freq_base: + if params.f_rope_freq_base is not None: self.gguf.add_rope_freq_base(params.f_rope_freq_base) - if params.f_rope_scale: + if params.f_rope_scale is not None: self.gguf.add_rope_scale_linear(params.f_rope_scale) - if params.ftype: + if params.ftype is not None: self.gguf.add_file_type(params.ftype) def add_meta_vocab(self, vocab: Vocab) -> None: diff --git a/examples/beam-search/beam-search.cpp b/examples/beam-search/beam-search.cpp index 4d021434b..6b31aea78 100644 --- a/examples/beam-search/beam-search.cpp +++ b/examples/beam-search/beam-search.cpp @@ -1,7 +1,3 @@ -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "common.h" #include "llama.h" #include "build-info.h" diff --git a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp index 9e856c21a..293b455d0 100644 --- a/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +++ b/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp @@ -1,5 +1,6 @@ #include "ggml.h" #include "llama.h" +#include "common.h" #include #include @@ -499,10 +500,10 @@ struct llama_file { errno = 0; std::size_t ret = std::fread(ptr, size, 1, fp); if (ferror(fp)) { - throw std::runtime_error(format("read error: %s", strerror(errno))); + die_fmt("fread failed: %s", strerror(errno)); } if (ret != 1) { - throw std::runtime_error(std::string("unexpectedly reached end of file")); + die("unexpectedly reached end of file"); } } @@ -597,8 +598,7 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename); llama_file file(filename, "rb"); if (!file.fp) { - fprintf(stderr, "error: %s: %s\n", strerror(errno), filename); - exit(1); + die_fmt("%s: %s", strerror(errno), filename); } const int n_vocab = config->vocab_size; /* uint32_t max_token_length = */ file.read_u32(); // unused diff --git a/examples/embd-input/embd-input-lib.cpp b/examples/embd-input/embd-input-lib.cpp index 036bdb398..ef12212ba 100644 --- a/examples/embd-input/embd-input-lib.cpp +++ b/examples/embd-input/embd-input-lib.cpp @@ -1,8 +1,3 @@ -// Defines sigaction on msys: -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "embd-input.h" #include @@ -23,7 +18,7 @@ extern "C" { struct MyModel* create_mymodel(int argc, char ** argv) { gpt_params params; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return nullptr; } diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 93d583b5c..e4a0a38c8 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -11,17 +11,12 @@ int main(int argc, char ** argv) { gpt_params params; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return 1; } params.embedding = true; - if (params.n_ctx > 2048) { - fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);" - "expect poor results\n", __func__, params.n_ctx); - } - fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); if (params.seed == LLAMA_DEFAULT_SEED) { @@ -47,6 +42,12 @@ int main(int argc, char ** argv) { return 1; } + const int n_ctx_train = llama_n_ctx_train(ctx); + if (params.n_ctx > n_ctx_train) { + fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", + __func__, n_ctx_train, params.n_ctx); + } + // print system information { fprintf(stderr, "\n"); diff --git a/examples/gptneox-wip/falcon-main.cpp b/examples/gptneox-wip/falcon-main.cpp index d4b130b25..7f9a1620b 100644 --- a/examples/gptneox-wip/falcon-main.cpp +++ b/examples/gptneox-wip/falcon-main.cpp @@ -953,7 +953,7 @@ int main(int argc, char ** argv) { gpt_params params; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return 1; } diff --git a/examples/gptneox-wip/gptneox-main.cpp b/examples/gptneox-wip/gptneox-main.cpp index b6cc46c5f..55eba0cdc 100644 --- a/examples/gptneox-wip/gptneox-main.cpp +++ b/examples/gptneox-wip/gptneox-main.cpp @@ -925,7 +925,7 @@ int main(int argc, char ** argv) { gpt_params params; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return 1; } diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 9201b53bd..baec6ba12 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -1,8 +1,3 @@ -// Defines sigaction on msys: -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "common.h" #include "console.h" @@ -48,8 +43,9 @@ static bool is_interacting = false; void write_logfile( const llama_context * ctx, const gpt_params & params, const llama_model * model, - const std::vector input_tokens, const std::string output, const std::vector output_tokens) { - + const std::vector & input_tokens, const std::string & output, + const std::vector & output_tokens +) { if (params.logdir.empty()) { return; } @@ -109,7 +105,7 @@ int main(int argc, char ** argv) { gpt_params params; g_params = ¶ms; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return 1; } @@ -186,8 +182,10 @@ int main(int argc, char ** argv) { return 1; } - if (params.n_ctx > llama_n_ctx(ctx)) { - LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx); + const int n_ctx_train = llama_n_ctx_train(ctx); + if (params.n_ctx > n_ctx_train) { + LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n", + __func__, n_ctx_train, params.n_ctx); } else if (params.n_ctx < 8) { LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__); params.n_ctx = 8; @@ -303,7 +301,7 @@ int main(int argc, char ** argv) { // debug message about similarity of saved session, if applicable size_t n_matching_session_tokens = 0; - if (session_tokens.size() > 0) { + if (!session_tokens.empty()) { for (llama_token id : session_tokens) { if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { break; @@ -401,7 +399,7 @@ int main(int argc, char ** argv) { LOG_TEE("%s: interactive mode on.\n", __func__); - if (params.antiprompt.size()) { + if (!params.antiprompt.empty()) { for (const auto & antiprompt : params.antiprompt) { LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str()); } @@ -499,7 +497,7 @@ int main(int argc, char ** argv) { while ((n_remain != 0 && !is_antiprompt) || params.interactive) { // predict - if (embd.size() > 0) { + if (!embd.empty()) { // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via // --prompt or --file which uses the same value. int max_embd_size = n_ctx - 4; @@ -624,7 +622,7 @@ int main(int argc, char ** argv) { LOG("n_past = %d\n", n_past); } - if (embd.size() > 0 && !path_session.empty()) { + if (!embd.empty() && !path_session.empty()) { session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); n_session_consumed = session_tokens.size(); } @@ -695,7 +693,7 @@ int main(int argc, char ** argv) { // if not currently processing queued inputs; if ((int) embd_inp.size() <= n_consumed) { // check for reverse prompt - if (params.antiprompt.size()) { + if (!params.antiprompt.empty()) { std::string last_output; for (auto id : last_tokens) { last_output += llama_token_to_piece(ctx, id); @@ -732,7 +730,7 @@ int main(int argc, char ** argv) { LOG("found EOS token\n"); if (params.interactive) { - if (params.antiprompt.size() != 0) { + if (!params.antiprompt.empty()) { // tokenize and inject first reverse prompt const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false); embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index 843b2ae35..3a1c8c28d 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -655,7 +655,7 @@ int main(int argc, char ** argv) { gpt_params params; params.n_batch = 512; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return 1; } @@ -693,9 +693,10 @@ int main(int argc, char ** argv) { return 1; } - if (params.n_ctx > llama_n_ctx(ctx)) { - fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);" - "expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx); + const int n_ctx_train = llama_n_ctx_train(ctx); + if (params.n_ctx > n_ctx_train) { + fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n", + __func__, n_ctx_train, params.n_ctx); } // print system information diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 06ce18f09..6ce03ba7b 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -71,7 +71,7 @@ void quantize_stats_print_usage(int /*argc*/, char ** argv) { } // Check if a layer is included/excluded by command line -bool layer_included(const quantize_stats_params params, const std::string & layer) { +bool layer_included(const quantize_stats_params & params, const std::string & layer) { for (const auto& excluded : params.exclude_layers) { if (std::regex_search(layer, std::regex(excluded))) { return false; diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index c174be069..1bf182482 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -143,10 +143,9 @@ int main(int argc, char ** argv) { if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]); return 1; - } else { - if (ftype_str == "COPY") { - params.only_copy = true; - } + } + if (ftype_str == "COPY") { + params.only_copy = true; } arg_idx++; } diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index 573bc4ef9..14e9501ca 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -13,7 +13,7 @@ int main(int argc, char ** argv) { params.repeat_last_n = 64; params.prompt = "The quick brown fox"; - if (gpt_params_parse(argc, argv, params) == false) { + if (!gpt_params_parse(argc, argv, params)) { return 1; } @@ -44,7 +44,7 @@ int main(int argc, char ** argv) { llama_free_model(model); return 1; } - auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true); + auto tokens = llama_tokenize(ctx, params.prompt, true); auto n_prompt_tokens = tokens.size(); if (n_prompt_tokens < 1) { fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 6b606447d..3f3c64650 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -139,7 +139,7 @@ static std::string tokens_to_output_formatted_string(const llama_context *ctx, c } // convert a vector of completion_token_output to json -static json probs_vector_to_json(const llama_context *ctx, const std::vector probs) +static json probs_vector_to_json(const llama_context *ctx, const std::vector & probs) { json out = json::array(); for (const auto &prob : probs) @@ -271,7 +271,7 @@ struct llama_server_context return true; } - std::vector tokenize(json json_prompt, bool add_bos) + std::vector tokenize(const json & json_prompt, bool add_bos) const { // If `add_bos` is true, we only add BOS, when json_prompt is a string, // or the first element of the json_prompt array is a string. @@ -611,7 +611,7 @@ struct llama_server_context completion_token_output doCompletion() { - const completion_token_output token_with_probs = nextToken(); + auto token_with_probs = nextToken(); const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok); generated_text += token_text; @@ -1255,7 +1255,7 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) { struct token_translator { llama_context * ctx; std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); } - std::string operator()(completion_token_output cto) const { return (*this)(cto.tok); } + std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); } }; void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) { diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index 4ee85faca..ba5de0cc6 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -1,7 +1,3 @@ -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "build-info.h" #include "common.h" diff --git a/examples/speculative/speculative.cpp b/examples/speculative/speculative.cpp index c6211ac79..822d7b529 100644 --- a/examples/speculative/speculative.cpp +++ b/examples/speculative/speculative.cpp @@ -1,7 +1,3 @@ -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "build-info.h" #include "common.h" diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 6fe85d419..947aa7ed3 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -169,10 +169,6 @@ struct my_llama_hparams { float rope_freq_base = 10000.0f; float rope_freq_scale = 1.0f; - - bool operator!=(const my_llama_hparams& other) const { - return memcmp(this, &other, sizeof(my_llama_hparams)); - } }; struct my_llama_layer { @@ -929,28 +925,6 @@ void get_example_targets_batch(struct llama_context * lctx, const int * train_sa } } - -#ifdef __GNUC__ -#ifdef __MINGW32__ -__attribute__((format(gnu_printf, 1, 2))) -#else -__attribute__((format(printf, 1, 2))) -#endif -#endif -static std::string format(const char * fmt, ...) { - va_list ap, ap2; - va_start(ap, fmt); - va_copy(ap2, ap); - int size = vsnprintf(NULL, 0, fmt, ap); - GGML_ASSERT(size >= 0 && size < INT_MAX); - std::vector buf(size + 1); - int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); - GGML_ASSERT(size2 == size); - va_end(ap2); - va_end(ap); - return std::string(buf.data(), size); -} - int tokenize_file(struct llama_context * lctx, const char * filename, std::vector& out) { FILE * fp = std::fopen(filename, "rb"); if (fp == NULL) { @@ -983,10 +957,10 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto out.resize(size+1); if (std::fread(buf.data(), size, 1, fp) != 1) { - throw std::runtime_error(std::string("unexpectedly reached end of file")); + die("unexpectedly reached end of file"); } if (ferror(fp)) { - throw std::runtime_error(format("read error: %s", strerror(errno))); + die_fmt("fread failed: %s", strerror(errno)); } buf[size] = '\0'; @@ -1047,11 +1021,11 @@ void shuffle_ints(int * begin, int * end) { if (kid >= 0) { \ enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \ if (ktype != (type)) { \ - throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \ + die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \ } \ (dst) = func(ctx, kid); \ } else if (req) { \ - throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \ + die_fmt("key not found in model: %s", skey.c_str()); \ } \ } @@ -1136,7 +1110,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S); read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y); } else { - throw std::runtime_error("unknown optimizer type\n"); + die("unknown optimizer type"); } } @@ -1315,20 +1289,20 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST)); if (token_idx == -1) { - throw std::runtime_error("cannot find tokenizer vocab in model file\n"); + die("cannot find tokenizer vocab in model file"); } const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx); const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES)); if (score_idx == -1) { - throw std::runtime_error("cannot find tokenizer scores in model file\n"); + die("cannot find tokenizer scores in model file"); } const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx); const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE)); if (toktype_idx == -1) { - throw std::runtime_error("cannot find token type list in GGUF file\n"); + die("cannot find token type list in GGUF file"); } const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx); @@ -1356,7 +1330,7 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod // read and copy bpe merges const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES)); if (merges_keyidx == -1) { - throw std::runtime_error("cannot find tokenizer merges in model file\n"); + die("cannot find tokenizer merges in model file"); } const int n_merges = gguf_get_arr_n(vctx, merges_keyidx); @@ -1988,7 +1962,7 @@ void opt_callback(void * vdata, float * sched) { float min_sched = params->adam_min_alpha / params->adam_alpha; *sched = min_sched + *sched * (1.0f - min_sched); - int impr_plot = std::isnan(opt->loss_after) ? 0 : -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f); + int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f); printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0); if (data->shuffle_countdown < n_batch) { diff --git a/flake.nix b/flake.nix index 02095411e..1f69a4d54 100644 --- a/flake.nix +++ b/flake.nix @@ -93,6 +93,10 @@ type = "app"; program = "${self.packages.${system}.default}/bin/quantize"; }; + apps.train-text-from-scratch = { + type = "app"; + program = "${self.packages.${system}.default}/bin/train-text-from-scratch"; + }; apps.default = self.apps.${system}.llama; devShells.default = pkgs.mkShell { buildInputs = [ llama-python ]; diff --git a/ggml-alloc.c b/ggml-alloc.c index c1939a4b7..a1f6e7bf4 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -1,8 +1,3 @@ -// defines MAP_ANONYMOUS -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "ggml-alloc.h" #include "ggml.h" #include @@ -138,7 +133,7 @@ static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_ten void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { #ifdef GGML_ALLOCATOR_DEBUG - GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources + GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated #endif size_t size = ggml_allocr_get_alloc_size(alloc, tensor); @@ -165,14 +160,14 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) if (best_fit_block == -1) { // the last block is our last resort struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; + max_avail = MAX(max_avail, block->size); if (block->size >= size) { best_fit_block = alloc->n_free_blocks - 1; - max_avail = MAX(max_avail, block->size); } else { fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", __func__, size, max_avail); GGML_ASSERT(!"not enough space in the buffer"); - return; + return; } } struct free_block * block = &alloc->free_blocks[best_fit_block]; @@ -316,7 +311,11 @@ static void * alloc_vmem(size_t size) { #if defined(_WIN32) return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); #elif defined(_POSIX_MAPPED_FILES) - return mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); + void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); + if (ptr == MAP_FAILED) { + return NULL; + } + return ptr; #else // use a fixed address for other platforms uintptr_t base_addr = (uintptr_t)-size - 0x100; diff --git a/ggml-cuda.cu b/ggml-cuda.cu index d2dbf824e..00e9bbeae 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -4086,7 +4086,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco dst[i + ncols/2] = x0*sin_theta + x1*cos_theta; } -static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) { +static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0, + const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) { const int col = blockDim.x*blockIdx.x + threadIdx.x; const int half_n_dims = ncols/4; @@ -4098,8 +4099,9 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol const int i = row*ncols + col; const float col_theta_scale = powf(theta_scale, col); + const float p = p0 + p_delta*(row/p_delta_rows); - const float theta = p*col_theta_scale; + const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale; const float sin_theta = sinf(theta); const float cos_theta = cosf(theta); @@ -4109,7 +4111,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol dst[i + 0] = x0*cos_theta - x1*sin_theta; dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; - const float block_theta = block_p*col_theta_scale; + const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale; const float sin_block_theta = sinf(block_theta); const float cos_block_theta = cosf(block_theta); @@ -4984,12 +4986,13 @@ static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, co rope_neox_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale); } -static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) { - GGML_ASSERT(nrows % 4 == 0); - const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1); - const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE); +static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0, + const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) { + GGML_ASSERT(ncols % 4 == 0); + const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1); + const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE; const dim3 block_nums(num_blocks_x, nrows, 1); - rope_glm_f32<<>>(x, dst, ncols, p, block_p, theta_scale); + rope_glm_f32<<>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx); } static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, @@ -5723,22 +5726,18 @@ inline void ggml_cuda_op_rope( memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float)); const float theta_scale = powf(freq_base, -2.0f/n_dims); + const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; const bool is_neox = mode & 2; const bool is_glm = mode & 4; // compute if (is_glm) { - const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale; - const float id_p = min(p, n_ctx - 2.f); - const float block_p = max(p - (n_ctx - 2.f), 0.f); - rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main); + rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, n_ctx, cudaStream_main); } else if (is_neox) { GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet"); - const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); } else { - const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale; rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main); } @@ -6400,10 +6399,7 @@ void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_ten GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented - const int mode = ((int32_t *) dst->op_params)[2]; - const bool is_glm = mode & 4; - - ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm + ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, true); } void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { diff --git a/ggml-metal.m b/ggml-metal.m index cc4a236d5..4f3f14e24 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -120,14 +120,17 @@ static NSString * const msl_library_source = @"see metal.metal"; struct ggml_metal_context * ggml_metal_init(int n_cb) { metal_printf("%s: allocating\n", __func__); - // Show all the Metal device instances in the system - NSArray * devices = MTLCopyAllDevices(); id device; NSString * s; + +#if TARGET_OS_OSX + // Show all the Metal device instances in the system + NSArray * devices = MTLCopyAllDevices(); for (device in devices) { s = [device name]; metal_printf("%s: found device: %s\n", __func__, [s UTF8String]); } +#endif // Pick and show default Metal device device = MTLCreateSystemDefaultDevice(); @@ -144,12 +147,20 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT); -#if 0 - // compile from source string and show compile log +#ifdef GGML_SWIFT + // load the default.metallib file { NSError * error = nil; - ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error]; + NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; + NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"]; + NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath]; + NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"]; + NSURL * libURL = [NSURL fileURLWithPath:libPath]; + + // Load the metallib file into a Metal library + ctx->library = [ctx->device newLibraryWithURL:libURL error:&error]; + if (error) { metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]); return NULL; @@ -253,13 +264,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) { #undef GGML_METAL_ADD_KERNEL } - metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); +#if TARGET_OS_OSX + metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); if (ctx->device.maxTransferRate != 0) { metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); } else { metal_printf("%s: maxTransferRate = built-in GPU\n", __func__); } +#endif return ctx; } @@ -462,6 +475,7 @@ bool ggml_metal_add_buffer( } } +#if TARGET_OS_OSX metal_printf(", (%8.2f / %8.2f)", ctx->device.currentAllocatedSize / 1024.0 / 1024.0, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); @@ -471,6 +485,9 @@ bool ggml_metal_add_buffer( } else { metal_printf("\n"); } +#else + metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0); +#endif } return true; diff --git a/ggml-metal.metal b/ggml-metal.metal index c42320996..36a31e29a 100644 --- a/ggml-metal.metal +++ b/ggml-metal.metal @@ -1200,31 +1200,40 @@ kernel void kernel_mul_mat_q3_K_f32( device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0; device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1; - float yl[16]; + float yl[32]; - const uint16_t kmask1 = 0x0303; + const uint16_t kmask1 = 0x3030; const uint16_t kmask2 = 0x0f0f; - const int tid = tiisg/2; - const int ix = tiisg%2; - const int ip = tid/8; // 0 or 1 - const int il = tid/2 - 4*ip; // 0...3 + const int tid = tiisg/4; + const int ix = tiisg%4; + const int ip = tid/4; // 0 or 1 + const int il = 2*((tid%4)/2); // 0 or 2 const int ir = tid%2; const int n = 8; const int l0 = n*ir; - const uint16_t m1 = 1 << (4*ip + il); - const uint16_t m2 = m1 << 8; + // One would think that the Metal compiler would figure out that ip and il can only have + // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it + // with these two tales. + // + // Possible masks for the high bit + const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0 + {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2 + {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0 + {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2 + + // Possible masks for the low 2 bits + const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}}; + + const ushort4 hm = mm[2*ip + il/2]; const int shift = 2*il; - const uint16_t qm1 = 0x0003 << shift; - const uint16_t qm2 = 0x0300 << shift; - const int32_t v1 = 4 << shift; - const int32_t v2 = 1024 << shift; + const float v1 = il == 0 ? 4.f : 64.f; + const float v2 = 4.f * v1; const uint16_t s_shift1 = 4*ip; - const uint16_t s_shift2 = s_shift1 + 2*(il/2); - const int ik = 4 + (il%2); + const uint16_t s_shift2 = s_shift1 + il; const int q_offset = 32*ip + l0; const int y_offset = 128*ip + 32*il + l0; @@ -1233,12 +1242,19 @@ kernel void kernel_mul_mat_q3_K_f32( device const float * y1 = yy + ix*QK_K + y_offset; - float sumf1[2] = {0.f}, sumf2[2] = {0.f}; - for (int i = ix; i < nb; i += 2) { + uint32_t scales32, aux32; + thread uint16_t * scales16 = (thread uint16_t *)&scales32; + thread const int8_t * scales = (thread const int8_t *)&scales32; + + float sumf1[2] = {0.f}; + float sumf2[2] = {0.f}; + for (int i = ix; i < nb; i += 4) { for (int l = 0; l < 8; ++l) { - yl[l+0] = y1[l+ 0]; - yl[l+8] = y1[l+16]; + yl[l+ 0] = y1[l+ 0]; + yl[l+ 8] = y1[l+16]; + yl[l+16] = y1[l+32]; + yl[l+24] = y1[l+48]; } device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset); @@ -1249,27 +1265,43 @@ kernel void kernel_mul_mat_q3_K_f32( for (int row = 0; row < 2; ++row) { const float d_all = (float)dh[0]; - const char2 scales = as_type((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4))); - float s1 = 0, s2 = 0; - for (int l = 0; l < n; l += 2) { - const uint16_t qs = q[l/2]; - s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1)); - s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2)); - } - float d = d_all * (s1 + 1.f/256.f * s2); - sumf1[row] += d * scales[0]; - sumf2[row] += d; + scales16[0] = a[4]; + scales16[1] = a[5]; + aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030; + scales16[0] = a[il+0]; + scales16[1] = a[il+1]; + scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32; - s1 = s2 = 0; + float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0; for (int l = 0; l < n; l += 2) { - const uint16_t qs = q[l/2+8]; - s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1)); - s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2)); + const int32_t qs = q[l/2]; + s1 += yl[l+0] * (qs & qm[il/2][0]); + s2 += yl[l+1] * (qs & qm[il/2][1]); + s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]); + s4 += yl[l+16] * (qs & qm[il/2][2]); + s5 += yl[l+17] * (qs & qm[il/2][3]); + s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]); } - d = d_all * (s1 + 1.f/256.f * s2); - sumf1[row] += d * scales[1]; - sumf2[row] += d; + float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); + float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); + sumf1[row] += d1 * (scales[0] - 32); + sumf2[row] += d2 * (scales[2] - 32); + + s1 = s2 = s3 = s4 = s5 = s6 = 0; + for (int l = 0; l < n; l += 2) { + const int32_t qs = q[l/2+8]; + s1 += yl[l+8] * (qs & qm[il/2][0]); + s2 += yl[l+9] * (qs & qm[il/2][1]); + s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]); + s4 += yl[l+24] * (qs & qm[il/2][2]); + s5 += yl[l+25] * (qs & qm[il/2][3]); + s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]); + } + d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); + d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); + sumf1[row] += d1 * (scales[1] - 32); + sumf2[row] += d2 * (scales[3] - 32); q += step; h += step; @@ -1278,17 +1310,20 @@ kernel void kernel_mul_mat_q3_K_f32( } - y1 += 2 * QK_K; + y1 += 4 * QK_K; } for (int row = 0; row < 2; ++row) { - const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift); - const float tot = simd_sum(sumf); - if (tiisg == 0) { - dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot; + const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift); + sumf1[row] = simd_sum(sumf); + } + if (tiisg == 0) { + for (int row = 0; row < 2; ++row) { + dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row]; } } + } #else kernel void kernel_mul_mat_q3_K_f32( @@ -1641,17 +1676,25 @@ kernel void kernel_mul_mat_q5_K_f32( sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2); sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2); - float4 acc = {0.f, 0.f, 0.f, 0.f}; + float4 acc1 = {0.f}; + float4 acc2 = {0.f}; for (int l = 0; l < n; ++l) { uint8_t h = qh[l]; - acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0)); - acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0)); - acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0)); - acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0)); + acc1[0] += yl[l+0] * (q1[l] & 0x0F); + acc1[1] += yl[l+8] * (q1[l] & 0xF0); + acc1[2] += yh[l+0] * (q2[l] & 0x0F); + acc1[3] += yh[l+8] * (q2[l] & 0xF0); + acc2[0] += h & hm1 ? yl[l+0] : 0.f; + acc2[1] += h & hm2 ? yl[l+8] : 0.f; + acc2[2] += h & hm3 ? yh[l+0] : 0.f; + acc2[3] += h & hm4 ? yh[l+8] : 0.f; } const float dall = dh[0]; const float dmin = dh[1]; - sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) - + sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) + + sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) + + sc8[4] * (acc1[2] + 16.f*acc2[2]) + + sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) - dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); q1 += step; diff --git a/ggml.c b/ggml.c index 50adf18ec..3f72379c3 100644 --- a/ggml.c +++ b/ggml.c @@ -1,4 +1,3 @@ -#define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows #include "ggml.h" @@ -47,6 +46,10 @@ // disable "possible loss of data" to avoid hundreds of casts // we should just be careful :) #pragma warning(disable: 4244 4267) + +// disable POSIX deprecation warnigns +// these functions are never going away, anyway +#pragma warning(disable: 4996) #endif #if defined(_WIN32) @@ -103,6 +106,9 @@ typedef void * thread_ret_t; #include #include +#endif +#ifdef GGML_USE_CPU_HBM +#include #endif // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512 @@ -192,8 +198,14 @@ typedef void * thread_ret_t; #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) #else inline static void * ggml_aligned_malloc(size_t size) { + if (size == 0) { + GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n"); + return NULL; + } void * aligned_memory = NULL; -#ifdef GGML_USE_METAL +#ifdef GGML_USE_CPU_HBM + int result = hbw_posix_memalign(&aligned_memory, 16, size); +#elif GGML_USE_METAL int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size); #else int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size); @@ -215,8 +227,12 @@ inline static void * ggml_aligned_malloc(size_t size) { return aligned_memory; } #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) +#ifdef GGML_USE_CPU_HBM +#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr) +#else #define GGML_ALIGNED_FREE(ptr) free(ptr) #endif +#endif #define UNUSED GGML_UNUSED #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) @@ -294,12 +310,14 @@ typedef double ggml_float; #if defined(_MSC_VER) || defined(__MINGW32__) #include #else +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) #if !defined(__riscv) #include #endif #endif #endif #endif +#endif #ifdef __riscv_v_intrinsic #include @@ -4566,6 +4584,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { return NULL; } + // allow to call ggml_init with 0 size + if (params.mem_size == 0) { + params.mem_size = GGML_MEM_ALIGN; + } + const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN); *ctx = (struct ggml_context) { @@ -4768,7 +4791,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( size_t obj_alloc_size = 0; - if (view_src == NULL && ctx->no_alloc == false) { + if (view_src == NULL && !ctx->no_alloc) { if (ctx->scratch.data != NULL) { // allocate tensor data in the scratch buffer if (ctx->scratch.offs + data_size > ctx->scratch.size) { @@ -5469,7 +5492,7 @@ static struct ggml_tensor * ggml_mul_impl( } if (inplace) { - GGML_ASSERT(is_node == false); + GGML_ASSERT(!is_node); } struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); @@ -5512,7 +5535,7 @@ static struct ggml_tensor * ggml_div_impl( } if (inplace) { - GGML_ASSERT(is_node == false); + GGML_ASSERT(!is_node); } struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); @@ -18854,7 +18877,6 @@ static enum ggml_opt_result linesearch_backtracking( // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) return count; } - return count; } } @@ -19957,7 +19979,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p struct ggml_tensor * data = NULL; - if (params.no_alloc == false) { + if (!params.no_alloc) { data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); ok = ok && data != NULL; @@ -19998,7 +20020,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p } // point the data member to the appropriate location in the binary blob using the tensor infos - if (params.no_alloc == false) { + if (!params.no_alloc) { //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data } diff --git a/llama.cpp b/llama.cpp index 2c9071a8f..2a2a0c9c6 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1,8 +1,3 @@ -// Defines fileno on msys: -#ifndef _GNU_SOURCE -#define _GNU_SOURCE -#endif - #include "llama.h" #include "ggml.h" @@ -126,6 +121,9 @@ void replace_all(std::string & s, const std::string & search, const std::string } s = std::move(result); } +#ifdef GGML_USE_CPU_HBM +#include +#endif static void zeros(std::ofstream & file, size_t n) { char zero = 0; @@ -450,6 +448,9 @@ static void ggml_graph_compute_helper(std::vector & buf, ggml_cgraph * #elif GGML_USE_METAL # define llama_host_malloc(n) ggml_metal_host_malloc(n) # define llama_host_free(data) ggml_metal_host_free(data) +#elif GGML_USE_CPU_HBM +# define llama_host_malloc(n) hbw_malloc(n) +# define llama_host_free(data) if (data != NULL) hbw_free(data) #else # define llama_host_malloc(n) malloc(n) # define llama_host_free(data) free(data) @@ -1489,7 +1490,11 @@ struct llama_model_loader { // allocate temp buffer if not using mmap if (!use_mmap && cur->data == NULL) { GGML_ASSERT(cur->backend != GGML_BACKEND_CPU); - cur->data = malloc(ggml_nbytes(cur)); + #ifdef GGML_USE_CPU_HBM + cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur)); + #else + cur->data = (uint8_t*)malloc(ggml_nbytes(cur)); + #endif } load_data_for(cur); @@ -3052,33 +3057,10 @@ static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL; } -static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) { - return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED; -} - -static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) { - return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNUSED; -} - static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE; } -static bool llama_is_bos_token(const llama_vocab & vocab, llama_token id) { - GGML_ASSERT(llama_is_control_token(vocab, id)); - return id == vocab.special_bos_id; -} - -static bool llama_is_eos_token(const llama_vocab & vocab, llama_token id ) { - GGML_ASSERT(llama_is_control_token(vocab, id)); - return id == vocab.special_eos_id; -} - -static bool llama_is_pad_token(const llama_vocab & vocab, llama_token id ) { - GGML_ASSERT(id < 0 || llama_is_control_token(vocab, id)); - return id == vocab.special_pad_id; -} - static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(llama_is_byte_token(vocab, id)); const auto& token_data = vocab.id_to_token.at(id); @@ -4800,9 +4782,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s std::vector workers; std::mutex mutex; +#ifdef GGML_USE_K_QUANTS auto use_more_bits = [] (int i_layer, int num_layers) -> bool { return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; }; +#endif int idx = 0; @@ -5649,15 +5633,19 @@ void llama_free(struct llama_context * ctx) { } int llama_n_vocab(const struct llama_context * ctx) { - return ctx->model.vocab.id_to_token.size(); + return llama_model_n_vocab(&ctx->model); } int llama_n_ctx(const struct llama_context * ctx) { - return ctx->model.hparams.n_ctx; + return llama_model_n_ctx(&ctx->model); +} + +int llama_n_ctx_train(const struct llama_context * ctx) { + return llama_model_n_ctx_train(&ctx->model); } int llama_n_embd(const struct llama_context * ctx) { - return ctx->model.hparams.n_embd; + return llama_model_n_embd(&ctx->model); } enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) { @@ -5672,6 +5660,10 @@ int llama_model_n_ctx(const struct llama_model * model) { return model->hparams.n_ctx; } +int llama_model_n_ctx_train(const struct llama_model * model) { + return model->hparams.n_ctx_train; +} + int llama_model_n_embd(const struct llama_model * model) { return model->hparams.n_embd; } @@ -5947,7 +5939,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> ctx->rng; - GGML_ASSERT(rng_ss.fail() == false); + GGML_ASSERT(!rng_ss.fail()); } // set logits diff --git a/llama.h b/llama.h index 5b95aaa87..37975bebe 100644 --- a/llama.h +++ b/llama.h @@ -245,15 +245,17 @@ extern "C" { LLAMA_API bool llama_mmap_supported (void); LLAMA_API bool llama_mlock_supported(void); - LLAMA_API int llama_n_vocab(const struct llama_context * ctx); - LLAMA_API int llama_n_ctx (const struct llama_context * ctx); - LLAMA_API int llama_n_embd (const struct llama_context * ctx); + LLAMA_API int llama_n_vocab (const struct llama_context * ctx); + LLAMA_API int llama_n_ctx (const struct llama_context * ctx); + LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx); + LLAMA_API int llama_n_embd (const struct llama_context * ctx); LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx); - LLAMA_API int llama_model_n_vocab(const struct llama_model * model); - LLAMA_API int llama_model_n_ctx (const struct llama_model * model); - LLAMA_API int llama_model_n_embd (const struct llama_model * model); + LLAMA_API int llama_model_n_vocab (const struct llama_model * model); + LLAMA_API int llama_model_n_ctx (const struct llama_model * model); + LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model); + LLAMA_API int llama_model_n_embd (const struct llama_model * model); // Get a string describing the model type LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp index 0bb9537f6..cbea7d452 100644 --- a/tests/test-quantize-perf.cpp +++ b/tests/test-quantize-perf.cpp @@ -76,7 +76,7 @@ void * align_with_offset(void * ptr, int offset) { return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset; } -void benchmark_function(size_t size, size_t q_size, int64_t iterations, std::function function) { +void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function & function) { int64_t min_time_us = INT64_MAX; int64_t total_time_us = 0; int64_t min_time_cycles = INT64_MAX;