Merge branch 'master' into pr-train-mem-usage-improvements

# Conflicts:
#	examples/train-text-from-scratch/train-text-from-scratch.cpp
This commit is contained in:
xaedes 2023-08-24 15:46:52 +02:00
commit 0c52c65d7f
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
97 changed files with 21846 additions and 7075 deletions

View file

@ -0,0 +1,58 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
# Notes for llama.cpp:
# 1. Tags are currently based on hash - which will not sort asciibetically.
# We need to declare standard versioning if people want to sort latest releases.
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-clblast
Version: master
Release: 1%{?dist}
Summary: OpenCL Inference of LLaMA model in pure C/C++
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git mesa-libOpenCL-devel
URL: https://github.com/ggerganov/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0
%description
CPU inference for Meta's Lllama2 models using default options.
%prep
%setup -n llama.cpp-master
%build
make -j LLAMA_CLBLAST=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacppclblast
cp -p server %{buildroot}%{_bindir}/llamacppclblastserver
cp -p simple %{buildroot}%{_bindir}/llamacppclblastsimple
%clean
rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamacppclblast
%{_bindir}/llamacppclblastserver
%{_bindir}/llamacppclblastsimple
%pre
%post
%preun
%postun
%changelog

View file

@ -0,0 +1,59 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
# Notes for llama.cpp:
# 1. Tags are currently based on hash - which will not sort asciibetically.
# We need to declare standard versioning if people want to sort latest releases.
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-cublas
Version: master
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
Requires: cuda-toolkit
URL: https://github.com/ggerganov/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0
%description
CPU inference for Meta's Lllama2 models using default options.
%prep
%setup -n llama.cpp-master
%build
make -j LLAMA_CUBLAS=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacppcublas
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
%clean
rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamacppcublas
%{_bindir}/llamacppcublasserver
%{_bindir}/llamacppcublassimple
%pre
%post
%preun
%postun
%changelog

View file

@ -0,0 +1,58 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
# Notes for llama.cpp:
# 1. Tags are currently based on hash - which will not sort asciibetically.
# We need to declare standard versioning if people want to sort latest releases.
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp
Version: master
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git
URL: https://github.com/ggerganov/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0
%description
CPU inference for Meta's Lllama2 models using default options.
%prep
%autosetup
%build
make -j
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacpp
cp -p server %{buildroot}%{_bindir}/llamacppserver
cp -p simple %{buildroot}%{_bindir}/llamacppsimple
%clean
rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamacpp
%{_bindir}/llamacppserver
%{_bindir}/llamacppsimple
%pre
%post
%preun
%postun
%changelog

11
.gitignore vendored
View file

@ -1,6 +1,10 @@
*.o
*.a
*.so
*.gguf
*.bin
*.exe
*.dll
.DS_Store
.build/
.cache/
@ -39,13 +43,17 @@ models-mnt
/perplexity
/embedding
/train-text-from-scratch
/convert-llama2c-to-ggml
/simple
/benchmark-matmult
/vdot
/server
/Pipfile
/embd-input-test
/gguf
/gguf-llama-simple
/libllama.so
/llama-bench
build-info.h
arm_neon.h
compile_commands.json
@ -62,12 +70,12 @@ perf-*.txt
examples/jeopardy/results.txt
pyproject.toml
poetry.lock
poetry.toml
# Test binaries
tests/test-grammar-parser
tests/test-double-float
tests/test-grad0
tests/test-opt
@ -75,4 +83,3 @@ tests/test-quantize-fns
tests/test-quantize-perf
tests/test-sampling
tests/test-tokenizer-0

View file

@ -69,7 +69,6 @@ option(LLAMA_BLAS "llama: use BLAS"
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
set(LLAMA_CUDA_MMQ_Y "64" CACHE STRING "llama: y tile size for mmq CUDA kernels")
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
@ -256,7 +255,6 @@ if (LLAMA_CUBLAS)
# if (LLAMA_CUDA_CUBLAS)
# add_compile_definitions(GGML_CUDA_CUBLAS)
# endif()
add_compile_definitions(GGML_CUDA_MMQ_Y=${LLAMA_CUDA_MMQ_Y})
if (LLAMA_CUDA_FORCE_DMMV)
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
endif()
@ -298,7 +296,6 @@ if (LLAMA_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
set(GGML_SOURCES_METAL ggml-metal.m ggml-metal.h)
@ -315,7 +312,6 @@ if (LLAMA_METAL)
${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK}
${METALKIT_FRAMEWORK}
${METALPERFORMANCE_FRAMEWORK}
)
endif()
@ -501,9 +497,11 @@ else()
endif()
#
# Build libraries
# libraries
#
# ggml
add_library(ggml OBJECT
ggml.c
ggml.h
@ -528,10 +526,11 @@ if (BUILD_SHARED_LIBS)
install(TARGETS ggml_shared LIBRARY)
endif()
# llama
add_library(llama
llama.cpp
llama.h
llama-util.h
)
target_include_directories(llama PUBLIC .)
@ -550,6 +549,10 @@ if (BUILD_SHARED_LIBS)
install(TARGETS llama LIBRARY)
endif()
#
# install
#
include(GNUInstallDirs)
install(
FILES convert.py
@ -573,11 +576,23 @@ install(
WORLD_READ
WORLD_EXECUTE
DESTINATION ${CMAKE_INSTALL_BINDIR})
if (LLAMA_METAL)
install(
FILES ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE
GROUP_READ
WORLD_READ
DESTINATION ${CMAKE_INSTALL_BINDIR})
endif()
#
# programs, examples and tests
#
add_subdirectory(common)
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)

View file

@ -1,8 +1,8 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple server embd-input-test
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple server embd-input-test gguf llama-bench
# Binaries only useful for tests
TEST_TARGETS = tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0
default: $(BUILD_TARGETS)
@ -45,8 +45,8 @@ OPT = -Ofast
else
OPT = -O3
endif
CFLAGS = -I. $(OPT) -std=c11 -fPIC
CXXFLAGS = -I. -I./examples $(OPT) -std=c++11 -fPIC
CFLAGS = -I. $(OPT) -std=c11 -fPIC
CXXFLAGS = -I. -I./common $(OPT) -std=c++11 -fPIC
LDFLAGS =
ifdef LLAMA_DEBUG
@ -142,6 +142,28 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
#CXXFLAGS += -mssse3
endif
ifneq ($(filter aarch64%,$(UNAME_M)),)
# Apple M1, M2, etc.
# Raspberry Pi 3, 4, Zero 2 (64-bit)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, Zero
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# Raspberry Pi 2
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 3, 4, Zero 2 (32-bit)
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
ifneq (,$(findstring POWER9,$(POWER9_M)))
@ -231,11 +253,6 @@ ifdef LLAMA_CUDA_KQUANTS_ITER
else
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
endif
ifdef LLAMA_CUDA_MMQ_Y
NVCCFLAGS += -DGGML_CUDA_MMQ_Y=$(LLAMA_CUDA_MMQ_Y)
else
NVCCFLAGS += -DGGML_CUDA_MMQ_Y=64
endif # LLAMA_CUDA_MMQ_Y
#ifdef LLAMA_CUDA_CUBLAS
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
#endif # LLAMA_CUDA_CUBLAS
@ -266,32 +283,10 @@ endif # LLAMA_CLBLAST
ifdef LLAMA_METAL
CFLAGS += -DGGML_USE_METAL -DGGML_METAL_NDEBUG
CXXFLAGS += -DGGML_USE_METAL
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJS += ggml-metal.o
endif # LLAMA_METAL
ifneq ($(filter aarch64%,$(UNAME_M)),)
# Apple M1, M2, etc.
# Raspberry Pi 3, 4, Zero 2 (64-bit)
CFLAGS += -mcpu=native
CXXFLAGS += -mcpu=native
endif
ifneq ($(filter armv6%,$(UNAME_M)),)
# Raspberry Pi 1, Zero
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
endif
ifneq ($(filter armv7%,$(UNAME_M)),)
# Raspberry Pi 2
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
endif
ifneq ($(filter armv8%,$(UNAME_M)),)
# Raspberry Pi 3, 4, Zero 2 (32-bit)
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
endif
ifdef LLAMA_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
@ -334,23 +329,23 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
OBJS += ggml-alloc.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common.o: examples/common.cpp examples/common.h
common.o: common/common.cpp common/common.h
$(CXX) $(CXXFLAGS) -c $< -o $@
console.o: examples/console.cpp examples/console.h
console.o: common/console.cpp common/console.h
$(CXX) $(CXXFLAGS) -c $< -o $@
grammar-parser.o: examples/grammar-parser.cpp examples/grammar-parser.h
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
$(CXX) $(CXXFLAGS) -c $< -o $@
libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean:
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch embd-input-test build-info.h $(TEST_TARGETS)
rm -vf *.o *.so *.dll main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server simple vdot train-text-from-scratch convert-llama2c-to-ggml embd-input-test gguf llama-bench build-info.h $(TEST_TARGETS)
#
# Examples
@ -380,7 +375,7 @@ embedding: examples/embedding/embedding.cpp build-info.h ggml.
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o $(OBJS)
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
@ -390,7 +385,16 @@ $(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-in
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
gguf: examples/gguf/gguf.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
build-info.h: $(wildcard .git/index) scripts/build-info.sh
@ -414,6 +418,12 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.txt,$^) -o $@ $(LDFLAGS)

216
README.md
View file

@ -9,13 +9,21 @@
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
**Hot topics:**
### Hot topics
- Simple web chat example: https://github.com/ggerganov/llama.cpp/pull/1998
- k-quants now support super-block size of 64: https://github.com/ggerganov/llama.cpp/pull/2001
- New roadmap: https://github.com/users/ggerganov/projects/7
- Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985
- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1
- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
### Current `master` should be considered in Beta - expect some issues for a few days!
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
### Issues with non-GGUF models will be considered with low priority!
----
<details>
<summary>Table of Contents</summary>
@ -33,6 +41,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
<li><a href="#quantization">Quantization</a></li>
<li><a href="#interactive-mode">Interactive mode</a></li>
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
<li><a href="#using-gpt4all">Using GPT4All</a></li>
@ -59,12 +68,11 @@ The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quant
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- Mixed F16 / F32 precision
- 4-bit, 5-bit and 8-bit integer quantization support
- Supports OpenBLAS/Apple BLAS/ARM Performance Lib/ATLAS/BLIS/Intel MKL/NVHPC/ACML/SCSL/SGIMATH and [more](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) in BLAS
- cuBLAS and CLBlast support
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
- CUDA, Metal and OpenCL GPU backend support
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
**Supported platforms:**
@ -78,6 +86,7 @@ as the main playground for developing new features for the [ggml](https://github
- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [X] Falcon
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
@ -96,8 +105,10 @@ as the main playground for developing new features for the [ggml](https://github
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
**UI:**
@ -106,90 +117,84 @@ as the main playground for developing new features for the [ggml](https://github
---
Here is a typical run using LLaMA-7B:
Here is a typical run using LLaMA v2 13B on M2 Ultra:
```java
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
I UNAME_P: arm
I UNAME_M: arm64
I CFLAGS: -I. -O3 -DNDEBUG -std=c11 -fPIC -pthread -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
I LDFLAGS: -framework Accelerate
I CC: Apple clang version 14.0.0 (clang-1400.0.29.202)
I CXX: Apple clang version 14.0.0 (clang-1400.0.29.202)
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
make: Nothing to be done for `default'.
main: seed = 1678486056
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 4096
llama_model_load: n_mult = 256
llama_model_load: n_head = 32
llama_model_load: n_layer = 32
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 11008
llama_model_load: ggml ctx size = 4529.34 MB
llama_model_load: memory_size = 512.00 MB, n_mem = 16384
llama_model_load: .................................... done
llama_model_load: model size = 4017.27 MB / num tensors = 291
main: build = 1041 (cf658ad)
main: seed = 1692823051
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
llama_model_loader: - type f32: 81 tensors
llama_model_loader: - type q4_0: 281 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_print_meta: format = GGUF V1 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 40
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff = 13824
llm_load_print_meta: freq_base = 10000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 13B
llm_load_print_meta: model ftype = mostly Q4_0
llm_load_print_meta: model size = 13.02 B
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.11 MB
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size = 400.00 MB
llama_new_context_with_model: compute buffer total size = 75.41 MB
main: prompt: 'Building a website can be done in 10 simple steps:'
main: number of tokens in prompt = 15
1 -> ''
8893 -> 'Build'
292 -> 'ing'
263 -> ' a'
4700 -> ' website'
508 -> ' can'
367 -> ' be'
2309 -> ' done'
297 -> ' in'
29871 -> ' '
29896 -> '1'
29900 -> '0'
2560 -> ' simple'
6576 -> ' steps'
29901 -> ':'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
Building a website can be done in 10 simple steps:
1) Select a domain name and web hosting plan
2) Complete a sitemap
3) List your products
4) Write product descriptions
5) Create a user account
6) Build the template
7) Start building the website
8) Advertise the website
9) Provide email support
10) Submit the website to search engines
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones.
Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the users screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the users browser.
A website is known as a website when it is hosted
main: mem per token = 14434244 bytes
main: load time = 1332.48 ms
main: sample time = 1081.40 ms
main: predict time = 31378.77 ms / 61.41 ms per token
main: total time = 34036.74 ms
Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
Step 7: Test it again with people who are not related to you personally friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit whether its an image or text file (like PDFs). In order for someone elses browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings: load time = 576.45 ms
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
llama_print_timings: total time = 25431.49 ms
```
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
@ -238,12 +243,17 @@ In order to build llama.cpp you have three different options.
cmake --build . --config Release
```
- Using `Zig`:
- Using `Zig` (version 0.11 or later):
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
it's also possible to cross compile for other operating systems and architectures:
```bash
zig build -Doptimize=ReleaseFast
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
```
The `zig targets` command will give you valid options to use.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
@ -284,7 +294,7 @@ When built with Metal support, you can enable GPU inference with the `--gpu-laye
Any value larger than 0 will offload the computation to the GPU. For example:
```bash
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 -ngl 1
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1
```
### MPI Build
@ -323,7 +333,7 @@ The above will distribute the computation across 2 processes on the first host a
Finally, you're ready to run a computation using `mpirun`:
```bash
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.bin -n 128
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
```
### BLAS Build
@ -406,10 +416,9 @@ Building the program with BLAS support may lead to some performance improvements
--->
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_MMQ_Y | Positive integer >= 32 | 64 | Tile size in y direction when using the custom CUDA kernels for prompt processing. Higher values can be faster depending on the amount of shared memory available. Power of 2 heavily recommended. |
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
@ -507,10 +516,10 @@ python3 convert.py models/7B/
python convert.py models/7B/ --vocabtype bpe
# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
```
When running the larger models, make sure you have enough disk space to store all the intermediate files.
@ -530,6 +539,8 @@ As the models are currently fully loaded into memory, you will need adequate dis
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
*(outdated)*
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
@ -566,7 +577,7 @@ Here is an example of a few-shot interaction, invoked with the command
./examples/chat-13B.sh
# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
```
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
@ -592,6 +603,16 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
```
### Constrained output with grammars
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
```bash
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
```
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
### Instruction mode with Alpaca
1. First, download the `ggml` Alpaca model into the `./models` folder
@ -629,6 +650,8 @@ OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
*Note: these instructions are likely obsoleted by the GGUF update*
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
@ -704,7 +727,7 @@ If your issue is with model generation quality, then please at least scan the fo
#### How to run
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
2. Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
3. Output:
```
perplexity : calculating perplexity over 655 chunks
@ -803,13 +826,13 @@ docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-
On completion, you are ready to play!
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a light image:
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
### Docker With CUDA
@ -840,8 +863,8 @@ The resulting images, are essentially the same as the non-CUDA images:
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
```
### Contributing
@ -871,3 +894,4 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
- [BLIS](./docs/BLIS.md)
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
- [GBNF grammars](./grammars/README.md)

169
build.zig
View file

@ -1,68 +1,121 @@
// Compatible with Zig Version 0.11.0
const std = @import("std");
const commit_hash = @embedFile(".git/refs/heads/master");
const ArrayList = std.ArrayList;
const Compile = std.Build.Step.Compile;
const ConfigHeader = std.Build.Step.ConfigHeader;
const Mode = std.builtin.Mode;
const CrossTarget = std.zig.CrossTarget;
// Zig Version: 0.11.0-dev.3986+e05c242cd
pub fn build(b: *std.build.Builder) void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const Maker = struct {
builder: *std.build.Builder,
target: CrossTarget,
optimize: Mode,
config_header: *ConfigHeader,
enable_lto: bool,
const config_header = b.addConfigHeader(
.{ .style = .blank, .include_path = "build-info.h" },
.{
.BUILD_NUMBER = 0,
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
},
);
include_dirs: ArrayList([]const u8),
cflags: ArrayList([]const u8),
cxxflags: ArrayList([]const u8),
objs: ArrayList(*Compile),
const lib = b.addStaticLibrary(.{
.name = "llama",
.target = target,
.optimize = optimize,
});
lib.linkLibC();
lib.linkLibCpp();
lib.addIncludePath(".");
lib.addIncludePath("./examples");
lib.addConfigHeader(config_header);
lib.addCSourceFiles(&.{"ggml.c"}, &.{"-std=c11"});
lib.addCSourceFiles(&.{"llama.cpp"}, &.{"-std=c++11"});
b.installArtifact(lib);
fn addInclude(m: *Maker, dir: []const u8) !void {
try m.include_dirs.append(dir);
}
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
}
fn addCFlag(m: *Maker, flag: []const u8) !void {
try m.cflags.append(flag);
}
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
try m.cxxflags.append(flag);
}
fn addFlag(m: *Maker, flag: []const u8) !void {
try m.addCFlag(flag);
try m.addCxxFlag(flag);
}
const examples = .{
"main",
"baby-llama",
"embedding",
"metal",
"perplexity",
"quantize",
"quantize-stats",
"save-load-state",
"server",
"simple",
"train-text-from-scratch",
};
fn init(builder: *std.build.Builder) !Maker {
const commit_hash = @embedFile(".git/refs/heads/master");
const config_header = builder.addConfigHeader(
.{ .style = .blank, .include_path = "build-info.h" },
.{
.BUILD_NUMBER = 0,
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
},
);
var m = Maker{
.builder = builder,
.target = builder.standardTargetOptions(.{}),
.optimize = builder.standardOptimizeOption(.{}),
.config_header = config_header,
.enable_lto = false,
.include_dirs = ArrayList([]const u8).init(builder.allocator),
.cflags = ArrayList([]const u8).init(builder.allocator),
.cxxflags = ArrayList([]const u8).init(builder.allocator),
.objs = ArrayList(*Compile).init(builder.allocator),
};
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
try m.addProjectInclude(&.{"examples"});
return m;
}
inline for (examples) |example_name| {
const exe = b.addExecutable(.{
.name = example_name,
.target = target,
.optimize = optimize,
});
exe.addIncludePath(".");
exe.addIncludePath("./examples");
exe.addConfigHeader(config_header);
exe.addCSourceFiles(&.{
std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{ example_name, example_name }),
"examples/common.cpp",
}, &.{"-std=c++11"});
exe.linkLibrary(lib);
b.installArtifact(exe);
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
if (std.mem.endsWith(u8, src, ".c")) {
o.addCSourceFiles(&.{src}, m.cflags.items);
o.linkLibC();
} else {
o.addCSourceFiles(&.{src}, m.cxxflags.items);
o.linkLibCpp();
}
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
}
const run_cmd = b.addRunArtifact(exe);
run_cmd.step.dependOn(b.getInstallStep());
if (b.args) |args| run_cmd.addArgs(args);
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
e.addCSourceFiles(&.{src}, m.cxxflags.items);
for (deps) |d| e.addObject(d);
for (m.objs.items) |o| e.addObject(o);
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
e.linkLibC();
e.linkLibCpp();
e.addConfigHeader(m.config_header);
m.builder.installArtifact(e);
e.want_lto = m.enable_lto;
return e;
}
};
const run_step = b.step("run-" ++ example_name, "Run the app");
run_step.dependOn(&run_cmd.step);
pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
try make.addFlag("-DGGML_USE_K_QUANTS");
const k_quants = make.obj("k_quants", "k_quants.c");
try make.objs.append(k_quants);
}
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const llama = make.obj("llama", "llama.cpp");
const common = make.obj("common", "examples/common.cpp");
const console = make.obj("common", "examples/console.cpp");
const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}
}

44
ci/run.sh Normal file → Executable file
View file

@ -159,17 +159,17 @@ function gg_run_open_llama_3b_v2 {
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.bin"
model_q8_0="${path_models}/ggml-model-q8_0.bin"
model_q4_0="${path_models}/ggml-model-q4_0.bin"
model_q4_1="${path_models}/ggml-model-q4_1.bin"
model_q5_0="${path_models}/ggml-model-q5_0.bin"
model_q5_1="${path_models}/ggml-model-q5_1.bin"
model_q2_k="${path_models}/ggml-model-q2_k.bin"
model_q3_k="${path_models}/ggml-model-q3_k.bin"
model_q4_k="${path_models}/ggml-model-q4_k.bin"
model_q5_k="${path_models}/ggml-model-q5_k.bin"
model_q6_k="${path_models}/ggml-model-q6_k.bin"
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
@ -285,17 +285,17 @@ function gg_run_open_llama_7b_v2 {
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.bin"
model_q8_0="${path_models}/ggml-model-q8_0.bin"
model_q4_0="${path_models}/ggml-model-q4_0.bin"
model_q4_1="${path_models}/ggml-model-q4_1.bin"
model_q5_0="${path_models}/ggml-model-q5_0.bin"
model_q5_1="${path_models}/ggml-model-q5_1.bin"
model_q2_k="${path_models}/ggml-model-q2_k.bin"
model_q3_k="${path_models}/ggml-model-q3_k.bin"
model_q4_k="${path_models}/ggml-model-q4_k.bin"
model_q5_k="${path_models}/ggml-model-q5_k.bin"
model_q6_k="${path_models}/ggml-model-q6_k.bin"
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"

20
common/CMakeLists.txt Normal file
View file

@ -0,0 +1,20 @@
# common
set(TARGET common)
add_library(${TARGET} OBJECT
common.h
common.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)

View file

@ -170,18 +170,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_ctx = std::stoi(argv[i]);
} else if (arg == "-gqa" || arg == "--gqa") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.n_gqa = std::stoi(argv[i]);
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
@ -194,6 +182,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.rope_freq_scale = std::stof(argv[i]);
} else if (arg == "--rope-scale") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.rope_freq_scale = 1.0f/std::stof(argv[i]);
} else if (arg == "--memory-f32") {
params.memory_f16 = false;
} else if (arg == "--top-p") {
@ -268,6 +262,21 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.cfg_negative_prompt = argv[i];
} else if (arg == "--cfg-negative-prompt-file") {
if (++i >= argc) {
invalid_param = true;
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
if (params.cfg_negative_prompt.back() == '\n') {
params.cfg_negative_prompt.pop_back();
}
} else if (arg == "--cfg-scale") {
if (++i >= argc) {
invalid_param = true;
@ -280,7 +289,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_batch = std::stoi(argv[i]);
params.n_batch = std::min(512, params.n_batch);
} else if (arg == "--keep") {
if (++i >= argc) {
invalid_param = true;
@ -379,11 +387,11 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--mul-mat-q" || arg == "-mmq") {
} else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
#ifdef GGML_USE_CUBLAS
params.mul_mat_q = true;
params.mul_mat_q = false;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to use mul_mat_q kernels.\n");
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--low-vram" || arg == "-lv") {
#ifdef GGML_USE_CUBLAS
@ -409,6 +417,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.antiprompt.push_back(argv[i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "--ppl-stride") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.ppl_stride = std::stoi(argv[i]);
} else if (arg == "--ppl-output-type") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.ppl_output_type = std::stoi(argv[i]);
} else if (arg == "--hellaswag") {
params.hellaswag = true;
} else if (arg == "--hellaswag-tasks") {
@ -418,7 +438,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
}
params.hellaswag_tasks = std::stoi(argv[i]);
} else if (arg == "--ignore-eos") {
params.logit_bias[llama_token_eos()] = -INFINITY;
params.ignore_eos = true;
} else if (arg == "--no-penalize-nl") {
params.penalize_nl = false;
} else if (arg == "-l" || arg == "--logit-bias") {
@ -537,11 +557,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
fprintf(stdout, " -f FNAME, --file FNAME\n");
fprintf(stdout, " prompt file to start generation.\n");
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
fprintf(stdout, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
@ -561,11 +579,14 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
fprintf(stdout, " --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
fprintf(stdout, " --grammar-file FNAME file to read grammar from\n");
fprintf(stdout, " --cfg-negative-prompt PROMPT \n");
fprintf(stdout, " --cfg-negative-prompt PROMPT\n");
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
fprintf(stdout, " --cfg-negative-prompt-file FNAME\n");
fprintf(stdout, " negative prompt file to use for guidance. (default: empty)\n");
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
fprintf(stdout, " --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale);
fprintf(stdout, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
fprintf(stdout, " --no-penalize-nl do not penalize newline token\n");
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
@ -590,11 +611,11 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " number of layers to store in VRAM\n");
fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
fprintf(stdout, " -mmq, --mul-mat-q use experimental mul_mat_q CUDA kernels instead of cuBLAS. TEMP!!!\n" );
fprintf(stdout, " Reduces VRAM usage by 700/970/1430 MiB for 7b/13b/33b but prompt processing speed\n" );
fprintf(stdout, " is still suboptimal, especially q2_K, q3_K, q5_K, and q6_K.\n" );
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
fprintf(stdout, " -nommq, --no-mul-mat-q\n");
fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
#endif
fprintf(stdout, " --mtest compute maximum memory usage\n");
fprintf(stdout, " --export export the computation graph to 'llama.ggml'\n");
@ -626,24 +647,15 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
return "The";
}
// TODO: not great allocating this every time
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
std::vector<llama_token> res(text.size() + (int) add_bos);
const int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
assert(n >= 0);
res.resize(n);
return res;
}
//
// Model utils
//
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch;
lparams.n_gqa = params.n_gqa;
lparams.rms_norm_eps = params.rms_norm_eps;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split;
@ -661,7 +673,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
return lparams;
}
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) {
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
auto lparams = llama_context_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
@ -690,5 +702,45 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
}
}
if (params.ignore_eos) {
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
}
return std::make_tuple(model, lctx);
}
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
struct llama_context * ctx,
const std::string & text,
bool add_bos) {
// upper limit for the number of tokens
int n_tokens = text.length() + add_bos;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
std::vector<char> result(8, 0);
const int n_tokens = llama_token_to_str(ctx, token, result.data(), result.size());
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_token_to_str(ctx, token, result.data(), result.size());
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return std::string(result.data(), result.size());
}

View file

@ -22,19 +22,16 @@ struct gpt_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS; // rms norm epsilon
float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
// sampling parameters
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
@ -48,12 +45,14 @@ struct gpt_params {
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance
std::string model = "models/7B/ggml-model.bin"; // model path
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_alias = "unknown"; // model alias
std::string prompt = "";
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
@ -65,11 +64,15 @@ struct gpt_params {
std::string lora_adapter = ""; // lora adapter path
std::string lora_base = ""; // base model path for the lora adapter
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
bool mul_mat_q = false; // if true, use experimental mul_mat_q kernels
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
@ -83,6 +86,7 @@ struct gpt_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
bool penalize_nl = true; // consider newlines as a repeatable token
bool perplexity = false; // compute perplexity over the prompt
@ -100,15 +104,22 @@ void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
//
// Model utils
//
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params);
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
//
// Vocab utils
//
std::vector<llama_token> llama_tokenize(
struct llama_context * ctx,
const std::string & text,
bool add_bos);
std::string llama_token_to_str(
const struct llama_context * ctx,
llama_token token);

View file

@ -10,6 +10,9 @@
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#ifndef ENABLE_VIRTUAL_TERMINAL_PROCESSING
#define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
#endif
#else
#include <climits>
#include <sys/ioctl.h>
@ -68,9 +71,10 @@ namespace console {
}
}
if (hConsole) {
// Enable ANSI colors on Windows 10+
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING);
// Check conditions combined to reduce nesting
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING) &&
!SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
advanced_display = false;
}
// Set console output codepage to UTF8
SetConsoleOutputCP(CP_UTF8);

278
convert-falcon-hf-to-gguf.py Executable file
View file

@ -0,0 +1,278 @@
#!/usr/bin/env python3
# HF falcon--> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer
def bytes_to_unicode():
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "RWForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.FALCON
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("Falcon")
gguf_writer.add_context_length(2048) # not in config.json
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
if "n_head_kv" in hparams:
gguf_writer.add_head_count_kv(hparams["n_head_kv"])
else:
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[str] = []
scores: List[float] = []
toktypes: List[int] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer merges")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
merges = tokenizer_json["model"]["merges"]
gguf_writer.add_token_merges(merges)
print("gguf: get gpt2 tokenizer vocab")
vocab_size = len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
scores.append(0.0) # dymmy
toktypes.append(gguf.TokenType.NORMAL) # dummy
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
print("gguf: get special token ids")
# Look for special tokens in config.json
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
head_dim = hparams["hidden_size"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
# QKV tensor transform
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
if "query_key_value" in name:
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
data = torch.cat((q,k,v)).reshape_as(data)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

267
convert-gptneox-hf-to-gguf.py Executable file
View file

@ -0,0 +1,267 @@
#!/usr/bin/env python3
# HF gptneox--> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List
from pathlib import Path
from transformers import AutoTokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.GPTNEOX
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name(last_dir)
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[str] = []
merges: List[str] = []
if Path(dir_model + "/tokenizer.json").is_file():
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer merges")
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
merges = tokenizer_json["model"]["merges"]
gguf_writer.add_token_merges(merges)
print("gguf: get gpt2 tokenizer vocab")
vocab_size = len(tokenizer_json["model"]["vocab"])
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
for i in range(vocab_size):
if i in reverse_vocab:
try:
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
except KeyError:
text = bytearray()
for c in reverse_vocab[i]:
if ord(c) < 256: # single byte character
text.append(byte_decoder[ord(c)])
else: # multibyte special token character
text.extend(c.encode('utf-8'))
else:
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
pad_token = f"[PAD{i}]".encode("utf8")
text = bytearray(pad_token)
tokens.append(text)
gguf_writer.add_token_list(tokens)
if "added_tokens" in tokenizer_json and Path(dir_model + "/tokenizer_config.json").is_file():
print("gguf: get special token ids")
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
# find special token ids
if "bos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config:
for key in tokenizer_json["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]:
gguf_writer.add_pad_token_id(key["id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

308
convert-llama-7b-pth-to-gguf.py Executable file
View file

@ -0,0 +1,308 @@
#!/usr/bin/env python3
# 7b pth llama --> gguf conversion
# Only models with a single datafile are supported, like 7B
# HF files required in the model dir: config.json tokenizer_config.json tokenizer.json tokenizer.model
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List
from pathlib import Path
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("consolidated."):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
if num_parts > 1:
print("gguf: Only models with a single datafile are supported.")
sys.exit()
ARCH=gguf.MODEL_ARCH.LLAMA
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(last_dir)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
if Path(dir_model + "/tokenizer.model").is_file():
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab and scores")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
if Path(dir_model + "/added_tokens.json").is_file():
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
print("gguf: get special token ids")
if Path(dir_model + "/tokenizer.json").is_file():
# Look for special tokens in tokenizer.json if it exists
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]["content"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]["content"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]["content"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]["content"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]["content"]:
gguf_writer.add_pad_token_id(key["id"])
else:
# If no tokenizer.json: Look for special tokens in config.json
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
part_names = (f"consolidated.{n:02}.pth" for n in range(0, num_parts))
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name == "rope.freqs":
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

345
convert-llama-ggmlv3-to-gguf.py Executable file
View file

@ -0,0 +1,345 @@
#!/usr/bin/env python3
import sys, struct, math, argparse
from pathlib import Path
import numpy as np
import gguf
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
gguf.GGMLQuantizationType.F32 : (1, 4),
gguf.GGMLQuantizationType.F16 : (1, 2),
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
}
class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
self.n_ff = 0
def set_n_ff(self, model):
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
ff_tensor = model.tensors[ff_tensor_idx]
self.n_ff = ff_tensor.dims[1]
def load(self, data, offset):
(
self.n_vocab,
self.n_embd,
self.n_mult,
self.n_head,
self.n_layer,
self.n_rot,
self.ftype,
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
return 4 * 7
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
class Vocab:
def __init__(self):
self.items = []
def load(self, data, offset, n_vocab):
orig_offset = offset
for _ in range(n_vocab):
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
assert itemlen < 4096, 'Absurd vocab item length'
offset += 4
vocab = bytes(data[offset:offset + itemlen])
offset += itemlen
score = struct.unpack('<f', data[offset:offset + 4])[0]
offset += 4
self.items.append((vocab, score))
return offset - orig_offset
class Tensor:
def __init__(self):
self.name = None
self.dims = ()
self.dtype = None
self.start_offset = 0
self.len_bytes = 0
def load(self, data, offset):
orig_offset = offset
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
assert name_len < 4096, 'Absurd tensor name length'
quant = GGML_QUANT_SIZES.get(dtype)
assert quant is not None, 'Unknown tensor type'
(blksize, tysize) = quant
offset += 12
self.dtype= dtype
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
offset += 4 * n_dims
self.name = bytes(data[offset:offset + name_len])
offset += name_len
pad = ((offset + 31) & ~31) - offset
offset += pad
n_elems = np.prod(self.dims)
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
self.start_offset = offset
self.len_bytes = n_bytes
offset += n_bytes
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
class GGMLV3Model:
def __init__(self):
self.hyperparameters = None
self.vocab = None
self.tensor_map = {}
self.tensors = []
def validate_header(self, data, offset):
if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
raise ValueError('Only GGJTv3 supported')
return 8
def load(self, data, offset):
offset += self.validate_header(data, offset)
hp = Hyperparameters()
offset += hp.load(data, offset)
vocab = Vocab()
offset += vocab.load(data, offset, hp.n_vocab)
tensors = []
tensor_map = {}
while offset < len(data):
tensor = Tensor()
offset += tensor.load(data, offset)
tensor_map[tensor.name] = len(tensors)
tensors.append(tensor)
self.hyperparameters = hp
self.vocab = vocab
self.tensors = tensors
self.tensor_map = tensor_map
hp.set_n_ff(self)
return offset
class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None):
hp = ggml_model.hyperparameters
self.model = ggml_model
self.data = data
self.cfg = cfg
self.params_override = params_override
self.vocab_override = vocab_override
if params_override is not None:
n_kv_head = params_override.n_head_kv
else:
if cfg.gqa == 1:
n_kv_head = hp.n_head
else:
gqa = float(cfg.gqa)
n_kv_head = None
for x in range(1, 256):
if float(hp.n_head) / float(x) == gqa:
n_kv_head = x
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
self.n_kv_head = n_kv_head
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
def save(self):
print('* Preparing to save GGUF file')
gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
self.add_tensors(gguf_writer)
print(" gguf: write header")
gguf_writer.write_header_to_file()
print(" gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print(" gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
def add_params(self, gguf_writer):
hp = self.model.hyperparameters
cfg = self.cfg
desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
try:
# Filenames aren't necessarily valid UTF8.
name = cfg.name if cfg.name is not None else cfg.input.name
except UnicodeDecodeError:
name = None
print('* Adding model parameters and KV items')
if name is not None:
gguf_writer.add_name(name)
gguf_writer.add_description(desc)
if self.params_override is not None:
po = self.params_override
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
gguf_writer.add_context_length (po.n_ctx)
gguf_writer.add_embedding_length (po.n_embd)
gguf_writer.add_block_count (po.n_layer)
gguf_writer.add_feed_forward_length (po.n_ff)
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
gguf_writer.add_head_count (po.n_head)
gguf_writer.add_head_count_kv (po.n_head_kv)
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
return
gguf_writer.add_context_length(cfg.context_length)
gguf_writer.add_embedding_length(hp.n_embd)
gguf_writer.add_block_count(hp.n_layer)
gguf_writer.add_feed_forward_length(hp.n_ff)
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
gguf_writer.add_head_count(hp.n_head)
gguf_writer.add_head_count_kv(self.n_kv_head)
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
def add_vocab(self, gguf_writer):
hp = self.model.hyperparameters
gguf_writer.add_tokenizer_model('llama')
tokens = []
scores = []
toktypes = []
if self.vocab_override is not None:
vo = self.vocab_override
print('* Adding vocab item(s)')
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
tokens.append(vbytes)
scores.append(score)
toktypes.append(ttype)
assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
if len(toktypes) > 0:
gguf_writer.add_token_types(toktypes)
return
print(f'* Adding {hp.n_vocab} vocab item(s)')
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
tt = 1 # Normal
# Special handling for UNK, BOS, EOS tokens.
if tokid <= 2:
if tokid == 0:
vbytes = b'<unk>'
tt = 2
elif tokid == 1:
vbytes = b'<s>'
tt = 3
else:
vbytes = b'</s>'
tt = 3
elif len(vbytes) == 0:
tt = 3 # Control
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
tt = 6 # Byte
else:
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
toktypes.append(tt)
tokens.append(vbytes)
scores.append(vscore)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
gguf_writer.add_unk_token_id(0)
gguf_writer.add_bos_token_id(1)
gguf_writer.add_eos_token_id(2)
def add_tensors(self, gguf_writer):
nm = self.name_map
data = self.data
print(f'* Adding {len(self.model.tensors)} tensor(s)')
for tensor in self.model.tensors:
name = str(tensor.name, 'UTF-8')
if name.endswith('.weight'):
name = name[:-7]
suffix = '.weight'
elif name.endswith('.bias'):
name = name[:-5]
suffix = '.bias'
mapped_name = nm.get(name)
assert mapped_name is not None, f'Bad name {name}'
mapped_name += suffix
tempdims = list(tensor.dims[:])
if len(tempdims) > 1:
temp = tempdims[1]
tempdims[1] = tempdims[0]
tempdims[0] = temp
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
def handle_metadata(cfg, hp):
import convert
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
hf_config_path = cfg.model_metadata_dir / "config.json"
orig_config_path = cfg.model_metadata_dir / "params.json"
# We pass a fake model here. "original" mode will check the shapes of some
# tensors if information is missing in the .json file: other than that, the
# model data isn't used so this should be safe (at least for now).
fakemodel = {
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
}
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
if hf_config_path.exists():
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
elif orig_config_path.exists():
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
else:
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
convert.check_vocab_size(params, vocab)
return (params, vocab)
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
parser.add_argument('--input', '-i', type = Path, help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename')
parser.add_argument('--name', help = 'Set model name')
parser.add_argument('--desc', help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
return parser.parse_args()
def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
data = np.memmap(cfg.input, mode = 'r')
model = GGMLV3Model()
print('* Scanning GGML input file')
offset = model.load(data, 0)
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
if cfg.model_metadata_dir is not None:
(params_override, vocab_override) = handle_metadata(cfg, model.hyperparameters)
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
print(f'* Overriding params: {params_override}')
print(f'* Overriding vocab: {vocab_override}')
else:
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override)
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
if __name__ == '__main__':
main()

328
convert-llama-hf-to-gguf.py Executable file
View file

@ -0,0 +1,328 @@
#!/usr/bin/env python3
# HF llama --> gguf conversion
import gguf
import os
import sys
import struct
import json
import numpy as np
import torch
from typing import Any, List, Optional
from pathlib import Path
from sentencepiece import SentencePieceProcessor
#NDArray = np.ndarray[Any, Any]
# compatible with python < 3.9
NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
# reverse HF permute back to original pth layout
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
if len(sys.argv) < 3:
print("Usage: convert-h5-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
last_dir = os.path.basename(os.path.normpath(dir_model))
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
print("gguf: loading model "+last_dir)
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "LlamaForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.LLAMA
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(last_dir)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: List[bytes] = []
scores: List[float] = []
toktypes: List[int] = []
if Path(dir_model + "/tokenizer.model").is_file():
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
tokenizer = SentencePieceProcessor(dir_model + "/tokenizer.model")
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
if Path(dir_model + "/added_tokens.json").is_file():
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
print("gguf: get special token ids")
if Path(dir_model + "/tokenizer.json").is_file():
# Look for special tokens in tokenizer.json if it exists
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
if "added_tokens" in tokenizer and Path(dir_model + "/tokenizer_config.json").is_file():
with open(dir_model + "/tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_config = json.load(f)
if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["bos_token"]["content"]:
gguf_writer.add_bos_token_id(key["id"])
if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["eos_token"]["content"]:
gguf_writer.add_eos_token_id(key["id"])
if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["unk_token"]["content"]:
gguf_writer.add_unk_token_id(key["id"])
if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["sep_token"]["content"]:
gguf_writer.add_sep_token_id(key["id"])
if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] != None:
for key in tokenizer["added_tokens"]:
if key["content"] == tokenizer_config["pad_token"]["content"]:
gguf_writer.add_pad_token_id(key["id"])
else:
# If no tokenizer.json: Look for special tokens in config.json
if "bos_token_id" in hparams and hparams["bos_token_id"] != None:
gguf_writer.add_bos_token_id(hparams["bos_token_id"])
if "eos_token_id" in hparams and hparams["eos_token_id"] != None:
gguf_writer.add_eos_token_id(hparams["eos_token_id"])
if "unk_token_id" in hparams and hparams["unk_token_id"] != None:
gguf_writer.add_unk_token_id(hparams["unk_token_id"])
if "sep_token_id" in hparams and hparams["sep_token_id"] != None:
gguf_writer.add_sep_token_id(hparams["sep_token_id"])
if "pad_token_id" in hparams and hparams["pad_token_id"] != None:
gguf_writer.add_pad_token_id(hparams["pad_token_id"])
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = ("pytorch_model.bin",)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# reverse permute these
if name.endswith(".q_proj.weight"):
data = reverse_hf_permute(data, head_count)
if name.endswith(".k_proj.weight"):
data = reverse_hf_permute(data, head_count, head_count_kv)
# map tensor names
if name.endswith(".weight") and name[:-7] in tensor_map:
name = tensor_map[name[:-7]] + ".weight"
elif name.endswith(".bias") and name[:-5] in tensor_map:
name = tensor_map[name[:-5]] + ".bias"
else:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print("gguf: model successfully exported to '" + fname_out + "'")
print("")

View file

@ -1,4 +1,4 @@
#!/usr/bin/env python
#!/usr/bin/env python3
import json
import os
import re
@ -6,23 +6,22 @@ import struct
import sys
from typing import Any, Dict, Sequence, TextIO
import numpy as np
import torch
from convert import DATA_TYPE_TO_FTYPE, NUMPY_TYPE_TO_DATA_TYPE, DataType
NUMPY_TYPE_TO_FTYPE: Dict[str, int] = {"float32": 0, "float16": 1}
HF_SUBLAYER_TO_GGML = {
"self_attn.q_proj": "attention.wq",
"self_attn.k_proj": "attention.wk",
"self_attn.v_proj": "attention.wv",
"self_attn.o_proj": "attention.wo",
"mlp.gate_proj": "feed_forward.w1",
"mlp.down_proj": "feed_forward.w2",
"mlp.up_proj": "feed_forward.w3",
"input_layernorm": "attention_norm",
"self_attn.q_proj": "attn_q",
"self_attn.k_proj": "attn_k",
"self_attn.v_proj": "attn_v",
"self_attn.o_proj": "attn_output",
"mlp.gate_proj": "ffn_gate",
"mlp.down_proj": "ffn_down",
"mlp.up_proj": "ffn_up",
"input_layernorm": "attn_norm",
"post_attention_layernorm": "ffn_norm",
# "norm": "norm",
# "embed_tokens": "tok_embeddings",
# "lm_head": "output",
}
@ -39,7 +38,7 @@ def translate_tensor_name(t: str) -> str:
sys.exit(1)
output_string = (
f"layers.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
)
return output_string
else:
@ -54,12 +53,14 @@ def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
# but some models ship a float value instead
# let's convert to int, but fail if lossless conversion is not possible
assert int(params["lora_alpha"]) == params["lora_alpha"], "cannot convert float to int losslessly"
assert (
int(params["lora_alpha"]) == params["lora_alpha"]
), "cannot convert float to int losslessly"
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(
self, name: str, shape: Sequence[int], data_type: DataType
self, name: str, shape: Sequence[int], data_type: np.dtype
) -> None:
sname = name.encode("utf-8")
fout.write(
@ -67,7 +68,7 @@ def write_tensor_header(
"iii",
len(shape),
len(sname),
DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]],
NUMPY_TYPE_TO_FTYPE[data_type.name],
)
)
fout.write(struct.pack("i" * len(shape), *shape[::-1]))

View file

@ -1,13 +0,0 @@
# Compatibility stub
import argparse
import convert
parser = argparse.ArgumentParser(
description="""[DEPRECATED - use `convert.py` instead]
Convert a LLaMA model checkpoint to a ggml compatible file""")
parser.add_argument('dir_model', help='directory containing the model checkpoint')
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
args = parser.parse_args()
convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model])

1055
convert.py Normal file → Executable file

File diff suppressed because it is too large Load diff

View file

@ -3,7 +3,7 @@
## Verifying that the model is running on the GPU with cuBLAS
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell
./main -m "path/to/model.bin" -ngl 200000 -p "Please sir, may I have some "
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
```
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
@ -25,9 +25,9 @@ GPU: A6000 (48GB VRAM)
CPU: 7 physical cores
RAM: 32GB
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.ggmlv3.q4_0.bin` (30B parameters, 4bit quantization, GGML)
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
Run command: `./main -m "path/to/model.bin" -p "-p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Result:

View file

@ -6,27 +6,6 @@ find_package(Threads REQUIRED)
# ...
# common
set(TARGET common)
add_library(${TARGET} OBJECT
common.h
common.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)
# examples
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
@ -42,8 +21,10 @@ else()
add_subdirectory(benchmark)
add_subdirectory(baby-llama)
add_subdirectory(train-text-from-scratch)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(simple)
add_subdirectory(embd-input)
add_subdirectory(llama-bench)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()

View file

@ -0,0 +1,5 @@
set(TARGET convert-llama2c-to-ggml)
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,30 @@
## Convert llama2.c model to ggml
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
`$ make -j`
After successful compilation, following usage options are available:
```
usage: ./convert-llama2c-to-ggml [options]
options:
-h, --help show this help message and exit
--copy-vocab-from-model FNAME model path from which to copy vocab (default 'tokenizer.bin')
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
```
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model ../llama2.c/tokenizer.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.ggmlv3.bin`
For now the generated model is in the legacy GGJTv3 format, so you need to convert it to gguf manually:
`$ python ./convert-llama-ggmlv3-to-gguf.py --eps 1e-5 --input stories42M.ggmlv3.bin --output stories42M.gguf.bin`
Now you can use the model with a command like:
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`

View file

@ -0,0 +1,863 @@
#include "ggml.h"
#include "llama.h"
#include <unordered_map>
#include <vector>
#include <cassert>
#include <climits>
#include <cstring>
#include <cstdarg>
#include <ctime>
#include <random>
#include <stdexcept>
#include <algorithm>
#include <string>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_VERSION_GGJT_V3 3
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls
float* wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
// float* freq_cis_real; // (seq_len, dim/2)
// float* freq_cis_imag; // (seq_len, dim/2)
// (optional) classifier weights for the logits, on the last layer
float* wcls;
} TransformerWeights;
void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
// we calloc instead of malloc to keep valgrind happy
w->token_embedding_table = new float[p->vocab_size * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
w->rms_att_weight = new float[p->n_layers * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
w->wq = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wk = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wv = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wo = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->rms_final_weight = new float[p->dim]();
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
if (shared_weights) {
w->wcls = NULL;
} else {
w->wcls = new float[p->vocab_size * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
}
}
int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
// Skip freq_cis_real & freq_cis_imag
int head_size = p->dim / p->n_heads;
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
// Check we didn't forget to read anything
auto curr = ftell(f);
fseek(f, 0, SEEK_END);
auto end = ftell(f);
if (curr != end) {
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
return 1;
}
return 0;
}
void free_weights(TransformerWeights* w) {
delete w->token_embedding_table;
delete w->rms_att_weight;
delete w->rms_ffn_weight;
delete w->wq;
delete w->wk;
delete w->wv;
delete w->wo;
delete w->w1;
delete w->w2;
delete w->w3;
delete w->rms_final_weight;
if (w->wcls) delete w->wcls;
}
void print_sample_weights(TransformerWeights *w){
printf("----- Quick print of first of the weight vales of all the variables\n");
printf("%f\n", w->token_embedding_table[0]);
printf("%f\n", w->rms_att_weight[0]);
printf("%f\n", w->rms_ffn_weight[0]);
printf("%f\n", w->wq[0]);
printf("%f\n", w->wk[0]);
printf("%f\n", w->wv[0]);
printf("%f\n", w->wo[0]);
printf("%f\n", w->w1[0]);
printf("%f\n", w->w2[0]);
printf("%f\n", w->w3[0]);
printf("%f\n", w->rms_att_weight[0]);
if (w->wcls) printf("%f\n", w->wcls[0]);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
struct llama_vocab {
using id = int32_t;
using token = std::string;
using ttype = llama_token_type;
struct token_data {
token text;
float score;
ttype type;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_data> id_to_token;
};
struct my_llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const my_llama_hparams& other) const {
return memcmp(this, &other, sizeof(my_llama_hparams));
}
};
struct my_llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct my_llama_model {
struct ggml_context * ctx = NULL;
my_llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<my_llama_layer> layers;
uint32_t train_its = 0;
uint32_t train_samples = 0;
uint32_t train_tokens = 0;
};
struct train_params {
const char * fn_vocab_model;
const char * fn_llama2c_model;
const char * fn_llama2c_output_model;
const char * fn_train_data;
const char * fn_checkpoint_in;
const char * fn_checkpoint_out;
const char * fn_model_out;
uint32_t seed;
int n_ctx;
int n_embd;
int n_mult;
int n_head;
int n_layer;
int n_rotmax;
int n_threads;
int n_batch;
int n_examples;
int n_predict;
int print_info_interval;
int print_details_interval;
bool samples_start_after_nl;
bool use_adam;
bool use_flash;
bool use_scratch;
// only adam
int warmup;
int cos_decay_steps;
float cos_decay_restart;
float cos_decay_alpha;
int lbfgs_n_iter;
int adam_n_iter;
float adam_alpha;
float adam_decay;
int mem_model_gb;
int mem_compute_gb;
int mem_compute0_gb;
int mem_compute1_gb;
};
uint32_t get_n_ff(const struct my_llama_hparams* hparams) {
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
return n_ff;
}
void print_params(struct my_llama_hparams * params) {
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
printf("%s: n_embd: %d\n", __func__, params->n_embd);
printf("%s: n_mult: %d\n", __func__, params->n_mult);
printf("%s: n_head: %d\n", __func__, params->n_head);
printf("%s: n_ff: %d\n", __func__, get_n_ff(params));
printf("%s: n_layer: %d\n", __func__, params->n_layer);
printf("%s: n_rot: %d\n", __func__, params->n_rot);
}
void init_model(struct my_llama_model * model) {
const auto & hparams = model->hparams;
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_ff = get_n_ff(&hparams);
struct ggml_context * ctx = model->ctx;
model->train_its = 0;
model->train_samples = 0;
model->train_tokens = 0;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
// printing the per-layer allocations here so we dont print in the for loop.
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
ggml_set_name(model->norm, "norm.weight");
ggml_set_name(model->output, "output.weight");
model->layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
auto & layer = model->layers[i];
std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
}
}
float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
return *ptr;
}
int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
return *ptr;
}
void print_row(struct ggml_tensor * probs, int i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
printf(" %f", p);
}
printf("\n");
}
void print_matrix(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
printf(" %.2f", p);
}
printf("\n");
}
}
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
size = 0;
} else {
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
GGML_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
GGML_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::float_t read_f32() {
std::float_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
void write_tensor(struct llama_file * file, struct ggml_tensor * tensor) {
if (tensor == NULL) {
file->write_u32(0);
file->write_u32(0);
file->write_u32(GGML_TYPE_F32);
file->seek((0-file->tell()) & 31, SEEK_CUR);
return;
}
const char * name = ggml_get_name(tensor);
uint32_t name_len = strlen(name);
uint32_t nd = tensor->n_dims;
uint32_t ne[4] = { (uint32_t)tensor->ne[0],
(uint32_t)tensor->ne[1],
(uint32_t)tensor->ne[2],
(uint32_t)tensor->ne[3] };
file->write_u32(nd);
file->write_u32(name_len);
file->write_u32(tensor->type);
file->write_raw(ne, sizeof(ne[0]) * nd);
file->write_raw(name, name_len);
file->seek((0-file->tell()) & 31, SEEK_CUR);
file->write_raw(tensor->data, ggml_nbytes(tensor));
}
bool is_ggml_file(const char *filename) {
llama_file file(filename, "rb");
if (file.size < 4) {
return false;
}
uint32_t magic = file.read_u32();
return magic == GGUF_MAGIC;
}
void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
#pragma message("TODO: implement reading vocabulary using gguf")
// // heuristic to infer whether vocab is from ggml or from llama2.c vocabulary
// if (is_ggml_file(filename)) {
//
// struct llama_context_params llama_params = llama_context_default_params();
// llama_params.vocab_only = true;
//
// struct llama_model * lmodel = llama_load_model_from_file(filename, llama_params);
// struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params);
//
// const int n_vocab = llama_n_vocab(lctx);
// vocab->id_to_token.resize(n_vocab);
// for (int i=0; i<n_vocab; ++i) {
// vocab->id_to_token[i].text = llama_token_get_text(lctx, i);
// vocab->id_to_token[i].score = llama_token_get_score(lctx, i);
// vocab->id_to_token[i].type = llama_token_get_type(lctx, i);
// vocab->token_to_id.emplace(vocab->id_to_token[i].text, i);
// }
// llama_free(lctx);
// llama_free_model(lmodel);
// } else
{ // assume llama2.c vocabulary
printf("Assuming llama2.c vocabulary since %s is not a ggml file\n", filename);
llama_file file(filename, "rb");
const int n_vocab = config->vocab_size;
/* uint32_t max_token_length = */ file.read_u32(); // unused
vocab->id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) {
float_t score = file.read_f32();
uint32_t len = file.read_u32();
std::string text = file.read_string(len);
// Special-case handling of <0xXX> single byte tokens.
char byte_val;
if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
char cstr[2] = { byte_val, 0 };
text = cstr;
}
vocab->id_to_token[i].text = text;
vocab->id_to_token[i].score = score;
vocab->id_to_token[i].type = LLAMA_TOKEN_TYPE_UNDEFINED;
vocab->token_to_id.emplace(text, i);
}
}
}
void stuff_karpathy_weights_into_gg(struct ggml_tensor * gg_weights, float * karpathy_weights){
int ct;
switch (gg_weights->n_dims){
case 1:
ct = 0;
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
*ptr = karpathy_weights[ct];
ct++;
}
break;
case 2:
ct = 0;
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
*ptr = karpathy_weights[ct];
ct++;
}
}
break;
case 3:
ct = 0;
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
*ptr = karpathy_weights[ct];
ct++;
}
}
}
break;
}
}
void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
struct llama_file file(filename, "wb");
if (file.fp == NULL) {
return;
}
#pragma message("TODO: implement file saving using gguf")
// write_magic
file.write_u32(LLAMA_FILE_MAGIC_GGJT); // magic
file.write_u32(LLAMA_FILE_VERSION_GGJT_V3); // version
// write_hparams
file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_mult);
file.write_u32(model->hparams.n_head);
file.write_u32(model->hparams.n_layer);
file.write_u32(model->hparams.n_rot);
file.write_u32(LLAMA_FTYPE_ALL_F32);
// write_vocab - for now we are just writing the existing BPE voc. assuming karpathy's vocabulary is the same. idk.
uint32_t n_vocab = model->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_data = vocab->id_to_token.at(i);
file.write_u32((uint32_t) token_data.text.size());
file.write_raw(token_data.text.data(), token_data.text.size());
file.write_raw(&token_data.score, sizeof(token_data.score));
}
// stuff AK weights into GG weights one by one.
// w->token_embedding_table -> model->tok_embeddings
// float* -> struct ggml_tensor
stuff_karpathy_weights_into_gg(model->tok_embeddings, w->token_embedding_table);
stuff_karpathy_weights_into_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
stuff_karpathy_weights_into_gg(model->norm, w->rms_final_weight);
//print_row(model->norm, 0);
// for rms-att-weight
int row_length = model->hparams.n_embd;
const auto & hparams = model->hparams;
//int n_ff = model->hparams.n_embd;
int n_ff = get_n_ff(&hparams);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
auto & layer = model->layers[i];
// 1d
stuff_karpathy_weights_into_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
stuff_karpathy_weights_into_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
stuff_karpathy_weights_into_gg(layer.wq , &w->wq[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.wk , &w->wk[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.wv , &w->wv[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.wo , &w->wo[i*row_length*row_length]);
stuff_karpathy_weights_into_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
stuff_karpathy_weights_into_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
stuff_karpathy_weights_into_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
}
// write tensors
write_tensor(&file, model->tok_embeddings);
write_tensor(&file, model->norm);
write_tensor(&file, model->output); // ?
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i];
write_tensor(&file, layer.attention_norm);
write_tensor(&file, layer.wq);
write_tensor(&file, layer.wk);
write_tensor(&file, layer.wv);
write_tensor(&file, layer.wo);
write_tensor(&file, layer.ffn_norm);
write_tensor(&file, layer.w1);
write_tensor(&file, layer.w2);
write_tensor(&file, layer.w3);
}
}
struct train_params get_default_train_params() {
struct train_params params;
params.fn_vocab_model = "tokenizer.bin";
params.fn_llama2c_output_model = "ak_llama_model.bin";
params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
params.seed = -1;
params.n_ctx = 128;
params.n_embd = 256;
params.n_mult = 256;
params.n_head = 8;
params.n_layer = 16;
params.n_rotmax = 64;
params.n_threads = 6;
params.n_batch = 8;
params.n_examples = 8;
params.n_predict = 1024;
params.print_info_interval = 1;
params.print_details_interval = 2;
params.samples_start_after_nl = false;
params.use_adam = true;
params.use_flash = true;
params.use_scratch = true;
// only adam
params.warmup = 100;
params.cos_decay_steps = 1000;
params.cos_decay_restart = 1.1f;
params.cos_decay_alpha = 0.0f;
params.lbfgs_n_iter = 16;
params.adam_n_iter = 16;
params.adam_alpha = 1e-3f;
params.adam_decay = 1e-3f;
params.mem_model_gb = 2;
params.mem_compute_gb = 24;
params.mem_compute0_gb = 8;
params.mem_compute1_gb = 2;
return params;
}
void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " --copy-vocab-from-model FNAME llama2.c vocabulary or ggmlv3 model path from which to copy vocab (default '%s')\n", params->fn_vocab_model);
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
fprintf(stderr, "\n");
}
bool params_parse(int argc, char ** argv, struct train_params * params) {
bool invalid_param = false;
bool reqd_param_found = false;
std::string arg;
struct train_params default_params = get_default_train_params();
const std::string arg_prefix = "--";
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "--copy-vocab-from-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->fn_vocab_model = argv[i];
} else if (arg == "--llama2c-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
reqd_param_found = true;
params->fn_llama2c_model = argv[i];
} else if (arg == "--llama2c-output-model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params->fn_llama2c_output_model = argv[i];
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, &default_params);
exit(0);
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
print_usage(argc, argv, &default_params);
exit(1);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv, &default_params);
exit(1);
}
if (!reqd_param_found){
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
print_usage(argc, argv, &default_params);
exit(1);
}
return true;
}
int main(int argc, char ** argv) {
struct train_params params = get_default_train_params();
if (!params_parse(argc, argv, &params)) {
return 1;
}
Config config;
TransformerWeights weights;
{
FILE *file = fopen(params.fn_llama2c_model, "rb");
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
// read in the config header
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
auto shared_weights = config.vocab_size > 0;
config.vocab_size = abs(config.vocab_size);
// read in the Transformer weights
malloc_weights(&weights, &config, shared_weights);
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
fclose(file);
}
struct llama_vocab vocab;
load_vocab(params.fn_vocab_model, &config, &vocab);
struct my_llama_model model;
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_mult = 32;//params.n_mult;
model.hparams.n_head = config.n_heads; //params.n_head;
model.hparams.n_layer = config.n_layers; //params.n_layer;
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
print_params(&model.hparams);
struct ggml_init_params lcparams;
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
lcparams.mem_buffer = NULL;
lcparams.no_alloc = false;
model.ctx = ggml_init(lcparams);
init_model(&model);
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
ggml_free(model.ctx);
free_weights(&weights);
return 0;
}

View file

@ -167,7 +167,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// TODO: Apply penalties
// float nl_logit = logits[llama_token_nl()];
// float nl_logit = logits[llama_token_nl(ctx)];
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
// llama_sample_repetition_penalty(ctx, &candidates_p,
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
@ -176,7 +176,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
// last_n_repeat, alpha_frequency, alpha_presence);
// if (!penalize_nl) {
// logits[llama_token_nl()] = nl_logit;
// logits[llama_token_nl(ctx)] = nl_logit;
// }
if (temp <= 0) {
@ -211,7 +211,7 @@ const char * sampling(struct MyModel * mymodel) {
llama_context * ctx = mymodel->ctx;
int id = sampling_id(mymodel);
static std::string ret;
if (id == llama_token_eos()) {
if (id == llama_token_eos(ctx)) {
ret = "</s>";
} else {
ret = llama_token_to_str(ctx, id);

1
examples/embd-input/embd_input.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import ctypes
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
import numpy as np

1
examples/embd-input/llava.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))

1
examples/embd-input/minigpt4.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))

1
examples/embd-input/panda_gpt.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))

View file

@ -67,28 +67,35 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
}
fprintf(stderr, "\n");
}
if (params.embedding){
if (embd_inp.size() > 0) {
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++) {
printf("%f ", embeddings[i]);
}
printf("\n");
if (embd_inp.size() > (size_t)params.n_ctx) {
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
__func__, embd_inp.size(), params.n_ctx);
return 1;
}
while (!embd_inp.empty()) {
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
if (llama_eval(ctx, embd_inp.data(), n_tokens, n_past, params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
n_past += n_tokens;
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
for (int i = 0; i < n_embd; i++) {
printf("%f ", embeddings[i]);
}
printf("\n");
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);

246
examples/gguf/gguf.cpp Normal file
View file

@ -0,0 +1,246 @@
#include "ggml.h"
#include "llama.h"
#include <cstdio>
#include <cinttypes>
#include <string>
#include <sstream>
#include <fstream>
#include <vector>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
template<typename T>
static std::string to_string(const T & val) {
std::stringstream ss;
ss << val;
return ss.str();
}
bool gguf_ex_write(const std::string & fname) {
struct gguf_context * ctx = gguf_init_empty();
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
gguf_set_val_bool(ctx, "some.parameter.bool", true);
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
struct ggml_init_params params = {
/*.mem_size =*/ 128ull*1024ull*1024ull,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx_data = ggml_init(params);
const int n_tensors = 10;
// tensor infos
for (int i = 0; i < n_tensors; ++i) {
const std::string name = "tensor_" + to_string(i);
int64_t ne[GGML_MAX_DIMS] = { 1 };
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
for (int j = 0; j < n_dims; ++j) {
ne[j] = rand() % 10 + 1;
}
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
ggml_set_name(cur, name.c_str());
{
float * data = (float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
data[j] = 100 + i;
}
}
gguf_add_tensor(ctx, cur);
}
gguf_write_to_file(ctx, fname.c_str(), false);
fprintf(stdout, "%s: wrote file '%s;\n", __func__, fname.c_str());
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
// just read tensor info
bool gguf_ex_read_0(const std::string & fname) {
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ NULL,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
// kv
{
const int n_kv = gguf_get_n_kv(ctx);
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
for (int i = 0; i < n_kv; ++i) {
const char * key = gguf_get_key(ctx, i);
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
}
}
// find kv string
{
const char * findkey = "some.parameter.string";
const int keyidx = gguf_find_key(ctx, findkey);
if (keyidx == -1) {
fprintf(stdout, "%s: find key: %s not found.\n", __func__, findkey);
} else {
const char * key_value = gguf_get_val_str(ctx, keyidx);
fprintf(stdout, "%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
}
}
// tensor info
{
const int n_tensors = gguf_get_n_tensors(ctx);
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
}
}
gguf_free(ctx);
return true;
}
// read and create ggml_context containing the tensors and their data
bool gguf_ex_read_1(const std::string & fname) {
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ false,
/*.ctx = */ &ctx_data,
};
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
fprintf(stdout, "%s: version: %d\n", __func__, gguf_get_version(ctx));
fprintf(stdout, "%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
fprintf(stdout, "%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
// kv
{
const int n_kv = gguf_get_n_kv(ctx);
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
for (int i = 0; i < n_kv; ++i) {
const char * key = gguf_get_key(ctx, i);
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
}
}
// tensor info
{
const int n_tensors = gguf_get_n_tensors(ctx);
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
}
}
// data
{
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
fprintf(stdout, "%s: reading tensor %d data\n", __func__, i);
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
fprintf(stdout, "%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
// print first 10 elements
const float * data = (const float *) cur->data;
printf("%s data[:10] : ", name);
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
printf("%f ", data[j]);
}
printf("\n\n");
// check data
{
const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) {
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
return false;
}
}
}
}
}
fprintf(stdout, "%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
ggml_free(ctx_data);
gguf_free(ctx);
return true;
}
int main(int argc, char ** argv) {
if (argc < 3) {
fprintf(stdout, "usage: %s data.gguf r|w\n", argv[0]);
return -1;
}
const std::string fname(argv[1]);
const std::string mode (argv[2]);
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
if (mode == "w") {
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
} else if (mode == "r") {
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
}
return 0;
}

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

1
examples/jeopardy/graph.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import os
import csv

0
examples/jeopardy/jeopardy.sh Normal file → Executable file
View file

1
examples/json-schema-to-grammar.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import argparse
import json
import re

View file

@ -0,0 +1,8 @@
set(TARGET llama-bench)
add_executable(${TARGET} llama-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

View file

@ -0,0 +1,969 @@
#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <cstring>
#include <ctime>
#include <iterator>
#include <map>
#include <numeric>
#include <regex>
#include <sstream>
#include <stdio.h>
#include <string>
#include <vector>
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "build-info.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#endif
// utils
static uint64_t get_time_ns() {
using clock = std::chrono::high_resolution_clock;
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
}
template<class T>
static std::string join(const std::vector<T> & values, const std::string & delim) {
std::ostringstream str;
for (size_t i = 0; i < values.size(); i++) {
str << values[i];
if (i < values.size() - 1) {
str << delim;
}
}
return str.str();
}
template<class T>
static std::vector<T> split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
template<typename T>
static T avg(const std::vector<T> & v) {
if (v.empty()) {
return 0;
}
T sum = std::accumulate(v.begin(), v.end(), T(0));
return sum / (T)v.size();
}
template<typename T>
static T stdev(const std::vector<T> & v) {
if (v.size() <= 1) {
return 0;
}
T mean = avg(v);
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
return stdev;
}
static bool ggml_cpu_has_metal() {
#if defined(GGML_USE_METAL)
return true;
#else
return false;
#endif
}
static std::string get_cpu_info() {
std::string id;
#ifdef __linux__
FILE * f = fopen("/proc/cpuinfo", "r");
if (f) {
char buf[1024];
while (fgets(buf, sizeof(buf), f)) {
if (strncmp(buf, "model name", 10) == 0) {
char * p = strchr(buf, ':');
if (p) {
p++;
while (std::isspace(*p)) {
p++;
}
while (std::isspace(p[strlen(p) - 1])) {
p[strlen(p) - 1] = '\0';
}
id = p;
break;
}
}
}
}
#endif
// TODO: other platforms
return id;
}
static std::string get_gpu_info() {
std::string id;
#ifdef GGML_USE_CUBLAS
int count = ggml_cuda_get_device_count();
for (int i = 0; i < count; i++) {
char buf[128];
ggml_cuda_get_device_description(i, buf, sizeof(buf));
id += buf;
if (i < count - 1) {
id += "/";
}
}
#endif
// TODO: other backends
return id;
}
// command line params
enum output_formats {CSV, JSON, MARKDOWN, SQL};
struct cmd_params {
std::vector<std::string> model;
std::vector<int> n_prompt;
std::vector<int> n_gen;
std::vector<int> n_batch;
std::vector<bool> f32_kv;
std::vector<int> n_threads;
std::vector<int> n_gpu_layers;
std::vector<int> main_gpu;
std::vector<bool> mul_mat_q;
std::vector<bool> low_vram;
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
int reps;
bool verbose;
output_formats output_format;
};
static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_batch */ {512},
/* f32_kv */ {false},
/* n_threads */ {get_num_physical_cores()},
/* n_gpu_layers */ {99},
/* main_gpu */ {0},
/* mul_mat_q */ {true},
/* low_vram */ {false},
/* tensor_split */ {{}},
/* reps */ 5,
/* verbose */ false,
/* output_format */ MARKDOWN
};
static void print_usage(int /* argc */, char ** argv) {
fprintf(stdout, "usage: %s [options]\n", argv[0]);
fprintf(stdout, "\n");
fprintf(stdout, "options:\n");
fprintf(stdout, " -h, --help\n");
fprintf(stdout, " -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
fprintf(stdout, " -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
fprintf(stdout, " -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
fprintf(stdout, " -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
fprintf(stdout, " --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
fprintf(stdout, " -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
fprintf(stdout, " -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
fprintf(stdout, " -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
fprintf(stdout, " -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
fprintf(stdout, " -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
fprintf(stdout, " -ts, --tensor_split <ts0/ts1/..> \n");
fprintf(stdout, " -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
fprintf(stdout, " -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
fprintf(stdout, " -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
fprintf(stdout, "\n");
fprintf(stdout, "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
}
static cmd_params parse_cmd_params(int argc, char ** argv) {
cmd_params params;
std::string arg;
bool invalid_param = false;
const std::string arg_prefix = "--";
const char split_delim = ',';
params.verbose = cmd_params_defaults.verbose;
params.output_format = cmd_params_defaults.output_format;
params.reps = cmd_params_defaults.reps;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
std::replace(arg.begin(), arg.end(), '_', '-');
}
if (arg == "-h" || arg == "--help") {
print_usage(argc, argv);
exit(0);
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<std::string>(argv[i], split_delim);
params.model.insert(params.model.end(), p.begin(), p.end());
} else if (arg == "-p" || arg == "--n-prompt") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
} else if (arg == "-n" || arg == "--n-gen") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
} else if (arg == "--memory-f32") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
} else if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<int>(argv[i], split_delim);
params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
} else if (arg == "-mg" || arg == "--main-gpu") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.main_gpu = split<int>(argv[i], split_delim);
} else if (arg == "-lv" || arg == "--low-vram") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
if (++i >= argc) {
invalid_param = true;
break;
}
auto p = split<bool>(argv[i], split_delim);
params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
} else if (arg == "-ts" || arg == "--tensor-split") {
if (++i >= argc) {
invalid_param = true;
break;
}
for (auto ts : split<std::string>(argv[i], split_delim)) {
// split string by ; and /
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
if (i < split_arg.size()) {
tensor_split[i] = std::stof(split_arg[i]);
} else {
tensor_split[i] = 0.0f;
}
}
params.tensor_split.push_back(tensor_split);
}
} else if (arg == "-r" || arg == "--repetitions") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.reps = std::stoi(argv[i]);
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_param = true;
break;
}
if (argv[i] == std::string("csv")) {
params.output_format = CSV;
} else if (argv[i] == std::string("json")) {
params.output_format = JSON;
} else if (argv[i] == std::string("md")) {
params.output_format = MARKDOWN;
} else if (argv[i] == std::string("sql")) {
params.output_format = SQL;
} else {
invalid_param = true;
break;
}
} else if (arg == "-v" || arg == "--verbose") {
params.verbose = true;
} else {
invalid_param = true;
break;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
// set defaults
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
return params;
}
struct cmd_params_instance {
std::string model;
int n_prompt;
int n_gen;
int n_batch;
bool f32_kv;
int n_threads;
int n_gpu_layers;
int main_gpu;
bool mul_mat_q;
bool low_vram;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
llama_context_params to_llama_params() const {
llama_context_params lparams = llama_context_default_params();
lparams.n_ctx = n_prompt + n_gen;
lparams.n_batch = n_batch;
lparams.f16_kv = !f32_kv;
lparams.n_gpu_layers = n_gpu_layers;
lparams.main_gpu = main_gpu;
lparams.mul_mat_q = mul_mat_q;
lparams.low_vram = low_vram;
lparams.tensor_split = tensor_split.data();
return lparams;
}
};
static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
std::vector<cmd_params_instance> instances;
for (const auto & m : params.model)
for (const auto & nb : params.n_batch)
for (const auto & fk : params.f32_kv)
for (const auto & nl : params.n_gpu_layers)
for (const auto & mg : params.main_gpu)
for (const auto & mmq : params.mul_mat_q)
for (const auto & lv : params.low_vram)
for (const auto & ts : params.tensor_split)
for (const auto & nt : params.n_threads) {
cmd_params_instance instance = {
/* .model = */ m,
/* .n_prompt = */ n_prompt,
/* .n_gen = */ n_gen,
/* .n_batch = */ nb,
/* .f32_kv = */ fk,
/* .n_threads = */ nt,
/* .n_gpu_layers = */ nl,
/* .main_gpu = */ mg,
/* .mul_mat_q = */ mmq,
/* .low_vram = */ lv,
/* .tensor_split = */ ts,
};
instances.push_back(instance);
}
return instances;
}
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
std::vector<cmd_params_instance> instances;
for (const auto & n_prompt : params.n_prompt) {
if (n_prompt == 0) {
continue;
}
auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
}
for (const auto & n_gen : params.n_gen) {
if (n_gen == 0) {
continue;
}
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
}
return instances;
}
struct test {
static const std::string build_commit;
static const int build_number;
static const bool cuda;
static const bool opencl;
static const bool metal;
static const bool gpu_blas;
static const bool blas;
static const std::string cpu_info;
static const std::string gpu_info;
std::string model_filename;
std::string model_type;
int n_batch;
int n_threads;
bool f32_kv;
int n_gpu_layers;
int main_gpu;
bool mul_mat_q;
bool low_vram;
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
int n_prompt;
int n_gen;
std::string test_time;
std::vector<uint64_t> samples_ns;
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
model_filename = inst.model;
char buf[128];
llama_model_type(lmodel, buf, sizeof(buf));
model_type = buf;
n_batch = inst.n_batch;
n_threads = inst.n_threads;
f32_kv = inst.f32_kv;
n_gpu_layers = inst.n_gpu_layers;
main_gpu = inst.main_gpu;
mul_mat_q = inst.mul_mat_q;
low_vram = inst.low_vram;
tensor_split = inst.tensor_split;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
// RFC 3339 date-time format
time_t t = time(NULL);
std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
test_time = buf;
(void) ctx;
}
uint64_t avg_ns() const {
return ::avg(samples_ns);
}
uint64_t stdev_ns() const {
return ::stdev(samples_ns);
}
std::vector<double> get_ts() const {
int n_tokens = n_prompt + n_gen;
std::vector<double> ts;
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
return ts;
}
double avg_ts() const {
return ::avg(get_ts());
}
double stdev_ts() const {
return ::stdev(get_ts());
}
static std::string get_backend() {
if (cuda) {
return "CUDA";
}
if (opencl) {
return "OpenCL";
}
if (metal) {
return "Metal";
}
if (gpu_blas) {
return "GPU BLAS";
}
if (blas) {
return "BLAS";
}
return "CPU";
}
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "opencl", "metal", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type",
"n_batch", "n_threads", "f16_kv",
"n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts"
};
return fields;
}
enum field_type {STRING, BOOL, INT, FLOAT};
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" ||
field == "avg_ns" || field == "stddev_ns") {
return INT;
}
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
return FLOAT;
}
return STRING;
}
std::vector<std::string> get_values() const {
std::string tensor_split_str;
int max_nonzero = 0;
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
if (tensor_split[i] > 0) {
max_nonzero = i;
}
}
for (int i = 0; i <= max_nonzero; i++) {
char buf[32];
snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
tensor_split_str += buf;
if (i < max_nonzero) {
tensor_split_str += "/";
}
}
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type,
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
};
return values;
}
std::map<std::string, std::string> get_map() const {
std::map<std::string, std::string> map;
auto fields = get_fields();
auto values = get_values();
std::transform(fields.begin(), fields.end(), values.begin(),
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
return map;
}
};
const std::string test::build_commit = BUILD_COMMIT;
const int test::build_number = BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cublas();
const bool test::opencl = !!ggml_cpu_has_clblast();
const bool test::metal = !!ggml_cpu_has_metal();
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
const bool test::blas = !!ggml_cpu_has_blas();
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
struct printer {
virtual ~printer() {}
FILE * fout;
virtual void print_header(const cmd_params & params) { (void) params; };
virtual void print_test(const test & t) = 0;
virtual void print_footer() { };
};
struct csv_printer : public printer {
static std::string escape_csv(const std::string & field) {
std::string escaped = "\"";
for (auto c : field) {
if (c == '"') {
escaped += "\"";
}
escaped += c;
}
escaped += "\"";
return escaped;
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "%s\n", join(fields, ",").c_str());
(void) params;
}
void print_test(const test & t) override {
std::vector<std::string> values = t.get_values();
std::transform(values.begin(), values.end(), values.begin(), escape_csv);
fprintf(fout, "%s\n", join(values, ",").c_str());
}
};
struct json_printer : public printer {
bool first = true;
static std::string escape_json(const std::string & value) {
std::string escaped;
for (auto c : value) {
if (c == '"') {
escaped += "\\\"";
} else if (c == '\\') {
escaped += "\\\\";
} else if (c <= 0x1f) {
char buf[8];
snprintf(buf, sizeof(buf), "\\u%04x", c);
escaped += buf;
} else {
escaped += c;
}
}
return escaped;
}
static std::string format_value(const std::string & field, const std::string & value) {
switch (test::get_field_type(field)) {
case test::STRING:
return "\"" + escape_json(value) + "\"";
case test::BOOL:
return value == "0" ? "false" : "true";
default:
return value;
}
}
void print_header(const cmd_params & params) override {
fprintf(fout, "[\n");
(void) params;
}
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
}
}
void print_test(const test & t) override {
if (first) {
first = false;
} else {
fprintf(fout, ",\n");
}
fprintf(fout, " {\n");
print_fields(test::get_fields(), t.get_values());
fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
fprintf(fout, " }");
fflush(fout);
}
void print_footer() override {
fprintf(fout, "\n]\n");
}
};
struct markdown_printer : public printer {
std::vector<std::string> fields;
static int get_field_width(const std::string & field) {
if (field == "model") {
return -30;
}
if (field == "t/s") {
return 15;
}
int width = std::max((int)field.length(), 10);
if (test::get_field_type(field) == test::STRING) {
return -width;
}
return width;
}
void print_header(const cmd_params & params) override {
// select fields to print
fields = { "model", "backend" };
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
if (!is_cpu_backend) {
fields.push_back("n_gpu_layers");
}
if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
fields.push_back("n_threads");
}
if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
fields.push_back("n_batch");
}
if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
fields.push_back("f16_kv");
}
if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
fields.push_back("main_gpu");
}
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
fields.push_back("mul_mat_q");
}
if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
fields.push_back("low_vram");
}
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
fields.push_back("tensor_split");
}
fields.push_back("test");
fields.push_back("t/s");
fprintf(fout, "|");
for (const auto & field : fields) {
fprintf(fout, " %*s |", get_field_width(field), field.c_str());
}
fprintf(fout, "\n");
fprintf(fout, "|");
for (const auto & field : fields) {
int width = get_field_width(field);
fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
}
fprintf(fout, "\n");
}
void print_test(const test & t) override {
std::map<std::string, std::string> vmap = t.get_map();
fprintf(fout, "|");
for (const auto & field : fields) {
std::string value;
if (field == "model") {
value = t.model_type;
} else if (field == "backend") {
value = test::get_backend();
} else if (field == "test") {
char buf[128];
if (t.n_prompt > 0 && t.n_gen == 0) {
snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
} else if (t.n_gen > 0 && t.n_prompt == 0) {
snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
} else {
assert(false);
exit(1);
}
value = buf;
} else if (field == "t/s") {
char buf[128];
snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
value = buf;
} else if (vmap.find(field) != vmap.end()) {
value = vmap.at(field);
} else {
assert(false);
exit(1);
}
int width = get_field_width(field);
if (field == "t/s") {
// HACK: the utf-8 character is 2 bytes
width += 1;
}
fprintf(fout, " %*s |", width, value.c_str());
}
fprintf(fout, "\n");
}
void print_footer() override {
fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
}
};
struct sql_printer : public printer {
static std::string get_sql_field_type(const std::string & field) {
switch (test::get_field_type(field)) {
case test::STRING:
return "TEXT";
case test::BOOL:
case test::INT:
return "INTEGER";
case test::FLOAT:
return "REAL";
default:
assert(false);
exit(1);
}
}
void print_header(const cmd_params & params) override {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
}
fprintf(fout, ");\n");
fprintf(fout, "\n");
(void) params;
}
void print_test(const test & t) override {
fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
fprintf(fout, "VALUES (");
std::vector<std::string> values = t.get_values();
for (size_t i = 0; i < values.size(); i++) {
fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
}
fprintf(fout, ");\n");
}
};
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
int n_processed = 0;
while (n_processed < n_prompt) {
int n_tokens = std::min(n_prompt - n_processed, n_batch);
llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
n_processed += n_tokens;
}
}
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
llama_token token = llama_token_bos(ctx);
for (int i = 0; i < n_gen; i++) {
llama_eval(ctx, &token, 1, n_past + i, n_threads);
}
}
static void llama_null_log_callback(enum llama_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;
}
int main(int argc, char ** argv) {
#if !defined(NDEBUG)
fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
#endif
#if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
fprintf(stderr, "warning: debug build, performance may be affected\n");
#endif
#if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
#endif
cmd_params params = parse_cmd_params(argc, argv);
// initialize llama.cpp
if (!params.verbose) {
llama_log_set(llama_null_log_callback, NULL);
}
bool numa = false;
llama_backend_init(numa);
// initialize printer
std::unique_ptr<printer> p;
switch (params.output_format) {
case CSV:
p.reset(new csv_printer());
break;
case JSON:
p.reset(new json_printer());
break;
case MARKDOWN:
p.reset(new markdown_printer());
break;
case SQL:
p.reset(new sql_printer());
break;
default:
assert(false);
exit(1);
}
p->fout = stdout;
p->print_header(params);
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
for (const auto & inst : params_instances) {
// TODO: keep the model between tests when possible
llama_context_params lparams = inst.to_llama_params();
llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
if (lmodel == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
return 1;
}
llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
llama_free_model(lmodel);
return 1;
}
test t(inst, lmodel, ctx);
// warmup run
test_gen(ctx, 1, 0, t.n_threads);
for (int i = 0; i < params.reps; i++) {
uint64_t t_start = get_time_ns();
if (t.n_prompt > 0) {
test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
}
uint64_t t_ns = get_time_ns() - t_start;
t.samples_ns.push_back(t_ns);
}
p->print_test(t);
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(lmodel);
}
p->print_footer();
llama_backend_free();
return 0;
}

132
examples/llama.vim Normal file
View file

@ -0,0 +1,132 @@
" Requires an already running llama.cpp server
" To install either copy or symlink to ~/.vim/autoload/llama.vim
" Then start with either :call llama#doLlamaGen(),
" or add a keybind to your vimrc such as
" nnoremap Z :call llama#doLlamaGen()<CR>
" Similarly, you could add an insert mode keybind with
" inoremap <C-B> <Cmd>call llama#doLlamaGen()<CR>
"
" g:llama_api_url and g:llama_overrides can be configured in your .vimrc
" let g:llama_api_url = "192.168.1.10:8080"
" llama_overrides can also be set through buffer/window scopes. For instance
" autocmd filetype python let b:llama_overrides = {"temp": 0.2}
" Could be added to your .vimrc to automatically set a lower temperature when
" editing a python script
" Additionally, an override dict can be stored at the top of a file
" !*{"stop": ["User:"]}
" Could be added to the start of your chatlog.txt to set the stopping token
" These parameter dicts are merged together from lowest to highest priority:
" server default -> g:llama_overrides -> w:llama_overrides ->
" b:llama_overrides -> in file (!*) overrides
"
" Sublists (like logit_bias and stop) are overridden, not merged
" Example override:
" !*{"logit_bias": [[13, -5], [2, false]], "temperature": 1, "top_k": 5, "top_p": 0.5, "n_predict": 256, "repeat_last_n": 256, "repeat_penalty": 1.17647}
if !exists("g:llama_api_url")
let g:llama_api_url= "127.0.0.1:8080"
endif
if !exists("g:llama_overrides")
let g:llama_overrides = {}
endif
const s:querydata = {"n_predict": 256, "stop": [ "\n" ], "stream": v:true }
const s:curlcommand = ['curl','--data-raw', "{\"prompt\":\"### System:\"}", '--silent', '--no-buffer', '--request', 'POST', '--url', g:llama_api_url .. '/completion', '--header', "Content-Type: application/json"]
let s:linedict = {}
func s:callbackHandler(bufn, channel, msg)
if len(a:msg) < 3
return
elseif a:msg[0] == "d"
let l:msg = a:msg[6:-1]
else
let l:msg = a:msg
endif
let l:decoded_msg = json_decode(l:msg)
let l:newtext = split(l:decoded_msg['content'], "\n", 1)
if len(l:newtext) > 0
call setbufline(a:bufn, s:linedict[a:bufn], getbufline(a:bufn, s:linedict[a:bufn])[0] .. newtext[0])
else
echo "nothing genned"
endif
if len(newtext) > 1
let l:failed = appendbufline(a:bufn, s:linedict[a:bufn], newtext[1:-1])
let s:linedict[a:bufn] = s:linedict[a:bufn] + len(newtext)-1
endif
if has_key(l:decoded_msg, "stop") && l:decoded_msg.stop
echo "Finished generation"
endif
endfunction
func llama#doLlamaGen()
if exists("b:job")
if job_status(b:job) == "run"
call job_stop(b:job)
return
endif
endif
let l:cbuffer = bufnr("%")
let s:linedict[l:cbuffer] = line('$')
let l:buflines = getbufline(l:cbuffer, 1, 1000)
let l:querydata = copy(s:querydata)
call extend(l:querydata, g:llama_overrides)
if exists("w:llama_overrides")
call extend(l:querydata, w:llama_overrides)
endif
if exists("b:llama_overrides")
call extend(l:querydata, b:llama_overrides)
endif
if l:buflines[0][0:1] == '!*'
let l:userdata = json_decode(l:buflines[0][2:-1])
call extend(l:querydata, l:userdata)
let l:buflines = l:buflines[1:-1]
endif
let l:querydata.prompt = join(l:buflines, "\n")
let l:curlcommand = copy(s:curlcommand)
let l:curlcommand[2] = json_encode(l:querydata)
let b:job = job_start(l:curlcommand, {"callback": function("s:callbackHandler", [l:cbuffer])})
endfunction
" Echos the tokkenization of the provided string , or cursor to end of word
" Onus is placed on the user to include the preceding space
func llama#tokenizeWord(...)
if (a:0 > 0)
let l:input = a:1
else
exe "normal \"*ye"
let l:input = @*
endif
let l:querydata = {"content": l:input}
let l:curlcommand = copy(s:curlcommand)
let l:curlcommand[2] = json_encode(l:querydata)
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
let s:token_job = job_start(l:curlcommand, {"callback": function("s:tokenizeWordCallback", [l:input])})
endfunction
func s:tokenizeWordCallback(plaintext, channel, msg)
echo '"' .. a:plaintext ..'" - ' .. string(json_decode(a:msg).tokens)
endfunction
" Echos the token count of the entire buffer (or provided string)
" Example usage :echo llama#tokenCount()
func llama#tokenCount(...)
if (a:0 > 0)
let l:buflines = a:1
else
let l:buflines = getline(1,1000)
if l:buflines[0][0:1] == '!*'
let l:buflines = l:buflines[1:-1]
endif
let l:buflines = join(l:buflines, "\n")
endif
let l:querydata = {"content": l:buflines}
let l:curlcommand = copy(s:curlcommand)
let l:curlcommand[2] = json_encode(l:querydata)
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
let s:token_job = job_start(l:curlcommand, {"callback": "s:tokenCountCallback"})
endfunction
func s:tokenCountCallback(channel, msg)
let resp = json_decode(a:msg)
echo len(resp.tokens)
endfunction

View file

@ -1,3 +1,5 @@
" Basic plugin example
function! Llm()
let url = "http://127.0.0.1:8080/completion"
@ -16,8 +18,10 @@ function! Llm()
" Extract the content field from the response
let content = json_decode(response).content
let split_newlines = split(content, '\n', 1)
" Insert the content at the cursor position
call setline(line('.'), getline('.') . content)
call setline(line('.'), [ getline('.') . split_newlines[0] ] + split_newlines[1:])
endfunction
command! Llm call Llm()

View file

@ -140,6 +140,12 @@ The `--ctx-size` option allows you to set the size of the prompt context used by
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results.
### Extended Context Size
Some fine-tuned models have extened the context length by scaling RoPE. For example, if the original pretrained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model.
### Keep Prompt
The `--keep` option allows users to retain the original prompt when the model runs out of context, ensuring a connection to the initial instruction or conversation topic is maintained.
@ -154,9 +160,13 @@ The following options allow you to control the text generation process and fine-
### Number of Tokens to Predict
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity).
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity, -2 = until context filled)
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text. A value of -1 will cause text to be generated without limit.
The `--n-predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--n-keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in significant pause in output.
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `n-predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
@ -278,6 +288,10 @@ These options help improve the performance and memory usage of the LLaMA models.
- `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation.
### Grammars
- `--grammar GRAMMAR`, `--grammar-file FILE`: Specify a grammar (defined inline or in a file) to constrain model output to a specific format. For example, you could force the model to output JSON or to speak only in emojis. See the [GBNF guide](../../grammars/README.md) for details on the syntax.
### Quantization
For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-data--run).

View file

@ -43,7 +43,7 @@ static bool is_interacting = false;
void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting) {
is_interacting=true;
is_interacting = true;
} else {
console::cleanup();
printf("\n");
@ -143,7 +143,7 @@ int main(int argc, char ** argv) {
{
fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
const std::vector<llama_token> tmp(params.n_batch, llama_token_bos(ctx));
llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
}
@ -189,27 +189,30 @@ int main(int argc, char ** argv) {
}
}
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
// tokenize the prompt
std::vector<llama_token> embd_inp;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
embd_inp = ::llama_tokenize(ctx, params.prompt, true);
embd_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
} else {
embd_inp = session_tokens;
}
// Should not run without any tokens
if (embd_inp.empty()) {
embd_inp.push_back(llama_token_bos(ctx));
}
// Tokenize negative prompt
std::vector<llama_token> guidance_inp;
int guidance_offset = 0;
int original_prompt_len = 0;
if (ctx_guidance) {
params.cfg_negative_prompt.insert(0, 1, ' ');
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true);
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, is_spm);
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, is_spm);
original_prompt_len = original_inp.size();
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
}
@ -256,8 +259,8 @@ int main(int argc, char ** argv) {
}
// prefix & suffix for instruct mode
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", is_spm);
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
@ -270,15 +273,12 @@ int main(int argc, char ** argv) {
params.interactive = true;
}
// determine newline token
auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]).c_str());
}
if (ctx_guidance) {
@ -286,14 +286,14 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
for (int i = 0; i < (int) guidance_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]));
fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]).c_str());
}
}
if (params.n_keep > 0) {
fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]).c_str());
}
fprintf(stderr, "'\n");
}
@ -311,7 +311,7 @@ int main(int argc, char ** argv) {
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
fprintf(stderr, "%s: interactive mode on.\n", __func__);
@ -352,10 +352,9 @@ int main(int argc, char ** argv) {
fprintf(stderr, "\n");
{
auto it = params.logit_bias.find(llama_token_eos());
auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) {
fprintf(stderr,
"%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
fprintf(stderr, "%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
}
}
@ -405,7 +404,7 @@ int main(int argc, char ** argv) {
// do one empty run to warm up the model
{
const std::vector<llama_token> tmp = { llama_token_bos(), };
const std::vector<llama_token> tmp = { llama_token_bos(ctx), };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(ctx);
}
@ -431,8 +430,12 @@ int main(int argc, char ** argv) {
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
const int n_left = n_past - params.n_keep;
if (params.n_predict == -2) {
fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__);
break;
}
const int n_left = n_past - params.n_keep;
// always keep the first token - BOS
n_past = std::max(1, params.n_keep);
n_past_guidance = std::max(1, params.n_keep + guidance_offset);
@ -585,7 +588,7 @@ int main(int argc, char ** argv) {
}
// Apply penalties
float nl_logit = logits[llama_token_nl()];
float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
@ -594,7 +597,7 @@ int main(int argc, char ** argv) {
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl) {
logits[llama_token_nl()] = nl_logit;
logits[llama_token_nl(ctx)] = nl_logit;
}
if (grammar != NULL) {
@ -658,7 +661,7 @@ int main(int argc, char ** argv) {
// display text
if (input_echo) {
for (auto id : embd) {
printf("%s", llama_token_to_str(ctx, id));
printf("%s", llama_token_to_str(ctx, id).c_str());
}
fflush(stdout);
}
@ -700,7 +703,7 @@ int main(int argc, char ** argv) {
}
// deal with end of text token in interactive mode
if (last_n_tokens.back() == llama_token_eos()) {
if (last_n_tokens.back() == llama_token_eos(ctx)) {
if (params.interactive) {
if (params.antiprompt.size() != 0) {
// tokenize and inject first reverse prompt
@ -724,7 +727,7 @@ int main(int argc, char ** argv) {
}
if (params.input_prefix_bos) {
embd_inp.push_back(llama_token_bos());
embd_inp.push_back(llama_token_bos(ctx));
}
std::string buffer;
@ -778,8 +781,7 @@ int main(int argc, char ** argv) {
if (grammar != NULL) {
llama_grammar_free(grammar);
std::vector<const llama_grammar_element *> grammar_rules(
parsed_grammar.c_rules());
std::vector<const llama_grammar_element *> grammar_rules( parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(),
parsed_grammar.symbol_ids.at("root"));
@ -790,7 +792,7 @@ int main(int argc, char ** argv) {
}
// end of text token
if (!embd.empty() && embd.back() == llama_token_eos() && !(params.instruct || params.interactive)) {
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) {
fprintf(stderr, " [end of text]\n");
break;
}

1
examples/make-ggml.py Normal file → Executable file
View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
"""
This script converts Hugging Face llama models to GGML and quantizes them.

View file

@ -2,7 +2,7 @@
//
// - First, export a LLaMA graph:
//
// $ ./bin/main -m ../models/7B/ggml-model-q4_0.bin --export
// $ ./bin/main -m ../models/7B/ggml-model-q4_0.gguf --export
//
// - Run this tool to evaluate the exported graph:
//

View file

@ -5,6 +5,7 @@
#include <cmath>
#include <ctime>
#include <sstream>
#include <cstring>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@ -26,12 +27,136 @@ std::vector<float> softmax(const std::vector<float>& logits) {
return probs;
}
void perplexity(llama_context * ctx, const gpt_params & params) {
void perplexity_v2(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
if (params.ppl_stride <= 0) {
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
return;
}
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm;
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
const int calc_chunk = params.n_ctx;
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
if (int(tokens.size()) <= calc_chunk) {
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
tokens.size(), params.n_ctx, params.ppl_stride);
return;
}
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(ctx);
const int n_batch = params.n_batch;
int count = 0;
double nll = 0.0;
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.ppl_stride;
const int end = start + calc_chunk;
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
//fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
std::vector<float> logits;
const auto t_start = std::chrono::high_resolution_clock::now();
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
//fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
// save original token and restore it after eval
const auto token_org = tokens[batch_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(ctx);
}
const auto batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
if (j == 0) {
tokens[batch_start] = token_org;
}
}
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
}
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits(
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
// perplexity is e^(average negative log-likelihood)
if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else {
printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
}
fflush(stdout);
}
printf("\n");
}
void perplexity(llama_context * ctx, const gpt_params & params) {
if (params.ppl_stride > 0) {
perplexity_v2(ctx, params);
return;
}
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
// BOS tokens will be added for each chunk before eval
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
const bool add_bos = is_spm;
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
auto tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
const int n_chunk_max = tokens.size() / params.n_ctx;
@ -62,8 +187,8 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
const auto token_org = tokens[batch_start];
// add BOS token for the first batch of each chunk
if (j == 0) {
tokens[batch_start] = llama_token_bos();
if (add_bos && j == 0) {
tokens[batch_start] = llama_token_bos(ctx);
}
if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
@ -88,7 +213,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
fprintf(stderr, "%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
fprintf(stderr, "%d minutes\n", total_seconds / 60);
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
}
// We get the logits for all the tokens in the context window (params.n_ctx)
@ -115,12 +240,37 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
++count;
}
// perplexity is e^(average negative log-likelihood)
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
if (params.ppl_output_type == 0) {
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
} else {
printf("%8d %.4lf\n", i*params.n_ctx, std::exp(nll / count));
}
fflush(stdout);
}
printf("\n");
}
std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
int n_vocab, int n_thread) {
std::vector<float> result;
result.reserve(tokens.size() * n_vocab);
size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
size_t n_tokens = tokens.size() - i_chunk * n_batch;
n_tokens = std::min(n_tokens, size_t(n_batch));
if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return {};
}
const auto logits = llama_get_logits(ctx);
result.insert(result.end(), logits, logits + n_tokens * n_vocab);
n_past += n_tokens;
}
return result;
}
void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// Calculates hellaswag score (acc_norm) from prompt
//
@ -155,8 +305,10 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
size_t hs_task_count = prompt_lines.size()/6;
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
// This is needed as usual for LLaMA models
bool prepend_bos = true;
const bool add_bos = is_spm;
// Number of tasks to use when computing the score
if ( params.hellaswag_tasks < hs_task_count ) {
@ -209,50 +361,92 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
double acc = 0.0f;
const int n_vocab = llama_n_vocab(ctx);
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
std::vector<float> tok_logits(n_vocab);
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
// Tokenize the context to count tokens
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, prepend_bos);
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
size_t context_size = context_embd.size();
for (size_t ending_idx=0;ending_idx<4;ending_idx++) {
// Do the 1st ending
// In this case we include the context when evaluating
auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
auto query_size = query_embd.size();
//printf("First query: %d\n",(int)query_size);
// Stop if query wont fit the ctx window
if (query_size > (size_t)params.n_ctx) {
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
return;
}
// Speedup small evaluations by evaluating atleast 32 tokens
if (query_size < 32) {
query_embd.resize(32);
}
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
if (logits.empty()) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
const auto first_probs = softmax(tok_logits);
hs_data[task_idx].ending_logprob_count[0] = 1;
hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
// Calculate the logprobs over the ending
for (size_t j = context_size; j < query_size - 1; j++) {
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
const float prob = softmax(tok_logits)[query_embd[j + 1]];
hs_data[task_idx].ending_logprob[0] += std::log(prob);
hs_data[task_idx].ending_logprob_count[0]++;
}
// Calculate the mean token logprob for acc_norm
hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
// Do the remaining endings
// For these, we use the bare ending with n_past = context_size
//
for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
// Tokenize the query
std::vector<int> query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[ending_idx], prepend_bos);
size_t query_size = query_embd.size();
query_embd = ::llama_tokenize(ctx, hs_data[task_idx].ending[ending_idx], false);
query_size = query_embd.size();
// Stop if query wont fit the ctx window
if (query_size > (size_t)params.n_ctx) {
if (context_size + query_size > (size_t)params.n_ctx) {
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
return;
}
// Speedup small evaluations by evaluating atleast 32 tokens
if (query_size < 32) {
query_embd.resize(32);
}
// No, resizing to 32 is actually slightly slower (at least on CUDA)
//if (query_size < 32) {
// query_embd.resize(32);
//}
// Evaluate the query
if (llama_eval(ctx, query_embd.data(), query_embd.size(), 0, params.n_threads)) {
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
if (logits.empty()) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
const auto query_logits = llama_get_logits(ctx);
std::vector<float> logits;
logits.insert(logits.end(), query_logits, query_logits + query_size * n_vocab);
hs_data[task_idx].ending_logprob_count[ending_idx] = 0;
hs_data[task_idx].ending_logprob[ending_idx] = 0.0f;
hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
// Calculate the logprobs over the ending
for (size_t j = context_size-1; j < query_size - 1; j++) {
// Calculate probability of next token, given the previous ones.
const std::vector<float> tok_logits(
logits.begin() + (j + 0) * n_vocab,
logits.begin() + (j + 1) * n_vocab);
for (size_t j = 0; j < query_size - 1; j++) {
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
const float prob = softmax(tok_logits)[query_embd[ j + 1]];
const float prob = softmax(tok_logits)[query_embd[j + 1]];
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
hs_data[task_idx].ending_logprob_count[ending_idx]++;
@ -267,9 +461,9 @@ void hellaswag_score(llama_context * ctx, const gpt_params & params) {
}
// Find the ending with maximum logprob
size_t ending_logprob_max_idx = -1;
double ending_logprob_max_val = -INFINITY;
for (size_t j=0; j < 4; j++) {
size_t ending_logprob_max_idx = 0;
double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
for (size_t j = 1; j < 4; j++) {
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
ending_logprob_max_idx = j;
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
@ -304,6 +498,12 @@ int main(int argc, char ** argv) {
params.perplexity = true;
params.n_batch = std::min(params.n_batch, params.n_ctx);
if (params.ppl_stride > 0) {
fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
params.n_ctx, params.n_ctx + params.ppl_stride/2);
params.n_ctx += params.ppl_stride/2;
}
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);

View file

@ -24,7 +24,7 @@
#endif
struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin";
std::string model = "models/7B/ggml-model-f16.gguf";
bool verbose = false;
bool per_layer_stats = false;
bool print_histogram = false;

View file

@ -14,25 +14,25 @@ struct quant_option {
};
static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.50G, +0.2499 ppl @ 7B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1846 ppl @ 7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.30G, +0.0796 ppl @ 7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0415 ppl @ 7B", },
{ "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
#ifdef GGML_USE_K_QUANTS
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.67G, +0.8698 ppl @ 7B", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5505 ppl @ 7B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.06G, +0.2437 ppl @ 7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1803 ppl @ 7B", },
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
{ "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
{ "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
{ "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.56G, +0.1149 ppl @ 7B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0535 ppl @ 7B", },
{ "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
{ "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0353 ppl @ 7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0142 ppl @ 7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0044 ppl @ 7B", },
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
#endif
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ 7B", },
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
};
@ -68,10 +68,10 @@ bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std:
}
// usage:
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
//
void usage(const char * executable) {
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
fprintf(stderr, "\nAllowed quantization types:\n");
@ -118,8 +118,8 @@ int main(int argc, char ** argv) {
if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1);
}
// export as [inp path]/ggml-model-[ftype].bin
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
// export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
arg_idx++;
}
else {

View file

@ -1,4 +1,3 @@
#!/bin/bash
cd `dirname $0`

View file

@ -26,7 +26,6 @@ int main(int argc, char ** argv) {
auto lparams = llama_context_default_params();
lparams.n_ctx = params.n_ctx;
lparams.n_gqa = params.n_gqa;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
@ -45,9 +44,8 @@ int main(int argc, char ** argv) {
llama_free_model(model);
return 1;
}
auto tokens = std::vector<llama_token>(params.n_ctx);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true);
auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
auto n_prompt_tokens = tokens.size();
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
llama_free(ctx);
@ -92,7 +90,7 @@ int main(int argc, char ** argv) {
auto next_token_str = llama_token_to_str(ctx, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
printf("%s", next_token_str.c_str());
if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx);
@ -152,7 +150,7 @@ int main(int argc, char ** argv) {
auto next_token_str = llama_token_to_str(ctx2, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
printf("%s", next_token_str.c_str());
if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
llama_free(ctx2);

0
examples/server-llama2-13B.sh Normal file → Executable file
View file

View file

@ -5,7 +5,7 @@ This example demonstrates a simple HTTP API server and a simple web front end to
Command line options:
- `--threads N`, `-t N`: Set the number of threads to use during computation.
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
@ -16,6 +16,7 @@ Command line options:
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
- `--numa`: Attempt optimizations that help on some NUMA systems.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
@ -47,15 +48,14 @@ To get started right away, run the following command, making sure to use the cor
### Unix-based systems (Linux, macOS, etc.):
```bash
./server -m models/7B/ggml-model.bin -c 2048
./server -m models/7B/ggml-model.gguf -c 2048
```
### Windows:
```powershell
server.exe -m models\7B\ggml-model.bin -c 2048
server.exe -m models\7B\ggml-model.gguf -c 2048
```
The above command will start a server that by default listens on `127.0.0.1:8080`.
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
@ -126,7 +126,7 @@ node .
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. A space is inserted in the front like main.cpp does.
`prompt`: Provide a prompt as a string, or as an array of strings and numbers representing tokens. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. If the prompt is a string, or an array with the first element given as a string, a space is inserted in the front like main.cpp does.
`stop`: Specify a JSON array of stopping strings.
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
@ -151,6 +151,8 @@ node .
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
`grammar`: Set grammar for grammar-based sampling (default: no grammar)
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
`ignore_eos`: Ignore end of stream token and continue generating (default: false).

View file

@ -1,3 +1,4 @@
#!/usr/bin/env python3
import argparse
from flask import Flask, jsonify, request, Response
import urllib.parse

0
examples/server/chat-llama2.sh Normal file → Executable file
View file

View file

@ -1,5 +1,34 @@
import * as readline from 'node:readline'
import { stdin, stdout } from 'node:process'
import { readFileSync } from 'node:fs'
import { SchemaConverter } from './public/json-schema-to-grammar.mjs'
const args = process.argv.slice(2);
const grammarJsonSchemaFile = args.find(
(_, index) => args[index - 1] === "--grammar-json-schema"
);
const grammarFile = args.find((_, index) => args[index - 1] === "--grammar");
// Example usage: function,arguments
const grammarJsonSchemaPropOrder = args.find(
(_, index) => args[index - 1] === "--grammar-json-schema-prop-order"
);
const propOrder = grammarJsonSchemaPropOrder
? grammarJsonSchemaPropOrder
.split(",")
.reduce((acc, cur, index) => ({ ...acc, [cur]: index }), {})
: {};
let grammar = null
if (grammarJsonSchemaFile) {
const schema = JSON.parse(readFileSync(grammarJsonSchemaFile, 'utf-8'))
const converter = new SchemaConverter(propOrder)
converter.visit(schema, '')
grammar = converter.formatGrammar()
}
if (grammarFile) {
grammar = readFileSync(grammarFile, 'utf-8')
}
const API_URL = 'http://127.0.0.1:8080'
@ -48,6 +77,7 @@ async function chat_completion(question) {
n_keep: n_keep,
n_predict: 256,
stop: ["\n### Human:"], // stop completion after generating this
grammar,
stream: true,
})
})

0
examples/server/chat.sh Normal file → Executable file
View file

View file

@ -11,8 +11,10 @@ echo >> $PUBLIC/index.js # add newline
FILES=$(ls $PUBLIC)
cd $PUBLIC
for FILE in $FILES; do
func=$(echo $FILE | tr '.' '_')
echo "generate $FILE.hpp ($func)"
xxd -n $func -i $PUBLIC/$FILE > $DIR/$FILE.hpp
echo "generate $FILE.hpp"
# use simple flag for old version of xxd
xxd -i $FILE > $DIR/$FILE.hpp
done

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,311 @@
unsigned char json_schema_to_grammar_mjs[] = {
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f,
0x52, 0x55, 0x4c, 0x45, 0x20, 0x3d, 0x20, 0x27, 0x22, 0x20, 0x22, 0x3f,
0x27, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x50, 0x52,
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
0x53, 0x20, 0x3d, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x62, 0x6f, 0x6f, 0x6c,
0x65, 0x61, 0x6e, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x74, 0x72, 0x75, 0x65,
0x22, 0x20, 0x7c, 0x20, 0x22, 0x66, 0x61, 0x6c, 0x73, 0x65, 0x22, 0x29,
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x6e,
0x75, 0x6d, 0x62, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d, 0x22,
0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20, 0x5b,
0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a, 0x29,
0x29, 0x20, 0x28, 0x22, 0x2e, 0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d,
0x2b, 0x29, 0x3f, 0x20, 0x28, 0x5b, 0x65, 0x45, 0x5d, 0x20, 0x5b, 0x2d,
0x2b, 0x5d, 0x3f, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2b, 0x29, 0x3f,
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20, 0x20, 0x69,
0x6e, 0x74, 0x65, 0x67, 0x65, 0x72, 0x3a, 0x20, 0x27, 0x28, 0x22, 0x2d,
0x22, 0x3f, 0x20, 0x28, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x20, 0x7c, 0x20,
0x5b, 0x31, 0x2d, 0x39, 0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0x2a,
0x29, 0x29, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x2c, 0x0a, 0x20,
0x20, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x3a, 0x20, 0x60, 0x20, 0x22,
0x5c, 0x5c, 0x22, 0x22, 0x20, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x5b, 0x5e, 0x22, 0x5c, 0x5c, 0x5c, 0x5c, 0x5d, 0x20,
0x7c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x22, 0x5c,
0x5c, 0x5c, 0x5c, 0x22, 0x20, 0x28, 0x5b, 0x22, 0x5c, 0x5c, 0x5c, 0x5c,
0x2f, 0x62, 0x66, 0x6e, 0x72, 0x74, 0x5d, 0x20, 0x7c, 0x20, 0x22, 0x75,
0x22, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
0x5d, 0x20, 0x5b, 0x30, 0x2d, 0x39, 0x61, 0x2d, 0x66, 0x41, 0x2d, 0x46,
0x5d, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2a, 0x20,
0x22, 0x5c, 0x5c, 0x22, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
0x2c, 0x0a, 0x20, 0x20, 0x6e, 0x75, 0x6c, 0x6c, 0x3a, 0x20, 0x27, 0x22,
0x6e, 0x75, 0x6c, 0x6c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
0x2c, 0x0a, 0x7d, 0x3b, 0x0a, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44, 0x5f, 0x52, 0x55, 0x4c, 0x45,
0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f, 0x52, 0x45, 0x20, 0x3d, 0x20,
0x2f, 0x5b, 0x5e, 0x5c, 0x64, 0x41, 0x2d, 0x5a, 0x61, 0x2d, 0x7a, 0x2d,
0x5d, 0x2b, 0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45,
0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f, 0x52,
0x45, 0x20, 0x3d, 0x20, 0x2f, 0x5b, 0x5c, 0x6e, 0x5c, 0x72, 0x22, 0x5d,
0x2f, 0x67, 0x3b, 0x0a, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x47, 0x52,
0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54, 0x45, 0x52, 0x41,
0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x53, 0x20, 0x3d, 0x20,
0x7b, 0x27, 0x5c, 0x72, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x72, 0x27,
0x2c, 0x20, 0x27, 0x5c, 0x6e, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x6e,
0x27, 0x2c, 0x20, 0x27, 0x22, 0x27, 0x3a, 0x20, 0x27, 0x5c, 0x5c, 0x22,
0x27, 0x7d, 0x3b, 0x0a, 0x0a, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x20,
0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x72, 0x20, 0x7b, 0x0a,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x72, 0x75, 0x63, 0x74, 0x6f,
0x72, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
0x5f, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x3d,
0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x7c,
0x7c, 0x20, 0x7b, 0x7d, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68,
0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x20, 0x3d, 0x20,
0x6e, 0x65, 0x77, 0x20, 0x4d, 0x61, 0x70, 0x28, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c,
0x65, 0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x27, 0x73, 0x70, 0x61, 0x63,
0x65, 0x27, 0x2c, 0x20, 0x53, 0x50, 0x41, 0x43, 0x45, 0x5f, 0x52, 0x55,
0x4c, 0x45, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
0x61, 0x6c, 0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20,
0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x20, 0x3d, 0x20, 0x4a, 0x53,
0x4f, 0x4e, 0x2e, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79,
0x28, 0x6c, 0x69, 0x74, 0x65, 0x72, 0x61, 0x6c, 0x29, 0x2e, 0x72, 0x65,
0x70, 0x6c, 0x61, 0x63, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c, 0x49, 0x54,
0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50, 0x45, 0x5f,
0x52, 0x45, 0x2c, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6d, 0x20,
0x3d, 0x3e, 0x20, 0x47, 0x52, 0x41, 0x4d, 0x4d, 0x41, 0x52, 0x5f, 0x4c,
0x49, 0x54, 0x45, 0x52, 0x41, 0x4c, 0x5f, 0x45, 0x53, 0x43, 0x41, 0x50,
0x45, 0x53, 0x5b, 0x6d, 0x5d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x60, 0x22, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x61, 0x70, 0x65, 0x64, 0x7d,
0x22, 0x60, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x5f,
0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x6e, 0x61, 0x6d, 0x65,
0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d,
0x65, 0x20, 0x3d, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x2e, 0x72, 0x65, 0x70,
0x6c, 0x61, 0x63, 0x65, 0x28, 0x49, 0x4e, 0x56, 0x41, 0x4c, 0x49, 0x44,
0x5f, 0x52, 0x55, 0x4c, 0x45, 0x5f, 0x43, 0x48, 0x41, 0x52, 0x53, 0x5f,
0x52, 0x45, 0x2c, 0x20, 0x27, 0x2d, 0x27, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20,
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28, 0x65, 0x73,
0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x67, 0x65, 0x74, 0x28,
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x29, 0x20, 0x3d, 0x3d, 0x3d,
0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20,
0x69, 0x20, 0x3d, 0x20, 0x30, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x77, 0x68, 0x69, 0x6c, 0x65, 0x20, 0x28, 0x74, 0x68, 0x69, 0x73,
0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65, 0x73, 0x2e, 0x68, 0x61, 0x73, 0x28,
0x60, 0x24, 0x7b, 0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
0x7b, 0x69, 0x7d, 0x60, 0x29, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x20, 0x2b, 0x3d, 0x20, 0x31, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x6b, 0x65, 0x79, 0x20, 0x3d, 0x20, 0x60, 0x24, 0x7b,
0x65, 0x73, 0x63, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x69, 0x7d,
0x60, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72, 0x75, 0x6c, 0x65,
0x73, 0x2e, 0x73, 0x65, 0x74, 0x28, 0x6b, 0x65, 0x79, 0x2c, 0x20, 0x72,
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x6b, 0x65, 0x79, 0x3b, 0x0a, 0x20, 0x20,
0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73,
0x63, 0x68, 0x65, 0x6d, 0x61, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20,
0x3d, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x74, 0x79, 0x70,
0x65, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20,
0x6e, 0x61, 0x6d, 0x65, 0x20, 0x7c, 0x7c, 0x20, 0x27, 0x72, 0x6f, 0x6f,
0x74, 0x27, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20,
0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x6f, 0x6e, 0x65, 0x4f,
0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c,
0x65, 0x20, 0x3d, 0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e,
0x6f, 0x6e, 0x65, 0x4f, 0x66, 0x20, 0x7c, 0x7c, 0x20, 0x73, 0x63, 0x68,
0x65, 0x6d, 0x61, 0x2e, 0x61, 0x6e, 0x79, 0x4f, 0x66, 0x29, 0x2e, 0x6d,
0x61, 0x70, 0x28, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
0x61, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69,
0x73, 0x69, 0x74, 0x28, 0x61, 0x6c, 0x74, 0x53, 0x63, 0x68, 0x65, 0x6d,
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x69, 0x7d, 0x60, 0x29, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x2e, 0x6a, 0x6f, 0x69, 0x6e,
0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74,
0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65,
0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x72,
0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x20,
0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c,
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e,
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
0x61, 0x6c, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x63, 0x6f,
0x6e, 0x73, 0x74, 0x29, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x27, 0x65,
0x6e, 0x75, 0x6d, 0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65,
0x6d, 0x61, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x65, 0x6e, 0x75, 0x6d,
0x2e, 0x6d, 0x61, 0x70, 0x28, 0x76, 0x20, 0x3d, 0x3e, 0x20, 0x74, 0x68,
0x69, 0x73, 0x2e, 0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69,
0x74, 0x65, 0x72, 0x61, 0x6c, 0x28, 0x76, 0x29, 0x29, 0x2e, 0x6a, 0x6f,
0x69, 0x6e, 0x28, 0x27, 0x20, 0x7c, 0x20, 0x27, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64, 0x52, 0x75, 0x6c,
0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x2c, 0x20,
0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d,
0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66, 0x20, 0x28, 0x73, 0x63,
0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x20, 0x3d, 0x3d, 0x3d,
0x20, 0x27, 0x6f, 0x62, 0x6a, 0x65, 0x63, 0x74, 0x27, 0x20, 0x26, 0x26,
0x20, 0x27, 0x70, 0x72, 0x6f, 0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73,
0x27, 0x20, 0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20,
0x54, 0x4f, 0x44, 0x4f, 0x3a, 0x20, 0x60, 0x72, 0x65, 0x71, 0x75, 0x69,
0x72, 0x65, 0x64, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72,
0x64, 0x65, 0x72, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f,
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x70,
0x72, 0x6f, 0x70, 0x50, 0x61, 0x69, 0x72, 0x73, 0x20, 0x3d, 0x20, 0x4f,
0x62, 0x6a, 0x65, 0x63, 0x74, 0x2e, 0x65, 0x6e, 0x74, 0x72, 0x69, 0x65,
0x73, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x2e, 0x70, 0x72, 0x6f,
0x70, 0x65, 0x72, 0x74, 0x69, 0x65, 0x73, 0x29, 0x2e, 0x73, 0x6f, 0x72,
0x74, 0x28, 0x28, 0x61, 0x2c, 0x20, 0x62, 0x29, 0x20, 0x3d, 0x3e, 0x20,
0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f,
0x20, 0x73, 0x6f, 0x72, 0x74, 0x20, 0x62, 0x79, 0x20, 0x70, 0x6f, 0x73,
0x69, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x70, 0x72, 0x6f,
0x70, 0x5f, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x20, 0x28, 0x69, 0x66, 0x20,
0x73, 0x70, 0x65, 0x63, 0x69, 0x66, 0x69, 0x65, 0x64, 0x29, 0x20, 0x74,
0x68, 0x65, 0x6e, 0x20, 0x62, 0x79, 0x20, 0x6b, 0x65, 0x79, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x3d, 0x20, 0x74, 0x79,
0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
0x65, 0x72, 0x5b, 0x61, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3d, 0x3d, 0x3d,
0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65, 0x72, 0x27, 0x20, 0x3f, 0x20,
0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x61, 0x5b,
0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49, 0x6e, 0x66, 0x69, 0x6e, 0x69,
0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x6f, 0x72, 0x64, 0x65, 0x72, 0x42,
0x20, 0x3d, 0x20, 0x74, 0x79, 0x70, 0x65, 0x6f, 0x66, 0x20, 0x70, 0x72,
0x6f, 0x70, 0x4f, 0x72, 0x64, 0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d,
0x5d, 0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x6e, 0x75, 0x6d, 0x62, 0x65,
0x72, 0x27, 0x20, 0x3f, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x4f, 0x72, 0x64,
0x65, 0x72, 0x5b, 0x62, 0x5b, 0x30, 0x5d, 0x5d, 0x20, 0x3a, 0x20, 0x49,
0x6e, 0x66, 0x69, 0x6e, 0x69, 0x74, 0x79, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20,
0x6f, 0x72, 0x64, 0x65, 0x72, 0x41, 0x20, 0x2d, 0x20, 0x6f, 0x72, 0x64,
0x65, 0x72, 0x42, 0x20, 0x7c, 0x7c, 0x20, 0x61, 0x5b, 0x30, 0x5d, 0x2e,
0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x65, 0x43, 0x6f, 0x6d, 0x70, 0x61, 0x72,
0x65, 0x28, 0x62, 0x5b, 0x30, 0x5d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x3d,
0x20, 0x27, 0x22, 0x7b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x70, 0x72, 0x6f, 0x70,
0x50, 0x61, 0x69, 0x72, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63,
0x68, 0x28, 0x28, 0x5b, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65,
0x2c, 0x20, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d, 0x61,
0x5d, 0x2c, 0x20, 0x69, 0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74,
0x20, 0x70, 0x72, 0x6f, 0x70, 0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x76, 0x69, 0x73,
0x69, 0x74, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x53, 0x63, 0x68, 0x65, 0x6d,
0x61, 0x2c, 0x20, 0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24,
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20,
0x3a, 0x20, 0x22, 0x22, 0x7d, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70, 0x4e,
0x61, 0x6d, 0x65, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x69, 0x20, 0x3e, 0x20,
0x30, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20, 0x27,
0x20, 0x22, 0x2c, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20,
0x2b, 0x3d, 0x20, 0x60, 0x20, 0x24, 0x7b, 0x74, 0x68, 0x69, 0x73, 0x2e,
0x5f, 0x66, 0x6f, 0x72, 0x6d, 0x61, 0x74, 0x4c, 0x69, 0x74, 0x65, 0x72,
0x61, 0x6c, 0x28, 0x70, 0x72, 0x6f, 0x70, 0x4e, 0x61, 0x6d, 0x65, 0x29,
0x7d, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x22, 0x3a, 0x22, 0x20,
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x70, 0x72, 0x6f, 0x70,
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x60, 0x3b, 0x0a,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x20, 0x2b, 0x3d, 0x20,
0x27, 0x20, 0x22, 0x7d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x27,
0x3b, 0x0a, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74,
0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64,
0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61,
0x6d, 0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x69, 0x66,
0x20, 0x28, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x61, 0x72, 0x72, 0x61, 0x79, 0x27,
0x20, 0x26, 0x26, 0x20, 0x27, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x27, 0x20,
0x69, 0x6e, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x29, 0x20, 0x7b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x2f, 0x2f, 0x20, 0x54, 0x4f,
0x44, 0x4f, 0x20, 0x60, 0x70, 0x72, 0x65, 0x66, 0x69, 0x78, 0x49, 0x74,
0x65, 0x6d, 0x73, 0x60, 0x20, 0x6b, 0x65, 0x79, 0x77, 0x6f, 0x72, 0x64,
0x20, 0x28, 0x66, 0x72, 0x6f, 0x6d, 0x20, 0x70, 0x79, 0x74, 0x68, 0x6f,
0x6e, 0x20, 0x69, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x74, 0x61,
0x74, 0x69, 0x6f, 0x6e, 0x29, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75,
0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x20, 0x3d, 0x20, 0x74, 0x68, 0x69,
0x73, 0x2e, 0x76, 0x69, 0x73, 0x69, 0x74, 0x28, 0x73, 0x63, 0x68, 0x65,
0x6d, 0x61, 0x2e, 0x69, 0x74, 0x65, 0x6d, 0x73, 0x2c, 0x20, 0x60, 0x24,
0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65,
0x20, 0x3f, 0x20, 0x22, 0x2d, 0x22, 0x20, 0x3a, 0x20, 0x22, 0x22, 0x7d,
0x69, 0x74, 0x65, 0x6d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x20, 0x72, 0x75, 0x6c, 0x65,
0x20, 0x3d, 0x20, 0x60, 0x22, 0x5b, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63,
0x65, 0x20, 0x28, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d, 0x52, 0x75, 0x6c,
0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x28, 0x22, 0x2c, 0x22, 0x20,
0x73, 0x70, 0x61, 0x63, 0x65, 0x20, 0x24, 0x7b, 0x69, 0x74, 0x65, 0x6d,
0x52, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65, 0x7d, 0x29, 0x2a, 0x29,
0x3f, 0x20, 0x22, 0x5d, 0x22, 0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x60,
0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65, 0x74, 0x75,
0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61, 0x64, 0x64,
0x52, 0x75, 0x6c, 0x65, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d,
0x65, 0x2c, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x29, 0x3b, 0x0a, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x20, 0x65, 0x6c, 0x73, 0x65, 0x20, 0x7b, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x69, 0x66, 0x20, 0x28, 0x21, 0x50, 0x52,
0x49, 0x4d, 0x49, 0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45,
0x53, 0x5b, 0x73, 0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65,
0x5d, 0x29, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x74, 0x68, 0x72, 0x6f, 0x77, 0x20, 0x6e, 0x65, 0x77, 0x20, 0x45,
0x72, 0x72, 0x6f, 0x72, 0x28, 0x60, 0x55, 0x6e, 0x72, 0x65, 0x63, 0x6f,
0x67, 0x6e, 0x69, 0x7a, 0x65, 0x64, 0x20, 0x73, 0x63, 0x68, 0x65, 0x6d,
0x61, 0x3a, 0x20, 0x24, 0x7b, 0x4a, 0x53, 0x4f, 0x4e, 0x2e, 0x73, 0x74,
0x72, 0x69, 0x6e, 0x67, 0x69, 0x66, 0x79, 0x28, 0x73, 0x63, 0x68, 0x65,
0x6d, 0x61, 0x29, 0x7d, 0x60, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x7d, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x72, 0x65,
0x74, 0x75, 0x72, 0x6e, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x61,
0x64, 0x64, 0x52, 0x75, 0x6c, 0x65, 0x28, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x72, 0x75, 0x6c, 0x65, 0x4e, 0x61, 0x6d, 0x65,
0x20, 0x3d, 0x3d, 0x3d, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20,
0x3f, 0x20, 0x27, 0x72, 0x6f, 0x6f, 0x74, 0x27, 0x20, 0x3a, 0x20, 0x73,
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x2c, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x50, 0x52, 0x49, 0x4d, 0x49,
0x54, 0x49, 0x56, 0x45, 0x5f, 0x52, 0x55, 0x4c, 0x45, 0x53, 0x5b, 0x73,
0x63, 0x68, 0x65, 0x6d, 0x61, 0x54, 0x79, 0x70, 0x65, 0x5d, 0x0a, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20, 0x20,
0x7d, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x0a, 0x20, 0x20, 0x66, 0x6f, 0x72,
0x6d, 0x61, 0x74, 0x47, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x28, 0x29,
0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x6c, 0x65, 0x74, 0x20, 0x67,
0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x3d, 0x20, 0x27, 0x27, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x74, 0x68, 0x69, 0x73, 0x2e, 0x5f, 0x72,
0x75, 0x6c, 0x65, 0x73, 0x2e, 0x66, 0x6f, 0x72, 0x45, 0x61, 0x63, 0x68,
0x28, 0x28, 0x72, 0x75, 0x6c, 0x65, 0x2c, 0x20, 0x6e, 0x61, 0x6d, 0x65,
0x29, 0x20, 0x3d, 0x3e, 0x20, 0x7b, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x67, 0x72, 0x61, 0x6d, 0x6d, 0x61, 0x72, 0x20, 0x2b, 0x3d, 0x20,
0x60, 0x24, 0x7b, 0x6e, 0x61, 0x6d, 0x65, 0x7d, 0x20, 0x3a, 0x3a, 0x3d,
0x20, 0x24, 0x7b, 0x72, 0x75, 0x6c, 0x65, 0x7d, 0x5c, 0x6e, 0x60, 0x3b,
0x0a, 0x20, 0x20, 0x20, 0x20, 0x7d, 0x29, 0x3b, 0x0a, 0x20, 0x20, 0x20,
0x20, 0x72, 0x65, 0x74, 0x75, 0x72, 0x6e, 0x20, 0x67, 0x72, 0x61, 0x6d,
0x6d, 0x61, 0x72, 0x3b, 0x0a, 0x20, 0x20, 0x7d, 0x0a, 0x7d, 0x0a
};
unsigned int json_schema_to_grammar_mjs_len = 3695;

View file

@ -141,14 +141,15 @@
} from '/index.js';
import { llama } from '/completion.js';
import { SchemaConverter } from '/json-schema-to-grammar.mjs';
const session = signal({
prompt: "This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.",
prompt: "This is a conversation between User and Llama, a friendly chatbot. Llama is helpful, kind, honest, good at writing, and never fails to answer any requests immediately and with precision.",
template: "{{prompt}}\n\n{{history}}\n{{char}}:",
historyTemplate: "{{name}}: {{message}}",
transcript: [],
type: "chat",
char: "llama",
char: "Llama",
user: "User",
})
@ -166,8 +167,139 @@
mirostat: 0, // 0/1/2
mirostat_tau: 5, // target entropy
mirostat_eta: 0.1, // learning rate
grammar: '',
})
/* START: Support for storing prompt templates and parameters in borwser LocalStorage */
const local_storage_storageKey = "llamacpp_server_local_storage";
function local_storage_setDataFromObject(tag, content) {
localStorage.setItem(local_storage_storageKey + '/' + tag, JSON.stringify(content));
}
function local_storage_setDataFromRawText(tag, content) {
localStorage.setItem(local_storage_storageKey + '/' + tag, content);
}
function local_storage_getDataAsObject(tag) {
const item = localStorage.getItem(local_storage_storageKey + '/' + tag);
if (!item) {
return null;
} else {
return JSON.parse(item);
}
}
function local_storage_getDataAsRawText(tag) {
const item = localStorage.getItem(local_storage_storageKey + '/' + tag);
if (!item) {
return null;
} else {
return item;
}
}
// create a container for user templates and settings
const savedUserTemplates = signal({})
const selectedUserTemplate = signal({ name: '', template: { session: {}, params: {} } })
// let's import locally saved templates and settings if there are any
// user templates and settings are stored in one object
// in form of { "templatename": "templatedata" } and { "settingstemplatename":"settingsdata" }
console.log('Importing saved templates')
let importedTemplates = local_storage_getDataAsObject('user_templates')
if (importedTemplates) {
// saved templates were successfuly imported.
console.log('Processing saved templates and updating default template')
//console.log(importedTemplates);
savedUserTemplates.value = importedTemplates;
//override default template
savedUserTemplates.value.default = { session: session.value, params: params.value }
local_storage_setDataFromObject('user_templates', savedUserTemplates.value)
} else {
// no saved templates detected.
console.log('Initializing LocalStorage and saving default template')
savedUserTemplates.value = { "default": { session: session.value, params: params.value } }
local_storage_setDataFromObject('user_templates', savedUserTemplates.value)
}
function userTemplateResetToDefault() {
console.log('Reseting themplate to default')
selectedUserTemplate.value.name = 'default';
selectedUserTemplate.value.data = savedUserTemplates.value['default'];
}
function userTemplateApply(t) {
session.value = t.data.session;
params.value = t.data.params;
}
function userTemplateResetToDefaultAndApply() {
userTemplateResetToDefault()
userTemplateApply(selectedUserTemplate.value)
}
function userTemplateLoadAndApplyAutosaved() {
// get autosaved last used template
let lastUsedTemplate = local_storage_getDataAsObject('user_templates_last')
if (lastUsedTemplate) {
console.log('Autosaved template found, restoring')
selectedUserTemplate.value = lastUsedTemplate
}
else {
console.log('No autosaved template found, using default template')
// no autosaved last used template was found, so load from default.
userTemplateResetToDefault()
}
console.log('Applying template')
// and update internal data from templates
userTemplateApply(selectedUserTemplate.value)
}
//console.log(savedUserTemplates.value)
//console.log(selectedUserTemplate.value)
function userTemplateAutosave() {
console.log('Template Autosave...')
if (selectedUserTemplate.value.name == 'default') {
// we don't want to save over default template, so let's create a new one
let newTemplateName = 'UserTemplate-' + Date.now().toString()
let newTemplate = { 'name': newTemplateName, 'data': { 'session': session.value, 'params': params.value } }
console.log('Saving as ' + newTemplateName)
// save in the autosave slot
local_storage_setDataFromObject('user_templates_last', newTemplate)
// and load it back and apply
userTemplateLoadAndApplyAutosaved()
} else {
local_storage_setDataFromObject('user_templates_last', { 'name': selectedUserTemplate.value.name, 'data': { 'session': session.value, 'params': params.value } })
}
}
console.log('Checking for autosaved last used template')
userTemplateLoadAndApplyAutosaved()
/* END: Support for storing prompt templates and parameters in browsers LocalStorage */
const llamaStats = signal(null)
const controller = signal(null)
@ -304,6 +436,26 @@
const updateParamsFloat = (el) => params.value = { ...params.value, [el.target.name]: parseFloat(el.target.value) }
const updateParamsInt = (el) => params.value = { ...params.value, [el.target.name]: Math.floor(parseFloat(el.target.value)) }
const grammarJsonSchemaPropOrder = signal('')
const updateGrammarJsonSchemaPropOrder = (el) => grammarJsonSchemaPropOrder.value = el.target.value
const convertJSONSchemaGrammar = () => {
try {
const schema = JSON.parse(params.value.grammar)
const converter = new SchemaConverter(
grammarJsonSchemaPropOrder.value
.split(',')
.reduce((acc, cur, i) => ({...acc, [cur.trim()]: i}), {})
)
converter.visit(schema, '')
params.value = {
...params.value,
grammar: converter.formatGrammar(),
}
} catch (e) {
alert(`Convert failed: ${e.message}`)
}
}
const FloatField = ({label, max, min, name, step, value}) => {
return html`
<div>
@ -324,8 +476,34 @@
`
};
const userTemplateReset = (e) => {
e.preventDefault();
userTemplateResetToDefaultAndApply()
}
const UserTemplateResetButton = () => {
if (selectedUserTemplate.value.name == 'default') {
return html`
<button disabled>Using default template</button>
`
}
return html`
<button onclick=${userTemplateReset}>Reset all to default</button>
`
};
useEffect(() => {
// autosave template on every change
userTemplateAutosave()
}, [session.value, params.value])
return html`
<form>
<fieldset>
<${UserTemplateResetButton}/>
</fieldset>
<fieldset>
<div>
<label for="prompt">Prompt</label>
@ -355,6 +533,13 @@
<label for="template">Chat history template</label>
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
</div>
<div>
<label for="template">Grammar</label>
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
</div>
</fieldset>
<fieldset class="two">

File diff suppressed because one or more lines are too long

View file

@ -0,0 +1,112 @@
const SPACE_RULE = '" "?';
const PRIMITIVE_RULES = {
boolean: '("true" | "false") space',
number: '("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? space',
integer: '("-"? ([0-9] | [1-9] [0-9]*)) space',
string: ` "\\"" (
[^"\\\\] |
"\\\\" (["\\\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\\"" space`,
null: '"null" space',
};
const INVALID_RULE_CHARS_RE = /[^\dA-Za-z-]+/g;
const GRAMMAR_LITERAL_ESCAPE_RE = /[\n\r"]/g;
const GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"'};
export class SchemaConverter {
constructor(propOrder) {
this._propOrder = propOrder || {};
this._rules = new Map();
this._rules.set('space', SPACE_RULE);
}
_formatLiteral(literal) {
const escaped = JSON.stringify(literal).replace(
GRAMMAR_LITERAL_ESCAPE_RE,
m => GRAMMAR_LITERAL_ESCAPES[m]
);
return `"${escaped}"`;
}
_addRule(name, rule) {
let escName = name.replace(INVALID_RULE_CHARS_RE, '-');
let key = escName;
if (this._rules.has(escName)) {
if (this._rules.get(escName) === rule) {
return key;
}
let i = 0;
while (this._rules.has(`${escName}${i}`)) {
i += 1;
}
key = `${escName}${i}`;
}
this._rules.set(key, rule);
return key;
}
visit(schema, name) {
const schemaType = schema.type;
const ruleName = name || 'root';
if (schema.oneOf || schema.anyOf) {
const rule = (schema.oneOf || schema.anyOf).map((altSchema, i) =>
this.visit(altSchema, `${name}${name ? "-" : ""}${i}`)
).join(' | ');
return this._addRule(ruleName, rule);
} else if ('const' in schema) {
return this._addRule(ruleName, this._formatLiteral(schema.const));
} else if ('enum' in schema) {
const rule = schema.enum.map(v => this._formatLiteral(v)).join(' | ');
return this._addRule(ruleName, rule);
} else if (schemaType === 'object' && 'properties' in schema) {
// TODO: `required` keyword (from python implementation)
const propOrder = this._propOrder;
const propPairs = Object.entries(schema.properties).sort((a, b) => {
// sort by position in prop_order (if specified) then by key
const orderA = typeof propOrder[a[0]] === 'number' ? propOrder[a[0]] : Infinity;
const orderB = typeof propOrder[b[0]] === 'number' ? propOrder[b[0]] : Infinity;
return orderA - orderB || a[0].localeCompare(b[0]);
});
let rule = '"{" space';
propPairs.forEach(([propName, propSchema], i) => {
const propRuleName = this.visit(propSchema, `${name}${name ? "-" : ""}${propName}`);
if (i > 0) {
rule += ' "," space';
}
rule += ` ${this._formatLiteral(propName)} space ":" space ${propRuleName}`;
});
rule += ' "}" space';
return this._addRule(ruleName, rule);
} else if (schemaType === 'array' && 'items' in schema) {
// TODO `prefixItems` keyword (from python implementation)
const itemRuleName = this.visit(schema.items, `${name}${name ? "-" : ""}item`);
const rule = `"[" space (${itemRuleName} ("," space ${itemRuleName})*)? "]" space`;
return this._addRule(ruleName, rule);
} else {
if (!PRIMITIVE_RULES[schemaType]) {
throw new Error(`Unrecognized schema: ${JSON.stringify(schema)}`);
}
return this._addRule(
ruleName === 'root' ? 'root' : schemaType,
PRIMITIVE_RULES[schemaType]
);
}
}
formatGrammar() {
let grammar = '';
this._rules.forEach((rule, name) => {
grammar += `${name} ::= ${rule}\n`;
});
return grammar;
}
}

View file

@ -1,6 +1,7 @@
#include "common.h"
#include "llama.h"
#include "build-info.h"
#include "grammar-parser.h"
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
@ -14,6 +15,7 @@
#include "index.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
@ -188,6 +190,7 @@ struct llama_server_context
size_t n_past = 0;
size_t n_remain = 0;
json prompt;
std::vector<llama_token> embd;
std::vector<llama_token> last_n_tokens;
@ -195,6 +198,9 @@ struct llama_server_context
llama_context *ctx = nullptr;
gpt_params params;
grammar_parser::parse_state parsed_grammar;
llama_grammar *grammar = nullptr;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
@ -226,6 +232,7 @@ struct llama_server_context
void rewind()
{
params.antiprompt.clear();
params.grammar.clear();
num_prompt_tokens = 0;
num_tokens_predicted = 0;
generated_text = "";
@ -237,9 +244,13 @@ struct llama_server_context
stopped_limit = false;
stopping_word = "";
multibyte_pending = 0;
n_remain = 0;
n_past = 0;
if (grammar != nullptr) {
llama_grammar_free(grammar);
grammar = nullptr;
}
}
bool loadModel(const gpt_params &params_)
@ -257,10 +268,82 @@ struct llama_server_context
return true;
}
std::vector<llama_token> tokenize(json json_prompt, bool add_bos)
{
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
if (json_prompt.is_array())
{
bool first = true;
for (const auto& p : json_prompt)
{
if (p.is_string())
{
auto s = p.template get<std::string>();
std::vector<llama_token> p;
if (first)
{
s.insert(0, 1, ' '); // add a space if it's the first
p = ::llama_tokenize(ctx, s, add_bos);
first = false;
}
else
{
p = ::llama_tokenize(ctx, s, false);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
else
{
if (first)
{
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
}
else
{
auto s = json_prompt.template get<std::string>();
s.insert(0, 1, ' '); // always add a first space
prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
}
return prompt_tokens;
}
bool loadGrammar()
{
if (!params.grammar.empty()) {
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (parsed_grammar.rules.empty()) {
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
return false;
}
grammar_parser::print_grammar(stderr, parsed_grammar);
{
auto it = params.logit_bias.find(llama_token_eos(ctx));
if (it != params.logit_bias.end() && it->second == -INFINITY) {
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
}
}
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
}
return true;
}
void loadPrompt()
{
params.prompt.insert(0, 1, ' '); // always add a first space
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
auto prompt_tokens = tokenize(prompt, true); // always add BOS
num_prompt_tokens = prompt_tokens.size();
if (params.n_keep < 0)
@ -367,7 +450,7 @@ struct llama_server_context
if (params.n_predict == 0)
{
has_next_token = false;
result.tok = llama_token_eos();
result.tok = llama_token_eos(ctx);
return result;
}
@ -407,7 +490,7 @@ struct llama_server_context
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Apply penalties
float nl_logit = logits[llama_token_nl()];
float nl_logit = logits[llama_token_nl(ctx)];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
@ -417,7 +500,11 @@ struct llama_server_context
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl)
{
logits[llama_token_nl()] = nl_logit;
logits[llama_token_nl(ctx)] = nl_logit;
}
if (grammar != nullptr) {
llama_sample_grammar(ctx, &candidates_p, grammar);
}
if (temp <= 0)
@ -457,10 +544,15 @@ struct llama_server_context
}
}
if (grammar != nullptr) {
llama_grammar_accept_token(ctx, grammar, result.tok);
}
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
}
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(result.tok);
num_tokens_predicted++;
@ -471,7 +563,7 @@ struct llama_server_context
// decrement remaining sampling budget
--n_remain;
if (!embd.empty() && embd.back() == llama_token_eos())
if (!embd.empty() && embd.back() == llama_token_eos(ctx))
{
// stopping_word = llama_token_to_str(ctx, embd.back());
has_next_token = false;
@ -608,8 +700,6 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
@ -623,17 +713,17 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
{
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
fprintf(stdout, " --numa attempt optimizations that help on some NUMA systems\n");
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
fprintf(stdout, " number of layers to store in VRAM\n");
fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
fprintf(stdout, " -mmq, --mul-mat-q use experimental mul_mat_q CUDA kernels instead of cuBLAS. TEMP!!!\n" );
fprintf(stdout, " Reduces VRAM usage by 700/970/1430 MiB for 7b/13b/33b but prompt processing speed\n" );
fprintf(stdout, " is still suboptimal, especially q2_K, q3_K, q5_K, and q6_K.\n" );
fprintf(stdout, " -nommq, --no-mul-mat-q\n");
fprintf(stdout, " use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
fprintf(stdout, " Not recommended since this is both slower and uses more VRAM.\n");
#endif
fprintf(stdout, " -m FNAME, --model FNAME\n");
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
@ -729,23 +819,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "-gqa" || arg == "--gqa")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_gqa = std::stoi(argv[i]);
}
else if (arg == "-eps" || arg == "--rms-norm-eps") {
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rms_norm_eps = std::stof(argv[i]);
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)
@ -841,12 +914,12 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--mul-mat-q" || arg == "-mmq")
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
{
#ifdef GGML_USE_CUBLAS
params.mul_mat_q = true;
params.mul_mat_q = false;
#else
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to use mul_mat_q kernels.\n", {});
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")
@ -897,6 +970,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
{
params.use_mmap = false;
}
else if (arg == "--numa")
{
params.numa = true;
}
else if (arg == "--embedding")
{
params.embedding = true;
@ -919,7 +996,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
static json format_generation_settings(llama_server_context &llama)
{
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
@ -947,6 +1024,7 @@ static json format_generation_settings(llama_server_context &llama)
{"stream", llama.stream},
{"logit_bias", llama.params.logit_bias},
{"n_probs", llama.params.n_probs},
{"grammar", llama.params.grammar},
};
}
@ -964,7 +1042,7 @@ static json format_timings(llama_server_context &llama)
assert(timings.n_eval == llama.num_tokens_predicted);
return json{
{"prompt_n", timings.n_eval},
{"prompt_n", timings.n_p_eval},
{"prompt_ms", timings.t_p_eval_ms},
{"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
{"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
@ -986,14 +1064,13 @@ static json format_final_response(llama_server_context &llama, const std::string
{"tokens_predicted", llama.num_tokens_predicted},
{"tokens_evaluated", llama.num_prompt_tokens},
{"generation_settings", format_generation_settings(llama)},
{"prompt", llama.params.prompt},
{"prompt", llama.prompt},
{"truncated", llama.truncated},
{"stopped_eos", llama.stopped_eos},
{"stopped_word", llama.stopped_word},
{"stopped_limit", llama.stopped_limit},
{"stopping_word", llama.stopping_word},
{"tokens_cached", llama.n_past},
{"tokens_predicted", llama.num_tokens_predicted},
{"timings", format_timings(llama)},
};
@ -1026,34 +1103,52 @@ static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{"tokens", tokens}};
}
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value)
{
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
static void parse_options_completion(const json &body, llama_server_context &llama)
{
gpt_params default_params;
llama.stream = body.value("stream", false);
llama.params.n_predict = body.value("n_predict", default_params.n_predict);
llama.params.top_k = body.value("top_k", default_params.top_k);
llama.params.top_p = body.value("top_p", default_params.top_p);
llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
llama.params.typical_p = body.value("typical_p", default_params.typical_p);
llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
llama.params.temp = body.value("temperature", default_params.temp);
llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
llama.params.mirostat = body.value("mirostat", default_params.mirostat);
llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
llama.params.seed = body.value("seed", default_params.seed);
llama.params.prompt = body.value("prompt", default_params.prompt);
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
llama.stream = json_value(body, "stream", false);
llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
llama.params.top_k = json_value(body, "top_k", default_params.top_k);
llama.params.top_p = json_value(body, "top_p", default_params.top_p);
llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
llama.params.temp = json_value(body, "temperature", default_params.temp);
llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
llama.params.seed = json_value(body, "seed", default_params.seed);
llama.params.grammar = json_value(body, "grammar", default_params.grammar);
llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
if (body.count("prompt") != 0)
{
llama.prompt = body["prompt"];
}
else
{
llama.prompt = "";
}
llama.params.logit_bias.clear();
if (body.value("ignore_eos", false))
if (json_value(body, "ignore_eos", false))
{
llama.params.logit_bias[llama_token_eos()] = -INFINITY;
llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
}
const auto &logit_bias = body.find("logit_bias");
@ -1169,6 +1264,12 @@ int main(int argc, char **argv)
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
return false; });
// this is only called if no index.html is found in the public --path
svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
{
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
return false; });
svr.Post("/completion", [&llama](const Request &req, Response &res)
{
auto lock = llama.lock();
@ -1179,6 +1280,12 @@ int main(int argc, char **argv)
parse_options_completion(json::parse(req.body), llama);
if (!llama.loadGrammar())
{
res.status = 400;
return;
}
llama.loadPrompt();
llama.beginCompletion();
@ -1294,8 +1401,11 @@ int main(int argc, char **argv)
auto lock = llama.lock();
const json body = json::parse(req.body);
const std::string content = body.value("content", "");
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
std::vector<llama_token> tokens;
if (body.count("content") != 0)
{
tokens = llama.tokenize(body["content"], false);
}
const json data = format_tokenizer_response(tokens);
return res.set_content(data.dump(), "application/json"); });
@ -1307,7 +1417,14 @@ int main(int argc, char **argv)
llama.rewind();
llama_reset_timings(llama.ctx);
llama.params.prompt = body.value("content", "");
if (body.count("content") != 0)
{
llama.prompt = body["content"];
}
else
{
llama.prompt = "";
}
llama.params.n_predict = 0;
llama.loadPrompt();
llama.beginCompletion();
@ -1334,8 +1451,12 @@ int main(int argc, char **argv)
svr.set_error_handler([](const Request &, Response &res)
{
res.set_content("File Not Found", "text/plain");
res.status = 404; });
if (res.status == 400) {
res.set_content("Invalid request", "text/plain");
} else if (res.status != 500) {
res.set_content("File Not Found", "text/plain");
res.status = 404;
} });
// set timeouts and change hostname and port
svr.set_read_timeout(sparams.read_timeout);
@ -1363,6 +1484,9 @@ int main(int argc, char **argv)
return 1;
}
if (llama.grammar != nullptr) {
llama_grammar_free(llama.grammar);
}
llama_backend_free();
return 0;

View file

@ -2,180 +2,129 @@
#define _GNU_SOURCE
#endif
#include "common.h"
#include "llama.h"
#include "build-info.h"
#include <cassert>
#include <cinttypes>
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <signal.h>
#endif
int main(int argc, char ** argv)
{
int main(int argc, char ** argv) {
gpt_params params;
//---------------------------------
// Print help :
//---------------------------------
if ( argc == 1 || argv[1][0] == '-' )
{
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
return 1 ;
}
//---------------------------------
// Load parameters :
//---------------------------------
if ( argc >= 2 )
{
if (argc >= 2) {
params.model = argv[1];
}
if ( argc >= 3 )
{
if (argc >= 3) {
params.prompt = argv[2];
}
if ( params.prompt.empty() )
{
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
//---------------------------------
// Init LLM :
//---------------------------------
// init LLM
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;
llama_context_params ctx_params = llama_context_default_params();
std::tie(model, ctx) = llama_init_from_gpt_params( params );
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
if ( model == NULL )
{
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
return 1;
}
//---------------------------------
// Tokenize the prompt :
//---------------------------------
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
// tokenize the prompt
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
const int max_context_size = llama_n_ctx( ctx );
const int max_tokens_list_size = max_context_size - 4 ;
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ( (int)tokens_list.size() > max_tokens_list_size )
{
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
__func__ , (int)tokens_list.size() , max_tokens_list_size );
if ((int) tokens_list.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
return 1;
}
fprintf( stderr, "\n\n" );
fprintf(stderr, "\n\n");
// Print the tokens from the prompt :
for( auto id : tokens_list )
{
printf( "%s" , llama_token_to_str( ctx , id ) );
for (auto id : tokens_list) {
fprintf(stderr, "%s", llama_token_to_str(ctx, id).c_str());
}
fflush(stdout);
fflush(stderr);
//---------------------------------
// Main prediction loop :
//---------------------------------
// main loop
// The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
{
//---------------------------------
// Evaluate the tokens :
//---------------------------------
const int n_gen = std::min(32, max_context_size);
if ( llama_eval( ctx , tokens_list.data() , int(tokens_list.size()) , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
{
fprintf( stderr, "%s : failed to eval\n" , __func__ );
while (llama_get_kv_cache_token_count(ctx) < n_gen) {
// evaluate the transformer
if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
tokens_list.clear();
//---------------------------------
// Select the best prediction :
//---------------------------------
// sample the next token
llama_token new_token_id = 0;
auto logits = llama_get_logits( ctx );
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
std::vector<llama_token_data> candidates;
candidates.reserve( n_vocab );
candidates.reserve(n_vocab);
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
{
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Select it using the "Greedy sampling" method :
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
// is it an end of stream ?
if ( new_token_id == llama_token_eos() )
{
if (new_token_id == llama_token_eos(ctx)) {
fprintf(stderr, " [end of text]\n");
break;
}
// Print the new token :
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
fflush( stdout );
// print the new token :
printf("%s", llama_token_to_str(ctx, new_token_id).c_str());
fflush(stdout);
// Push this new token for next evaluation :
tokens_list.push_back( new_token_id );
// push this new token for next evaluation
tokens_list.push_back(new_token_id);
}
} // wend of main loop
llama_free( ctx );
llama_free_model( model );
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}
// EOF

View file

@ -1,5 +1,6 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "common.h"
#include "llama.h"
#include <unordered_map>
#include <vector>
@ -17,7 +18,7 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static const float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
static const float rms_norm_eps = 1e-5f;
struct random_normal_distribution {
std::mt19937 gen;
@ -170,14 +171,16 @@ struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struc
struct llama_vocab {
using id = int32_t;
using token = std::string;
using ttype = llama_token_type;
struct token_score {
token tok;
struct token_data {
token text;
float score;
ttype type;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
std::vector<token_data> id_to_token;
};
struct my_llama_hparams {
@ -1063,7 +1066,7 @@ void print_matrix(struct ggml_tensor * probs) {
void print_token(struct llama_context * ctx, llama_token token) {
printf("%s", llama_token_to_str(ctx, token));
printf("%s", llama_token_to_str(ctx, token).c_str());
}
void print_tokens(struct llama_context* ctx, struct ggml_tensor * tokens) {
@ -1097,7 +1100,7 @@ void print_tokens_batch(struct llama_context* ctx, struct ggml_tensor * tokens)
}
}
void get_example_targets(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
void get_example_targets(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
int n_tokens = tokens_input->ne[0];
int n_vocab = target_logits->ne[0];
@ -1106,7 +1109,7 @@ void get_example_targets(const int * train_samples, size_t n_train_samples, cons
ggml_set_f32(target_logits, -1.0f/n_vocab);
ggml_set_f32(target_probs, 0.0f);
ggml_set_i32_1d(tokens_input, 0, llama_token_bos());
ggml_set_i32_1d(tokens_input, 0, llama_token_bos(lctx));
for (int i=1; i<n_tokens+1; ++i) {
int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
set_f32_2d(target_logits, token, i-1, +1.0f);
@ -1117,7 +1120,7 @@ void get_example_targets(const int * train_samples, size_t n_train_samples, cons
}
}
void get_example_targets_batch(const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
void get_example_targets_batch(struct llama_context * lctx, const int * train_samples, size_t n_train_samples, const llama_token * train_data, size_t n_train_data, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * target_logits, struct ggml_tensor * target_probs) {
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_logits->n_dims == 3);
GGML_ASSERT(target_probs->n_dims == 3);
@ -1140,7 +1143,7 @@ void get_example_targets_batch(const int * train_samples, size_t n_train_samples
// printf("%s: sample_idx=%zu sample=%zu\n", __func__, sample_idx, sample);
GGML_ASSERT(sample+n_tokens-1 < n_train_data);
set_i32_2d(tokens_input, 0, k, llama_token_bos());
set_i32_2d(tokens_input, 0, k, llama_token_bos(lctx));
for (int i=1; i<n_tokens+1; ++i) {
int token = clamp(train_data[sample+i-1], 0, n_vocab-1);
set_f32_3d(target_logits, token, i-1, k, +1.0f);
@ -1286,11 +1289,10 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
f.read_raw(buf.data(), f.size);
buf[f.size] = '\0';
out.resize(buf.size());
int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), buf.size(), false);
if (n_tokens >= 0) {
out.resize(n_tokens);
int n_tokens = llama_tokenize(lctx, buf.data(), out.data(), out.size(), false);
if (n_tokens < 0) {
out.resize(-n_tokens);
llama_tokenize(lctx, buf.data(), out.data(), out.size(), false);
}
bool verify = false;
@ -1298,17 +1300,17 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
const char * in = buf.data();
const char * end = buf.data() + buf.size();
for (int i = 0; i < (int) out.size(); ++i) {
const char * s = llama_token_to_str(lctx, out[i]);
int len = strlen(s);
std::string s = llama_token_to_str(lctx, out[i]);
int len = s.length();
if (in >= end) {
printf("%s: unexpected end of original text.\n", __func__);
break;
}
const bool matches = (strncmp(in, s, len) == 0);
const bool matches = (strncmp(in, s.c_str(), len) == 0);
if (matches) {
in += len;
} else {
printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s);
printf("%s: mismatch: expected '%s', but got '%s'\n", __func__, std::string(in, len).c_str(), s.c_str());
}
}
}
@ -1392,7 +1394,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
const auto params = sampler->params;
// Apply penalties
const float nl_logit = logits[llama_token_nl()];
const float nl_logit = logits[llama_token_nl(ctx)];
const int n_last = std::min(std::min(n_last_tokens, params.repeat_last_n), sampler->n_ctx);
@ -1411,7 +1413,7 @@ llama_token sample(struct my_llama_sampler * sampler, float * logits, const llam
params.presence_penalty);
if (!params.penalize_nl) {
logits[llama_token_nl()] = nl_logit;
logits[llama_token_nl(ctx)] = nl_logit;
}
llama_token token = 0;
@ -1819,42 +1821,45 @@ void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * mod
return;
}
// write_magic
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
// write_hparams
file.write_u32(model->hparams.n_vocab);
file.write_u32(model->hparams.n_embd);
file.write_u32(model->hparams.n_mult);
file.write_u32(model->hparams.n_head);
file.write_u32(model->hparams.n_layer);
file.write_u32(model->hparams.n_rot);
file.write_u32(LLAMA_FTYPE_ALL_F32);
// write_vocab
uint32_t n_vocab = model->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_score = vocab->id_to_token.at(i);
file.write_u32((uint32_t) token_score.tok.size());
file.write_raw(token_score.tok.data(), token_score.tok.size());
file.write_raw(&token_score.score, sizeof(token_score.score));
}
// write tensors
write_tensor(&file, model->tok_embeddings);
write_tensor(&file, model->norm);
write_tensor(&file, model->output);
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
auto & layer = model->layers[i];
write_tensor(&file, layer.attention_norm);
write_tensor(&file, layer.wq);
write_tensor(&file, layer.wk);
write_tensor(&file, layer.wv);
write_tensor(&file, layer.wo);
write_tensor(&file, layer.ffn_norm);
write_tensor(&file, layer.w1);
write_tensor(&file, layer.w2);
write_tensor(&file, layer.w3);
}
#pragma message("TODO: implement file saving using gguf")
(void) vocab;
(void) model;
// // write_magic
// file.write_u32(LLAMA_FILE_MAGIC); // magic
// file.write_u32(LLAMA_FILE_VERSION); // version
// // write_hparams
// file.write_u32(model->hparams.n_vocab);
// file.write_u32(model->hparams.n_embd);
// file.write_u32(model->hparams.n_mult);
// file.write_u32(model->hparams.n_head);
// file.write_u32(model->hparams.n_layer);
// file.write_u32(model->hparams.n_rot);
// file.write_u32(LLAMA_FTYPE_ALL_F32);
// // write_vocab
// uint32_t n_vocab = model->hparams.n_vocab;
// for (uint32_t i = 0; i < n_vocab; i++) {
// const auto & token_data = vocab->id_to_token.at(i);
// file.write_u32((uint32_t) token_data.tok.size());
// file.write_raw(token_data.tok.data(), token_data.tok.size());
// file.write_raw(&token_data.score, sizeof(token_data.score));
// }
// // write tensors
// write_tensor(&file, model->tok_embeddings);
// write_tensor(&file, model->norm);
// write_tensor(&file, model->output);
// for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
// auto & layer = model->layers[i];
//
// write_tensor(&file, layer.attention_norm);
// write_tensor(&file, layer.wq);
// write_tensor(&file, layer.wk);
// write_tensor(&file, layer.wv);
// write_tensor(&file, layer.wo);
// write_tensor(&file, layer.ffn_norm);
// write_tensor(&file, layer.w1);
// write_tensor(&file, layer.w2);
// write_tensor(&file, layer.w3);
// }
}
float cosine_decay(const int decay_steps, const float minimum, int step) {
@ -2405,20 +2410,13 @@ int main(int argc, char ** argv) {
struct llama_vocab vocab;
{
std::vector<const char *> strings;
std::vector<float> scores;
int n_vocab = llama_n_vocab(lctx);
strings.resize(n_vocab, NULL);
scores.resize(n_vocab, 0);
n_vocab = llama_get_vocab(lctx, strings.data(), scores.data(), n_vocab);
GGML_ASSERT(n_vocab == llama_n_vocab(lctx));
const int n_vocab = llama_n_vocab(lctx);
vocab.id_to_token.resize(n_vocab);
for (int i=0; i<n_vocab; ++i) {
std::string tok = std::string(strings[i]);
float score = scores[i];
vocab.id_to_token[i].tok = tok;
vocab.id_to_token[i].score = score;
vocab.token_to_id.emplace(tok, i);
vocab.id_to_token[i].text = llama_token_get_text(lctx, i);
vocab.id_to_token[i].score = llama_token_get_score(lctx, i);
vocab.id_to_token[i].type = llama_token_get_type(lctx, i);
vocab.token_to_id.emplace(vocab.id_to_token[i].text, i);
}
}
@ -2546,7 +2544,7 @@ int main(int argc, char ** argv) {
std::vector<int> train_samples;
train_samples.push_back(0);
for (int i = 1; i < (int) train_tokens.size() - n_tokens; ++i) {
if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl())) {
if (!params.samples_start_after_nl || (train_tokens[i-1] == llama_token_nl(lctx))) {
train_samples.push_back(i);
}
}
@ -2728,7 +2726,7 @@ int main(int argc, char ** argv) {
struct ggml_tensor * target_logits = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
struct ggml_tensor * target_probs = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
get_example_targets(train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs);
get_example_targets(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), rand()%train_samples.size(), tokens_input, target_logits, target_probs);
for (int i=sample_ctx; i<n_tokens; ++i) {
ggml_set_i32_1d(tokens_input, i, n_vocab/2);
}

View file

@ -14,8 +14,6 @@
with pkgs.darwin.apple_sdk_11_0.frameworks; [
Accelerate
MetalKit
MetalPerformanceShaders
MetalPerformanceShadersGraph
]
else if isAarch32 && isDarwin then
with pkgs.darwin.apple_sdk.frameworks; [

View file

@ -67,6 +67,8 @@ struct ggml_allocr {
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
size_t max_size;
bool measure;
int parse_seq[GGML_MAX_NODES];
bool has_parse_seq;
#ifdef GGML_ALLOCATOR_DEBUG
struct ggml_tensor * allocated_tensors[1024];
@ -74,7 +76,7 @@ struct ggml_allocr {
};
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == NULL) {
alloc->allocated_tensors[i] = tensor;
@ -83,7 +85,7 @@ static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tens
}
GGML_ASSERT(!"out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i] == tensor ||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
@ -115,10 +117,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
size_t max_avail = 0;
// find the best fitting free block
// find the best fitting free block besides the last block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks; i++) {
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
@ -130,10 +132,17 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
AT_PRINTF("block %d\n", best_fit_block);
if (best_fit_block == -1) {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
max_avail = MAX(max_avail, block->size);
} else {
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return;
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
void * addr = block->addr;
@ -233,6 +242,17 @@ static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_t
alloc->n_free_blocks++;
}
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
int pos = 0;
for (int i = 0; i < n; i++) {
if (list[i] != -1) {
alloc->parse_seq[pos] = list[i];
pos++;
}
}
alloc->has_parse_seq = true;
}
void ggml_allocr_reset(struct ggml_allocr * alloc) {
alloc->n_free_blocks = 1;
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
@ -252,6 +272,8 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ false,
/*.parse_seq = */ {0},
/*.has_parse_seq = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
@ -279,6 +301,8 @@ struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
/*.hash_table = */ {{0}},
/*.max_size = */ 0,
/*.measure = */ true,
/*.parse_seq = */ {0},
/*.has_parse_seq = */ false,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ = {0},
#endif
@ -398,6 +422,14 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
if (parent == NULL) {
break;
}
// if the node's data is external, then we cannot re-use it
if ((char *) parent->data < (char *) alloc->data ||
(char *) parent->data >= ((char *) alloc->data + alloc->size)) {
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
continue;
}
struct hash_node * p_hn = hash_get(ht, parent);
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
if (ggml_is_view(parent)) {
@ -469,7 +501,13 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
allocate_node(alloc, input);
}
}
for (int i = 0; i < gf->n_nodes; i++) {
for (int ind = 0; ind < gf->n_nodes; ind++) {
int i;
if (alloc->has_parse_seq) {
i = alloc->parse_seq[ind];
} else {
i = ind;
}
struct ggml_tensor * node = gf->nodes[i];
// allocate parents (leafs)
@ -513,7 +551,7 @@ static size_t ggml_allocator_alloc_graph_tensors_n(
struct ggml_tensor * view_src = get_view_source(parent);
struct hash_node * view_src_hn = hash_get(ht, view_src);
view_src_hn->n_views -= 1;
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
AT_PRINTF("view_src %s\n", view_src->name);
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
ggml_allocator_free_tensor(alloc, view_src);
}

View file

@ -10,6 +10,10 @@ extern "C" {
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
// tell the allocator to parse nodes following the order described in the list
// you should call this if your graph are optimized to execute out-of-order
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);

File diff suppressed because it is too large Load diff

View file

@ -8,29 +8,30 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16
void ggml_init_cublas(void);
void ggml_cuda_set_tensor_split(const float * tensor_split);
GGML_API void ggml_init_cublas(void);
GGML_API void * ggml_cuda_host_malloc(size_t size);
GGML_API void ggml_cuda_host_free(void * ptr);
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split);
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
// TODO: export these with GGML_API
void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr);
GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
void ggml_cuda_free_data(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
void ggml_cuda_set_main_device(int main_device);
void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
void ggml_cuda_set_scratch_size(size_t scratch_size);
void ggml_cuda_free_scratch(void);
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API void ggml_cuda_set_main_device(int main_device);
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
GGML_API void ggml_cuda_free_scratch(void);
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
GGML_API int ggml_cuda_get_device_count(void);
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
#ifdef __cplusplus
}

View file

@ -38,6 +38,9 @@ struct ggml_metal_context;
struct ggml_metal_context * ggml_metal_init(int n_cb);
void ggml_metal_free(struct ggml_metal_context * ctx);
void * ggml_metal_host_malloc(size_t n);
void ggml_metal_host_free (void * data);
// set the number of command buffers to use
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
@ -63,10 +66,13 @@ void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
// try to find operations that can be run concurrently in the graph
// you should run it again if the topology of your graph changes
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
// if the graph has been optimized for concurrently dispatch
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
// output the concur_list for ggml_alloc
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel

View file

@ -5,7 +5,11 @@
#import <Foundation/Foundation.h>
#import <Metal/Metal.h>
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#ifdef GGML_METAL_NDEBUG
#define metal_printf(...)
@ -15,6 +19,8 @@
#define UNUSED(x) (void)(x)
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
struct ggml_metal_buffer {
const char * name;
@ -36,7 +42,7 @@ struct ggml_metal_context {
int n_buffers;
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
int concur_list[GGML_MAX_NODES];
int concur_list[GGML_MAX_CONCUR];
int concur_list_len;
// custom kernels
@ -57,6 +63,7 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_f16);
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
GGML_METAL_DECL_KERNEL(get_rows_q8_0);
GGML_METAL_DECL_KERNEL(get_rows_q2_K);
GGML_METAL_DECL_KERNEL(get_rows_q3_K);
GGML_METAL_DECL_KERNEL(get_rows_q4_K);
@ -67,11 +74,21 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_DECL_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_DECL_KERNEL(rope);
GGML_METAL_DECL_KERNEL(alibi_f32);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
@ -103,13 +120,6 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->n_buffers = 0;
ctx->concur_list_len = 0;
// determine if we can use MPS
if (MPSSupportsMTLDevice(ctx->device)) {
fprintf(stderr, "%s: using MPS\n", __func__);
} else {
fprintf(stderr, "%s: not using MPS\n", __func__);
GGML_ASSERT(false && "MPS not supported");
}
#if 0
// compile from source string and show compile log
@ -119,7 +129,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
return NULL;
}
}
#else
@ -137,7 +147,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
return NULL;
}
#ifdef GGML_QKK_64
@ -149,17 +159,24 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#endif
if (error) {
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
exit(1);
return NULL;
}
}
#endif
// load kernels
{
NSError * error = nil;
#define GGML_METAL_ADD_KERNEL(name) \
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:&error]; \
fprintf(stderr, "%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name, \
(int) ctx->pipeline_##name.maxTotalThreadsPerThreadgroup, \
(int) ctx->pipeline_##name.threadExecutionWidth); \
if (error) { \
fprintf(stderr, "%s: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
return NULL; \
}
GGML_METAL_ADD_KERNEL(add);
GGML_METAL_ADD_KERNEL(add_row);
@ -174,6 +191,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(get_rows_f16);
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
GGML_METAL_ADD_KERNEL(get_rows_q8_0);
GGML_METAL_ADD_KERNEL(get_rows_q2_K);
GGML_METAL_ADD_KERNEL(get_rows_q3_K);
GGML_METAL_ADD_KERNEL(get_rows_q4_K);
@ -184,11 +202,21 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q8_0_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q2_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q3_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q4_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q5_K_f32);
GGML_METAL_ADD_KERNEL(mul_mm_q6_K_f32);
GGML_METAL_ADD_KERNEL(rope);
GGML_METAL_ADD_KERNEL(alibi_f32);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
@ -198,12 +226,12 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#undef GGML_METAL_ADD_KERNEL
}
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
if (ctx->device.maxTransferRate != 0) {
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
}
return ctx;
@ -217,15 +245,31 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
free(ctx);
}
void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
const int result = posix_memalign((void **) &data, getpagesize(), n);
if (result != 0) {
fprintf(stderr, "%s: error: posix_memalign failed\n", __func__);
return NULL;
}
return data;
}
void ggml_metal_host_free(void * data) {
free(data);
}
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
ctx->n_cb = n_cb;
}
bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
if (ctx->concur_list_len) {
return true;
}
return false;
int ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
return ctx->concur_list_len;
}
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx) {
return ctx->concur_list;
}
// finds the Metal buffer that contains the tensor data on the GPU device
@ -368,17 +412,17 @@ void ggml_metal_get_tensor(
void ggml_metal_graph_find_concurrency(
struct ggml_metal_context * ctx,
struct ggml_cgraph * gf) {
struct ggml_cgraph * gf, bool check_mem) {
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
int nodes_unused[GGML_MAX_NODES];
int nodes_unused[GGML_MAX_CONCUR];
for (int i = 0; i < GGML_MAX_NODES; i++) {ctx->concur_list[i] = 0;}
for (int i = 0; i < gf->n_nodes; i++) {nodes_unused[i] = 1;}
for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
ctx->concur_list_len = 0;
int n_left = gf->n_nodes;
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
int n_left = gf->n_nodes;
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
while (n_left > 0) {
// number of nodes at a layer (that can be issued concurrently)
@ -386,28 +430,40 @@ void ggml_metal_graph_find_concurrency(
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
if (nodes_unused[i]) {
// if the requirements for gf->nodes[i] are satisfied
int exe_flag=1;
int exe_flag = 1;
// scan all srcs
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
if (src_cur) {
// if is leaf nodes it's satisfied.
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {continue;}
// TODO: ggml_is_leaf()
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
continue;
}
// otherwise this src should be the output from previous nodes.
int is_found = 0;
// scan 2*search_depth back because we inserted barrier.
for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
if (gf->nodes[ctx->concur_list[j]] == src_cur) {is_found = 1; break;}
//for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
is_found = 1;
break;
}
}
if (is_found == 0) {
exe_flag = 0;
break;
}
if (is_found == 0) {exe_flag = 0; break;}
}
}
if (exe_flag) {
if (exe_flag && check_mem) {
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
int64_t data_start = (int64_t) gf->nodes[i]->data;
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
for (int j = n_start; j < i; j++) {
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
&& gf->nodes[j]->op != GGML_OP_VIEW \
@ -416,9 +472,9 @@ void ggml_metal_graph_find_concurrency(
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
continue;
} else {
exe_flag = 0;
}
exe_flag = 0;
}
}
}
@ -435,11 +491,13 @@ void ggml_metal_graph_find_concurrency(
ctx->concur_list[level_pos + concurrency] = -1;
ctx->concur_list_len++;
// jump all sorted nodes at nodes_bak
while (!nodes_unused[n_start]) {n_start++;}
while (!nodes_unused[n_start]) {
n_start++;
}
level_pos += concurrency + 1;
}
if (ctx->concur_list_len > GGML_MAX_NODES) {
if (ctx->concur_list_len > GGML_MAX_CONCUR) {
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
}
}
@ -453,7 +511,7 @@ void ggml_metal_graph_compute(
// else fallback to serial dispatch
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_NODES;
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
@ -485,19 +543,15 @@ void ggml_metal_graph_compute(
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
id<MTLComputeCommandEncoder> encoder = nil;
id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
for (int ind = node_start; ind < node_end; ++ind) {
const int i = has_concur ? ctx->concur_list[ind] : ind;
if (i == -1) {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
continue;
}
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
continue;
}
@ -571,10 +625,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_ADD:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
if (ggml_nelements(src1) == ne10) {
// src1 is a row
[encoder setComputePipelineState:ctx->pipeline_add_row];
@ -592,10 +642,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_MUL:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
if (ggml_nelements(src1) == ne10) {
// src1 is a row
[encoder setComputePipelineState:ctx->pipeline_mul_row];
@ -613,10 +659,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_SCALE:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float scale = *(const float *) src1->data;
[encoder setComputePipelineState:ctx->pipeline_scale];
@ -632,10 +674,6 @@ void ggml_metal_graph_compute(
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_SILU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_silu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -646,10 +684,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_UNARY_OP_RELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_relu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -660,10 +694,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_UNARY_OP_GELU:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
[encoder setComputePipelineState:ctx->pipeline_gelu];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
@ -680,10 +710,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_SOFT_MAX:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int nth = 32;
[encoder setComputePipelineState:ctx->pipeline_soft_max];
@ -698,10 +724,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_DIAG_MASK_INF:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int n_past = ((int32_t *)(dst->op_params))[0];
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
@ -719,53 +741,43 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne00 == ne10);
// GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
uint gqa = ne12/ne02;
GGML_ASSERT(ne03 == ne13);
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
(src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
if (encoder != nil) {
[encoder endEncoding];
encoder = nil;
}
MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
// for F32 x F32 we use MPS
MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
initWithDevice:ctx->device transposeLeft:false transposeRight:true
resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
// we need to do ne12 multiplications
// TODO: is there a way to do this in parallel - currently very slow ..
// TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
for (int64_t i02 = 0; i02 < ne12; ++i02) {
size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now
size_t offs_src1_cur = offs_src1 + i02*nb12;
size_t offs_dst_cur = offs_dst + i02*nb2;
MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
[mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
src1t == GGML_TYPE_F32 &&
[ctx->device supportsFamily:MTLGPUFamilyApple7] &&
ne00%32 == 0 &&
ne11 > 1) {
switch (src0->type) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_mul_mm_f16_f32]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_0_f32]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_1_f32]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q8_0_f32]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q2_K_f32]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q3_K_f32]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q4_K_f32]; break;
case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q5_K_f32]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_mul_mm_q6_K_f32]; break;
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:8];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:9];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:10];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11+31)/32, (ne01+63) / 64, ne12) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else {
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
int nth0 = 32;
int nth1 = 1;
@ -795,6 +807,15 @@ void ggml_metal_graph_compute(
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
} break;
case GGML_TYPE_Q8_0:
{
GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1);
nth0 = 8;
nth1 = 8;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q8_0_f32];
} break;
case GGML_TYPE_Q2_K:
{
GGML_ASSERT(ne02 == 1);
@ -864,23 +885,24 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
[encoder setBytes:&gqa length:sizeof(gqa) atIndex:17];
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q8_0 ||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -889,14 +911,11 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_GET_ROWS:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
switch (src0->type) {
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
case GGML_TYPE_Q8_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q8_0]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
@ -918,10 +937,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_RMS_NORM:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
@ -941,20 +956,17 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_NORM:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const float eps = 1e-5f;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
const int nth = 256;
[encoder setComputePipelineState:ctx->pipeline_norm];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
const int64_t nrows = ggml_nrows(src0);
@ -963,10 +975,6 @@ void ggml_metal_graph_compute(
} break;
case GGML_OP_ALIBI:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
GGML_ASSERT((src0t == GGML_TYPE_F32));
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
@ -1001,15 +1009,13 @@ void ggml_metal_graph_compute(
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&m0 length:sizeof( float) atIndex:18];
const int nth = 32;
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
case GGML_OP_ROPE:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
@ -1020,8 +1026,8 @@ void ggml_metal_graph_compute(
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
[encoder setComputePipelineState:ctx->pipeline_rope];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
@ -1050,10 +1056,6 @@ void ggml_metal_graph_compute(
case GGML_OP_CPY:
case GGML_OP_CONT:
{
if (encoder == nil) {
encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
}
const int nth = 32;
switch (src0t) {
@ -1076,24 +1078,24 @@ void ggml_metal_graph_compute(
default: GGML_ASSERT(false && "not implemented");
}
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;

File diff suppressed because it is too large Load diff

2733
ggml.c

File diff suppressed because it is too large Load diff

394
ggml.h
View file

@ -183,6 +183,15 @@
# define GGML_API
#endif
// TODO: support for clang
#ifdef __GNUC__
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define GGML_DEPRECATED(func, hint) func
#endif
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
@ -198,7 +207,7 @@
#define GGML_MAX_PARAMS 256
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 6
#define GGML_MAX_NAME 48
#define GGML_MAX_NAME 64
#define GGML_MAX_OP_PARAMS 32
#define GGML_DEFAULT_N_THREADS 4
@ -206,6 +215,11 @@
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
#define GGUF_MAGIC 0x46554747 // "GGUF"
#define GGUF_VERSION 1
#define GGUF_DEFAULT_ALIGNMENT 32
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
@ -246,8 +260,9 @@
extern "C" {
#endif
#ifdef __ARM_NEON
// we use the built-in 16-bit float type
#if defined(__ARM_NEON) && defined(__CUDACC__)
typedef half ggml_fp16_t;
#elif defined(__ARM_NEON)
typedef __fp16 ggml_fp16_t;
#else
typedef uint16_t ggml_fp16_t;
@ -331,10 +346,12 @@ extern "C" {
GGML_OP_ARGMAX,
GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK,
GGML_OP_CONCAT,
GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM,
GGML_OP_RMS_NORM_BACK,
GGML_OP_GROUP_NORM,
GGML_OP_MUL_MAT,
GGML_OP_OUT_PROD,
@ -360,20 +377,29 @@ extern "C" {
GGML_OP_CLAMP,
GGML_OP_CONV_1D,
GGML_OP_CONV_2D,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_UNARY,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_MAP_CUSTOM1_F32,
GGML_OP_MAP_CUSTOM2_F32,
GGML_OP_MAP_CUSTOM3_F32,
GGML_OP_MAP_CUSTOM1,
GGML_OP_MAP_CUSTOM2,
GGML_OP_MAP_CUSTOM3,
@ -549,6 +575,7 @@ extern "C" {
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
GGML_API int ggml_blck_size (enum ggml_type type);
@ -570,6 +597,8 @@ extern "C" {
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
@ -784,6 +813,13 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// concat a and b on dim 2
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_concat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a);
@ -873,14 +909,15 @@ extern "C" {
struct ggml_tensor * b);
// normalize along rows
// TODO: eps is hardcoded to 1e-5 for now
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
@ -892,6 +929,19 @@ extern "C" {
struct ggml_tensor * a,
float eps);
// group normalize along ne0*ne1*n_groups
// used in stable-diffusion
// TODO: eps is hardcoded to 1e-6 for now
GGML_API struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups);
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_rms_norm_back(
@ -1192,6 +1242,15 @@ extern "C" {
float freq_base,
float freq_scale);
// xPos RoPE, in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
float base,
bool down);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
GGML_API struct ggml_tensor * ggml_rope_back(
@ -1200,7 +1259,11 @@ extern "C" {
int n_past,
int n_dims,
int mode,
int n_ctx);
int n_ctx,
float freq_base,
float freq_scale,
float xpos_base,
bool xpos_down);
// alibi position embedding
// in-place, returns view(a)
@ -1227,6 +1290,15 @@ extern "C" {
int p0, // padding
int d0); // dilation
// conv_1d with padding = half
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d);
GGML_API struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1238,14 +1310,38 @@ extern "C" {
int d0,
int d1);
// conv_1d with padding = half
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
// example:
// a: 16 16 3 768
// b: 1024 1024 3 1
// res: 64 64 768 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// kernel size is a->ne[0] x a->ne[1]
// stride is 1
// padding is half
// example:
// a: 3 3 256 256
// b: 64 64 256 1
// res: 64 64 256 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d);
int stride);
enum ggml_op_pool {
GGML_OP_POOL_MAX,
@ -1253,7 +1349,7 @@ extern "C" {
GGML_OP_POOL_COUNT,
};
GGML_API struct ggml_tensor* ggml_pool_1d(
GGML_API struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
@ -1261,7 +1357,7 @@ extern "C" {
int s0, // stride
int p0); // padding
GGML_API struct ggml_tensor* ggml_pool_2d(
GGML_API struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
@ -1272,6 +1368,13 @@ extern "C" {
int p0,
int p1);
// nearest interpolate
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor);
GGML_API struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
@ -1315,15 +1418,6 @@ extern "C" {
int h0,
int w);
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
@ -1334,63 +1428,159 @@ extern "C" {
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_map_unary_f32(
// used in sam
GGML_API struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh);
// used in sam
GGML_API struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph);
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun);
ggml_unary_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun);
ggml_unary_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_API struct ggml_tensor * ggml_map_binary_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun);
ggml_binary_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun);
ggml_binary_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_API struct ggml_tensor * ggml_map_custom1_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun);
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun);
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_API struct ggml_tensor * ggml_map_custom2_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun);
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun);
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_API struct ggml_tensor * ggml_map_custom3_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun);
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3 instead");
GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun);
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3_inplace instead");
// custom operators v2
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
#define GGML_N_TASKS_MAX -1
GGML_API struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_t fun,
int n_tasks,
void * userdata);
// loss function
@ -1627,6 +1817,118 @@ extern "C" {
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
//
// gguf
//
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API int gguf_get_version (struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(struct gguf_context * ctx);
GGML_API void * gguf_get_data (struct gguf_context * ctx);
GGML_API int gguf_get_n_kv(struct gguf_context * ctx);
GGML_API int gguf_find_key(struct gguf_context * ctx, const char * key);
GGML_API const char * gguf_get_key (struct gguf_context * ctx, int i);
GGML_API enum gguf_type gguf_get_kv_type (struct gguf_context * ctx, int i);
GGML_API enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i);
// results are undefined if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (struct gguf_context * ctx, int i);
GGML_API int8_t gguf_get_val_i8 (struct gguf_context * ctx, int i);
GGML_API uint16_t gguf_get_val_u16 (struct gguf_context * ctx, int i);
GGML_API int16_t gguf_get_val_i16 (struct gguf_context * ctx, int i);
GGML_API uint32_t gguf_get_val_u32 (struct gguf_context * ctx, int i);
GGML_API int32_t gguf_get_val_i32 (struct gguf_context * ctx, int i);
GGML_API float gguf_get_val_f32 (struct gguf_context * ctx, int i);
GGML_API bool gguf_get_val_bool(struct gguf_context * ctx, int i);
GGML_API const char * gguf_get_val_str (struct gguf_context * ctx, int i);
GGML_API int gguf_get_arr_n (struct gguf_context * ctx, int i);
GGML_API const void * gguf_get_arr_data(struct gguf_context * ctx, int i);
GGML_API const char * gguf_get_arr_str (struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (struct gguf_context * ctx);
GGML_API int gguf_find_tensor (struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (struct gguf_context * ctx, int i);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
// manage tensor info
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(struct gguf_context * ctx, void * data);
//
// system info
//
@ -1664,6 +1966,10 @@ extern "C" {
typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef struct {
const char * type_name;
int blck_size;
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_reference;
@ -1671,7 +1977,7 @@ extern "C" {
enum ggml_type vec_dot_type;
} ggml_type_traits_t;
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
#ifdef __cplusplus
}

723
gguf.py Executable file
View file

@ -0,0 +1,723 @@
#!/usr/bin/env python3
import shutil
import sys
import struct
import tempfile
import numpy as np
from enum import IntEnum, auto
from typing import Any, IO, List, Optional
#
# constants
#
GGUF_MAGIC = 0x46554747
GGUF_VERSION = 1
GGUF_DEFAULT_ALIGNMENT = 32
# general
KEY_GENERAL_ARCHITECTURE = "general.architecture"
KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
KEY_GENERAL_ALIGNMENT = "general.alignment"
KEY_GENERAL_NAME = "general.name"
KEY_GENERAL_AUTHOR = "general.author"
KEY_GENERAL_URL = "general.url"
KEY_GENERAL_DESCRIPTION = "general.description"
KEY_GENERAL_LICENSE = "general.license"
KEY_GENERAL_SOURCE_URL = "general.source.url"
KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
KEY_GENERAL_FILE_TYPE = "general.file_type"
# LLM
KEY_CONTEXT_LENGTH = "{arch}.context_length"
KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
KEY_BLOCK_COUNT = "{arch}.block_count"
KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
# attention
KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
# RoPE
KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
# tokenization
KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
#
# recommended mapping of model tensor names for storage in gguf
#
class MODEL_ARCH(IntEnum):
LLAMA = auto()
FALCON = auto()
GPT2 = auto()
GPTJ = auto()
GPTNEOX = auto()
MPT = auto()
class MODEL_TENSOR(IntEnum):
TOKEN_EMBD = auto()
POS_EMBD = auto()
OUTPUT = auto()
OUTPUT_NORM = auto()
ROPE_FREQS = auto()
ATTN_Q = auto()
ATTN_K = auto()
ATTN_V = auto()
ATTN_QKV = auto()
ATTN_OUT = auto()
ATTN_NORM = auto()
ATTN_NORM_2 = auto()
ATTN_ROT_EMBD = auto()
FFN_GATE = auto()
FFN_DOWN = auto()
FFN_UP = auto()
FFN_NORM = auto()
MODEL_ARCH_NAMES = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.GPT2: "gpt2",
MODEL_ARCH.GPTJ: "gptj",
MODEL_ARCH.GPTNEOX: "gptneox",
MODEL_ARCH.MPT: "mpt",
}
MODEL_TENSOR_NAMES = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPTNEOX: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2: {
# TODO
},
# TODO
}
# tensors that will not be serialized
MODEL_TENSOR_SKIP = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_ROT_EMBD,
],
}
# TODO: the following helper functions should be removed
# instead, get_tensor_name_map should return tuples of (name, MODEL_TENSOR)
# however, my Python is very bad, and I couldn't figure out how to do this, hence these functions
# REMOVE
def should_skip_tensor_TMP(arch: MODEL_ARCH, n_blocks: int, name: str) -> bool:
for skip in MODEL_TENSOR_SKIP.get(arch, []):
for i in range(n_blocks):
if name == MODEL_TENSOR_NAMES[arch][skip].format(bid=i):
return True
return False
def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> dict:
tensor_map = {}
# Token embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.TOKEN_EMBD, None)
tensor_map["gpt_neox.embed_in"] = mapped_to # gptneox
tensor_map["transformer.wte"] = mapped_to # gpt2 mpt
tensor_map["transformer.word_embeddings"] = mapped_to # falcon
tensor_map["model.embed_tokens"] = mapped_to # llama-hf
tensor_map["tok_embeddings"] = mapped_to # llama-pth
# Position embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.POS_EMBD, None)
tensor_map["transformer.wpe"] = mapped_to # gpt2
# Output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT, None)
tensor_map["embed_out"] = mapped_to # gptneox
tensor_map["lm_head"] = mapped_to # gpt2 mpt falcon llama-hf
tensor_map["output"] = mapped_to # llama-pth
# Output norm
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.OUTPUT_NORM, None)
tensor_map["gpt_neox.final_layer_norm"] = mapped_to # gptneox
tensor_map["transformer.ln_f"] = mapped_to # gpt2 falcon
tensor_map["transformer.norm_f"] = mapped_to # mpt
tensor_map["model.norm"] = mapped_to # llama-hf
tensor_map["norm"] = mapped_to # llama-pth
# Rope frequencies
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ROPE_FREQS, None)
tensor_map["rope.freqs"] = mapped_to # llama-pth
# Attention and feed-forward blocks
for i in range(0, n_blocks):
# Attention norm
# TODO: is there are simpler way to write these 2 lines in Python?
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to else None
tensor_map["gpt_neox.layers."+str(i)+".input_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_1"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_1"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".input_layernorm"] = mapped_to # falcon7b
tensor_map["transformer.h."+str(i)+".ln_mlp"] = mapped_to # falcon40b
tensor_map["model.layers."+str(i)+".input_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention_norm"] = mapped_to # llama-pth
# Attention norm 2
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_NORM_2, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["transformer.h."+str(i)+".ln_attn"] = mapped_to # falcon40b
# Attention query-key-value
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_QKV, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.query_key_value"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_attn"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.Wqkv"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.query_key_value"] = mapped_to # falcon
# Attention query
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_Q, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.q_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wq"] = mapped_to # llama-pth
# Attention key
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_K, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.k_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wk"] = mapped_to # llama-pth
# Attention value
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_V, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.v_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wv"] = mapped_to # llama-pth
# Attention output
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_OUT, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".attention.dense"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".attn.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".attn.out_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".self_attention.dense"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".self_attn.o_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.wo"] = mapped_to # llama-pth
# Rotary embeddings
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.ATTN_ROT_EMBD, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".self_attn.rotary_emb.inv_freq"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".attention.inner_attention.rope.freqs"] = mapped_to # llama-pth
# Feed-forward norm
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_NORM, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".post_attention_layernorm"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".ln_2"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".norm_2"] = mapped_to # mpt
tensor_map["model.layers."+str(i)+".post_attention_layernorm"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".ffn_norm"] = mapped_to # llama-pth
# Feed-forward up
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_UP, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_fc"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.up_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_h_to_4h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.up_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w3"] = mapped_to # llama-pth
# Feed-forward gate
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_GATE, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["model.layers."+str(i)+".mlp.gate_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w1"] = mapped_to # llama-pth
# Feed-forward down
mapped_to = MODEL_TENSOR_NAMES[arch].get(MODEL_TENSOR.FFN_DOWN, None)
mapped_to = mapped_to.format(bid=i) if mapped_to is not None else None
tensor_map["gpt_neox.layers."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # gptneox
tensor_map["transformer.h."+str(i)+".mlp.c_proj"] = mapped_to # gpt2
tensor_map["transformer.blocks."+str(i)+".ffn.down_proj"] = mapped_to # mpt
tensor_map["transformer.h."+str(i)+".mlp.dense_4h_to_h"] = mapped_to # falcon
tensor_map["model.layers."+str(i)+".mlp.down_proj"] = mapped_to # llama-hf
tensor_map["layers."+str(i)+".feed_forward.w2"] = mapped_to # llama-pth
return tensor_map
class TokenType(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
#
# implementation
#
class GGMLQuantizationType(IntEnum):
F32 = 0
F16 = 1
Q4_0 = 2
Q4_1 = 3
Q5_0 = 6
Q5_1 = 7
Q8_0 = 8
Q8_1 = 9
Q2_K = 10
Q3_K = 11
Q4_K = 12
Q5_K = 13
Q6_K = 14
Q8_K = 15
class GGUFValueType(IntEnum):
UINT8 = 0
INT8 = 1
UINT16 = 2
INT16 = 3
UINT32 = 4
INT32 = 5
FLOAT32 = 6
BOOL = 7
STRING = 8
ARRAY = 9
@staticmethod
def get_type(val):
if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
return GGUFValueType.STRING
elif isinstance(val, list):
return GGUFValueType.ARRAY
elif isinstance(val, float):
return GGUFValueType.FLOAT32
elif isinstance(val, bool):
return GGUFValueType.BOOL
elif isinstance(val, int):
return GGUFValueType.INT32
else:
print("Unknown type: "+str(type(val)))
sys.exit()
class GGUFWriter:
def __init__(self, path: str, arch: str, use_temp_file = True):
self.fout = open(path, "wb")
self.arch = arch
self.offset_tensor = 0
self.data_alignment = GGUF_DEFAULT_ALIGNMENT
self.kv_data = b""
self.kv_data_count = 0
self.ti_data = b""
self.ti_data_count = 0
self.add_architecture()
self.use_temp_file = use_temp_file
self.tensors = []
def write_header_to_file(self):
self.fout.write(struct.pack("<I", GGUF_MAGIC))
self.fout.write(struct.pack("<I", GGUF_VERSION))
self.fout.write(struct.pack("<I", self.ti_data_count))
self.fout.write(struct.pack("<I", self.kv_data_count))
self.flush()
# print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
def write_kv_data_to_file(self):
self.fout.write(self.kv_data)
self.flush()
def write_ti_data_to_file(self):
self.fout.write(self.ti_data)
self.flush()
def add_key(self, key: str):
self.add_val(key, GGUFValueType.STRING, add_vtype=False)
def add_uint8(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT8)
def add_int8(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT8)
def add_uint16(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT16)
def add_int16(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT16)
def add_uint32(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.UINT32)
def add_int32(self, key: str, val: int):
self.add_key(key)
self.add_val(val, GGUFValueType.INT32)
def add_float32(self, key: str, val: float):
self.add_key(key)
self.add_val(val, GGUFValueType.FLOAT32)
def add_bool(self, key: str, val: bool):
self.add_key(key)
self.add_val(val, GGUFValueType.BOOL)
def add_string(self, key: str, val: str):
if len(val) == 0:
return
self.add_key(key)
self.add_val(val, GGUFValueType.STRING)
def add_array(self, key: str, val: list):
if not isinstance(val, list):
raise ValueError("Value must be a list for array type")
self.add_key(key)
self.add_val(val, GGUFValueType.ARRAY)
def add_val(self: str, val: Any, vtype: GGUFValueType = None, add_vtype: bool = True):
if vtype is None:
vtype = GGUFValueType.get_type(val)
if add_vtype:
self.kv_data += struct.pack("<I", vtype)
self.kv_data_count += 1
if vtype == GGUFValueType.UINT8:
self.kv_data += struct.pack("<B", val)
elif vtype == GGUFValueType.INT8:
self.kv_data += struct.pack("<b", val)
elif vtype == GGUFValueType.UINT16:
self.kv_data += struct.pack("<H", val)
elif vtype == GGUFValueType.INT16:
self.kv_data += struct.pack("<h", val)
elif vtype == GGUFValueType.UINT32:
self.kv_data += struct.pack("<I", val)
elif vtype == GGUFValueType.INT32:
self.kv_data += struct.pack("<i", val)
elif vtype == GGUFValueType.FLOAT32:
self.kv_data += struct.pack("<f", val)
elif vtype == GGUFValueType.BOOL:
self.kv_data += struct.pack("?", val)
elif vtype == GGUFValueType.STRING:
encoded_val = val.encode("utf8") if isinstance(val, str) else val
self.kv_data += struct.pack("<I", len(encoded_val))
self.kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY:
ltype = set([GGUFValueType.get_type(item) for item in val])
assert len(ltype) == 1, "All items in a GGUF array should be of the same type"
self.kv_data += struct.pack("<I", list(ltype)[0])
self.kv_data += struct.pack("<I", len(val))
for item in val:
self.add_val(item, add_vtype=False)
else:
raise ValueError("Invalid GGUF metadata value type")
@staticmethod
def ggml_pad(x: int, n: int) -> int:
return ((x + n - 1) // n) * n
def add_tensor_info(self, name: str, tensor_shape: np.ndarray, tensor_dtype: np.dtype, tensor_nbytes: int, raw_dtype: Optional[GGMLQuantizationType] = None):
assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
encoded_name = name.encode("utf8")
self.ti_data += struct.pack("<I", len(encoded_name))
self.ti_data += encoded_name
n_dims = len(tensor_shape)
self.ti_data += struct.pack("<I", n_dims)
for i in range(n_dims):
self.ti_data += struct.pack("<I", tensor_shape[n_dims - 1 - i])
if raw_dtype is None:
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
else:
dtype = raw_dtype
self.ti_data += struct.pack("<I", dtype)
self.ti_data += struct.pack("<Q", self.offset_tensor)
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
self.ti_data_count += 1
def add_tensor(self, name: str, tensor: np.ndarray, raw_shape: Optional[np.ndarray] = None, raw_dtype: Optional[GGMLQuantizationType] = None):
if self.use_temp_file and not hasattr(self, "temp_file"):
self.temp_file = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
self.temp_file.seek(0)
self.add_tensor_info(name, raw_shape if raw_shape is not None else tensor.shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
if not self.use_temp_file:
self.tensors.append((tensor, pad))
return
tensor.tofile(self.temp_file)
if pad != 0:
self.temp_file.write(bytes([0] * pad))
def write_tensor_data(self, tensor: np.ndarray):
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
if pad != 0:
self.fout.write(bytes([0] * pad))
tensor.tofile(self.fout)
pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
if pad != 0:
self.fout.write(bytes([0] * pad))
def write_tensors_to_file(self):
self.write_ti_data_to_file()
pad = GGUFWriter.ggml_pad(self.fout.tell(), self.data_alignment) - self.fout.tell()
if pad != 0:
self.fout.write(bytes([0] * pad))
if not self.use_temp_file:
for (currtensor, currpad) in self.tensors:
currtensor.tofile(self.fout)
if currpad != 0:
self.fout.write(bytes([0] * currpad))
return
self.temp_file.seek(0)
shutil.copyfileobj(self.temp_file, self.fout)
self.flush()
self.temp_file.close()
def flush(self):
self.fout.flush()
def close(self):
self.fout.close()
def add_architecture(self):
self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
def add_author(self, author: str):
self.add_string(KEY_GENERAL_AUTHOR, author)
def add_tensor_data_layout(self, layout: str):
self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_url(self, url: str):
self.add_string(KEY_GENERAL_URL, url)
def add_description(self, description: str):
self.add_string(KEY_GENERAL_DESCRIPTION, description)
def add_source_url(self, url: str):
self.add_string(KEY_GENERAL_SOURCE_URL, url)
def add_source_hf_repo(self, repo: str):
self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
def add_file_type(self, ftype: int):
self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
def add_name(self, name: str):
self.add_string(KEY_GENERAL_NAME, name)
def add_quantization_version(self, quantization_version: GGMLQuantizationType):
self.add_uint32(
KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
def add_custom_alignment(self, alignment: int):
self.data_alignment = alignment
self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
def add_context_length(self, length: int):
self.add_uint32(
KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
def add_embedding_length(self, length: int):
self.add_uint32(
KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
def add_block_count(self, length: int):
self.add_uint32(
KEY_BLOCK_COUNT.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int):
self.add_uint32(
KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_parallel_residual(self, use: bool):
self.add_bool(
KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
def add_tensor_data_layout(self, layout: str):
self.add_string(
KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
def add_head_count(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
def add_head_count_kv(self, count: int):
self.add_uint32(
KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
def add_max_alibi_bias(self, bias: float):
self.add_float32(
KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
def add_clamp_kqv(self, value: float):
self.add_float32(
KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float):
self.add_float32(
KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
def add_layer_norm_rms_eps(self, value: float):
self.add_float32(
KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
def add_rope_dimension_count(self, count: int):
self.add_uint32(
KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
def add_rope_scale_linear(self, value: float):
self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str):
self.add_string(KEY_TOKENIZER_MODEL, model)
def add_token_list(self, tokens: List):
self.add_array(KEY_TOKENIZER_LIST, tokens)
def add_token_merges(self, merges: List):
self.add_array(KEY_TOKENIZER_MERGES, merges)
def add_token_types(self, types: List[int]):
self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
def add_token_scores(self, scores: List[float]):
self.add_array(KEY_TOKENIZER_SCORES, scores)
def add_bos_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
def add_eos_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
def add_unk_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
def add_sep_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
def add_pad_token_id(self, id: int):
self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
# Example usage:
if __name__ == "__main__":
# Example usage with a file
gguf_writer = GGUFWriter("example.gguf", "llama")
gguf_writer.add_architecture()
gguf_writer.add_block_count(12)
gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
gguf_writer.add_custom_alignment(64)
tensor1 = np.ones((32,), dtype=np.float32) * 100.0
tensor2 = np.ones((64,), dtype=np.float32) * 101.0
tensor3 = np.ones((96,), dtype=np.float32) * 102.0
gguf_writer.add_tensor("tensor1", tensor1)
gguf_writer.add_tensor("tensor2", tensor2)
gguf_writer.add_tensor("tensor3", tensor3)
gguf_writer.write_header_to_file()
gguf_writer.write_kv_data_to_file()
gguf_writer.write_tensors_to_file()
gguf_writer.close()

91
grammars/README.md Normal file
View file

@ -0,0 +1,91 @@
# GBNF Guide
GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis. GBNF grammars are supported in various ways in `examples/main` and `examples/server`.
## Background
[Bakus-Naur Form (BNF)](https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form) is a notation for describing the syntax of formal languages like programming languages, file formats, and protocols. GBNF is an extension of BNF that primarily adds a few modern regex-like features.
## Basics
In GBNF, we define *production rules* that specify how a *non-terminal* (rule name) can be replaced with sequences of *terminals* (characters, specifically Unicode [code points](https://en.wikipedia.org/wiki/Code_point)) and other non-terminals. The basic format of a production rule is `nonterminal ::= sequence...`.
## Example
Before going deeper, let's look at some of the features demonstrated in `grammars/chess.gbnf`, a small chess notation grammar:
```
# `root` specifies the pattern for the overall output
root ::= (
# it must start with the characters "1. " followed by a sequence
# of characters that match the `move` rule, followed by a space, followed
# by another move, and then a newline
"1. " move " " move "\n"
# it's followed by one or more subsequent moves, numbered with one or two digits
([1-9] [0-9]? ". " move " " move "\n")+
)
# `move` is an abstract representation, which can be a pawn, nonpawn, or castle.
# The `[+#]?` denotes the possibility of checking or mate signs after moves
move ::= (pawn | nonpawn | castle) [+#]?
pawn ::= ...
nonpawn ::= ...
castle ::= ...
```
## Non-Terminals and Terminals
Non-terminal symbols (rule names) stand for a pattern of terminals and other non-terminals. They are required to be a dashed lowercase word, like `move`, `castle`, or `check-mate`.
Terminals are actual characters ([code points](https://en.wikipedia.org/wiki/Code_point)). They can be specified as a sequence like `"1"` or `"O-O"` or as ranges like `[1-9]` or `[NBKQR]`.
## Characters and character ranges
Terminals support the full range of Unicode. Unicode characters can be specified directly in the grammar, for example `hiragana ::= [ぁ-ゟ]`, or with escapes: 8-bit (`\xXX`), 16-bit (`\uXXXX`) or 32-bit (`\UXXXXXXXX`).
Character ranges can be negated with `^`:
```
single-line ::= [^\n]+ "\n"`
```
## Sequences and Alternatives
The order of symbols in a sequence matter. For example, in `"1. " move " " move "\n"`, the `"1. "` must come before the first `move`, etc.
Alternatives, denoted by `|`, give different sequences that are acceptable. For example, in `move ::= pawn | nonpawn | castle`, `move` can be a `pawn` move, a `nonpawn` move, or a `castle`.
Parentheses `()` can be used to group sequences, which allows for embedding alternatives in a larger rule or applying repetition and optptional symbols (below) to a sequence.
## Repetition and Optional Symbols
- `*` after a symbol or sequence means that it can be repeated zero or more times.
- `+` denotes that the symbol or sequence should appear one or more times.
- `?` makes the preceding symbol or sequence optional.
## Comments and newlines
Comments can be specified with `#`:
```
# defines optional whitspace
ws ::= [ \t\n]+
```
Newlines are allowed between rules and between symbols or sequences nested inside parentheses. Additionally, a newline after an alternate marker `|` will continue the current rule, even outside of parentheses.
## The root rule
In a full grammar, the `root` rule always defines the starting point of the grammar. In other words, it specifies what the entire output must match.
```
# a grammar for lists
root ::= ("- " item)+
item ::= [^\n]+ "\n"
```
## Next steps
This guide provides a brief overview. Check out the GBNF files in this directory (`grammars/`) for examples of full grammars. You can try them out with:
```
./main -m <model> --grammar-file grammars/some-grammar.gbnf -p 'Some prompt'
```

View file

@ -77,6 +77,11 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
}
return 1/iscale;
}
bool return_early = false;
if (rmse_type < 0) {
rmse_type = -rmse_type;
return_early = true;
}
int weight_type = rmse_type%2;
float sumlx = 0;
float suml2 = 0;
@ -89,56 +94,9 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t *
suml2 += w*l*l;
}
float scale = sumlx/suml2;
if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
float best = scale * sumlx;
for (int itry = 0; itry < 3; ++itry) {
iscale = 1/scale;
float slx = 0;
float sl2 = 0;
bool changed = false;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
l = MAX(-nmax, MIN(nmax-1, l));
if (l + nmax != L[i]) { changed = true; }
float w = weight_type == 1 ? x[i] * x[i] : 1.f;
slx += w*x[i]*l;
sl2 += w*l*l;
}
if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale * x[i]);
L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
}
sumlx = slx; suml2 = sl2;
scale = sumlx/suml2;
best = scale * sumlx;
}
for (int itry = 0; itry < 5; ++itry) {
int n_changed = 0;
for (int i = 0; i < n; ++i) {
float w = weight_type == 1 ? x[i]*x[i] : 1;
int l = L[i] - nmax;
float slx = sumlx - w*x[i]*l;
if (slx > 0) {
float sl2 = suml2 - w*l*l;
int new_l = nearest_int(x[i] * sl2 / slx);
new_l = MAX(-nmax, MIN(nmax-1, new_l));
if (new_l != l) {
slx += w*x[i]*new_l;
sl2 += w*new_l*new_l;
if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
scale = sumlx / suml2; best = scale * sumlx;
++n_changed;
}
}
}
}
if (!n_changed) { break; }
}
if (rmse_type < 3) {
return scale;
}
for (int is = -4; is <= 4; ++is) {
for (int is = -9; is <= 9; ++is) {
if (is == 0) {
continue;
}
@ -221,12 +179,17 @@ static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t *
return 1/iscale;
}
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
int ntry, float alpha) {
float min = x[0];
float max = x[0];
float sum_x = 0;
float sum_x2 = 0;
for (int i = 1; i < n; ++i) {
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
sum_x += x[i];
sum_x2 += x[i]*x[i];
}
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
@ -254,7 +217,7 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
for (int i = 0; i < n; ++i) {
sum += x[i] - scale*L[i];
}
min = sum/n;
min = alpha*min + (1 - alpha)*sum/n;
if (min > 0) min = 0;
iscale = 1/scale;
if (!did_change) break;
@ -263,6 +226,82 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t
return scale;
}
static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
float rmin, float rdelta, int nstep, bool use_mad) {
float min = x[0];
float max = x[0];
float sum_w = weights[0];
float sum_x = sum_w * x[0];
for (int i = 1; i < n; ++i) {
if (x[i] < min) min = x[i];
if (x[i] > max) max = x[i];
float w = weights[i];
sum_w += w;
sum_x += w * x[i];
}
if (min > 0) min = 0;
if (max == min) {
for (int i = 0; i < n; ++i) L[i] = 0;
*the_min = -min;
return 0.f;
}
float iscale = nmax/(max - min);
float scale = 1/iscale;
float best_mad = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
L[i] = MAX(0, MIN(nmax, l));
float diff = scale * L[i] + min - x[i];
diff = use_mad ? fabsf(diff) : diff * diff;
float w = weights[i];
best_mad += w * diff;
}
if (nstep < 1) {
*the_min = -min;
return scale;
}
for (int is = 0; is <= nstep; ++is) {
iscale = (rmin + rdelta*is + nmax)/(max - min);
float sum_l = 0, sum_l2 = 0, sum_xl = 0;
for (int i = 0; i < n; ++i) {
int l = nearest_int(iscale*(x[i] - min));
l = MAX(0, MIN(nmax, l));
Laux[i] = l;
float w = weights[i];
sum_l += w*l;
sum_l2 += w*l*l;
sum_xl += w*l*x[i];
}
float D = sum_w * sum_l2 - sum_l * sum_l;
if (D > 0) {
float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
if (this_min > 0) {
this_min = 0;
this_scale = sum_xl / sum_l2;
}
float mad = 0;
for (int i = 0; i < n; ++i) {
float diff = this_scale * Laux[i] + this_min - x[i];
diff = use_mad ? fabsf(diff) : diff * diff;
float w = weights[i];
mad += w * diff;
}
if (mad < best_mad) {
for (int i = 0; i < n; ++i) {
L[i] = Laux[i];
}
best_mad = mad;
scale = this_scale;
min = this_min;
}
}
}
*the_min = -min;
return scale;
}
#if QK_K == 256
static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
if (j < 4) {
@ -281,6 +320,8 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
const int nb = k / QK_K;
uint8_t L[QK_K];
uint8_t Laux[16];
float weights[16];
float mins[QK_K/16];
float scales[QK_K/16];
@ -291,7 +332,8 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/16; ++j) {
scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
@ -637,6 +679,8 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
const int nb = k / QK_K;
uint8_t L[QK_K];
uint8_t Laux[32];
float weights[32];
float mins[QK_K/32];
float scales[QK_K/32];
@ -645,7 +689,12 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
//scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
float sum_x2 = 0;
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
float av_x = sqrtf(sum_x2/32);
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;
@ -798,6 +847,8 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
uint8_t L[QK_K];
float mins[QK_K/32];
float scales[QK_K/32];
float weights[32];
uint8_t Laux[32];
#else
int8_t L[QK_K];
float scales[QK_K/16];
@ -810,7 +861,12 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict
float max_scale = 0; // as we are deducting the min, scales are always positive
float max_min = 0;
for (int j = 0; j < QK_K/32; ++j) {
scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
//scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
float sum_x2 = 0;
for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
float av_x = sqrtf(sum_x2/32);
for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
float scale = scales[j];
if (scale > max_scale) {
max_scale = scale;

View file

@ -1,544 +0,0 @@
// Internal header to be included only by llama.cpp.
// Contains wrappers around OS interfaces.
#ifndef LLAMA_UTIL_H
#define LLAMA_UTIL_H
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <vector>
#include <stdexcept>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#if defined(_POSIX_MEMLOCK_RANGE)
#include <sys/resource.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
LLAMA_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
LLAMA_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, len, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t len) const {
if (len == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, len, 1, fp);
if (ret != 1) {
throw std::runtime_error(format("write error: %s", strerror(errno)));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
// llama_context_data
struct llama_data_context {
virtual void write(const void * src, size_t size) = 0;
virtual size_t get_size_written() = 0;
virtual ~llama_data_context() = default;
};
struct llama_data_buffer_context : llama_data_context {
uint8_t* ptr;
size_t size_written = 0;
llama_data_buffer_context(uint8_t * p) : ptr(p) {}
void write(const void * src, size_t size) override {
memcpy(ptr, src, size);
ptr += size;
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
struct llama_data_file_context : llama_data_context {
llama_file* file;
size_t size_written = 0;
llama_data_file_context(llama_file * f) : file(f) {}
void write(const void * src, size_t size) override {
file->write_raw(src, size);
size_written += size;
}
size_t get_size_written() override {
return size_written;
}
};
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
// prefetch/readahead impairs performance on NUMA systems
if (numa) { prefetch = 0; }
#ifdef __linux__
if (prefetch) { flags |= MAP_POPULATE; }
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) {
throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
}
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (madvise(addr, file->size, MADV_RANDOM)) {
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
(void) numa;
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
if (hMapping == NULL) {
throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
if (prefetch) {
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
(void) prefetch;
(void) numa;
throw std::runtime_error(std::string("mmap not supported"));
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * ptr) {
LLAMA_ASSERT(addr == NULL && size == 0);
addr = ptr;
}
void grow_to(size_t target_size) {
LLAMA_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
char* errmsg = std::strerror(errno);
bool suggest = (errno == ENOMEM);
// Check if the resource limit is fine after all
struct rlimit lock_limit;
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
suggest = false;
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
suggest = false;
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * ptr, size_t len) {
for (int tries = 1; ; tries++) {
if (VirtualLock(ptr, len)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = len + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
size_t lock_granularity() {
return (size_t) 65536;
}
bool raw_lock(const void * addr, size_t len) {
fprintf(stderr, "warning: mlock not supported on this system\n");
return false;
}
void raw_unlock(const void * addr, size_t len) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct llama_buffer {
uint8_t * addr = NULL;
size_t size = 0;
llama_buffer() = default;
void resize(size_t len) {
#ifdef GGML_USE_METAL
free(addr);
int result = posix_memalign((void **) &addr, getpagesize(), len);
if (result == 0) {
memset(addr, 0, len);
}
else {
addr = NULL;
}
#else
delete[] addr;
addr = new uint8_t[len];
#endif
size = len;
}
~llama_buffer() {
#ifdef GGML_USE_METAL
free(addr);
#else
delete[] addr;
#endif
addr = NULL;
}
// disable copy and move
llama_buffer(const llama_buffer&) = delete;
llama_buffer(llama_buffer&&) = delete;
llama_buffer& operator=(const llama_buffer&) = delete;
llama_buffer& operator=(llama_buffer&&) = delete;
};
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
struct llama_ctx_buffer {
uint8_t * addr = NULL;
bool is_cuda;
size_t size = 0;
llama_ctx_buffer() = default;
void resize(size_t size) {
free();
addr = (uint8_t *) ggml_cuda_host_malloc(size);
if (addr) {
is_cuda = true;
}
else {
// fall back to pageable memory
addr = new uint8_t[size];
is_cuda = false;
}
this->size = size;
}
void free() {
if (addr) {
if (is_cuda) {
ggml_cuda_host_free(addr);
}
else {
delete[] addr;
}
}
addr = NULL;
}
~llama_ctx_buffer() {
free();
}
// disable copy and move
llama_ctx_buffer(const llama_ctx_buffer&) = delete;
llama_ctx_buffer(llama_ctx_buffer&&) = delete;
llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
};
#else
typedef llama_buffer llama_ctx_buffer;
#endif
#endif

4795
llama.cpp

File diff suppressed because it is too large Load diff

241
llama.h
View file

@ -34,29 +34,18 @@
# define DEPRECATED(func, hint) func
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#define LLAMA_FILE_VERSION 3
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifndef LLAMA_DEFAULT_RMS_EPS
#define LLAMA_DEFAULT_RMS_EPS 5e-6f
#endif
#ifdef __cplusplus
extern "C" {
#endif
@ -72,6 +61,52 @@ extern "C" {
typedef int llama_token;
enum llama_log_level {
LLAMA_LOG_LEVEL_ERROR = 2,
LLAMA_LOG_LEVEL_WARN = 3,
LLAMA_LOG_LEVEL_INFO = 4
};
enum llama_vocab_type {
LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
};
enum llama_token_type {
LLAMA_TOKEN_TYPE_UNDEFINED = 0,
LLAMA_TOKEN_TYPE_NORMAL = 1,
LLAMA_TOKEN_TYPE_UNKNOWN = 2,
LLAMA_TOKEN_TYPE_CONTROL = 3,
LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
LLAMA_TOKEN_TYPE_UNUSED = 5,
LLAMA_TOKEN_TYPE_BYTE = 6,
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
};
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
@ -86,12 +121,10 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
@ -116,33 +149,18 @@ extern "C" {
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// Signature for logging events
// Note that text includes the new line character at the end for most events.
// If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
// if it exists.
// It might not exist for progress report where '.' is output repeatedly.
typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params;
@ -195,23 +213,16 @@ extern "C" {
int32_t n_eval;
};
LLAMA_API int llama_max_devices();
LLAMA_API struct llama_context_params llama_context_default_params(void);
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free();
LLAMA_API int64_t llama_time_us();
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free(void);
LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
@ -223,17 +234,28 @@ extern "C" {
struct llama_model * model,
struct llama_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params),
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
LLAMA_API int64_t llama_time_us(void);
LLAMA_API int llama_max_devices (void);
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
// Get a string describing the model type
LLAMA_API int llama_model_type(const struct llama_model * model, char * buf, size_t buf_size);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
const char * fname_inp,
@ -255,9 +277,9 @@ extern "C" {
LLAMA_API int llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
const char * path_base_model,
int n_threads);
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
@ -307,11 +329,40 @@ extern "C" {
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
//
// Vocab
//
LLAMA_API const char * llama_token_get_text(const struct llama_context * ctx, llama_token token);
LLAMA_API float llama_token_get_score(const struct llama_context * ctx, llama_token token);
LLAMA_API llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
//
// Tokenization
//
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize(
struct llama_context * ctx,
const char * text,
@ -326,55 +377,24 @@ extern "C" {
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
LLAMA_API int llama_n_ctx_from_model (const struct llama_model * model);
LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity);
LLAMA_API int llama_get_vocab_from_model(
const struct llama_model * model,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(
// Does not write null terminator to the buffer
LLAMA_API int llama_token_to_str(
const struct llama_context * ctx,
llama_token token);
llama_token token,
char * buf,
int length);
LLAMA_API const char * llama_token_to_str_with_model(
LLAMA_API int llama_token_to_str_with_model(
const struct llama_model * model,
llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line
llama_token token,
char * buf,
int length);
//
// Grammar
//
LLAMA_API struct llama_grammar * llama_grammar_init(
const llama_grammar_element ** rules,
size_t n_rules,
@ -382,7 +402,9 @@ extern "C" {
LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
//
// Sampling functions
//
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
@ -451,6 +473,10 @@ extern "C" {
// Print system information
LLAMA_API const char * llama_print_system_info(void);
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
#ifdef __cplusplus
}
#endif
@ -460,10 +486,11 @@ extern "C" {
#include <vector>
#include <string>
struct ggml_tensor;
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif
#endif // LLAMA_API_INTERNAL
#endif // LLAMA_H

1
models/.editorconfig Normal file
View file

@ -0,0 +1 @@
root = true

Binary file not shown.

Binary file not shown.

3
scripts/get-wikitext-2.sh Executable file
View file

@ -0,0 +1,3 @@
#!/bin/bash
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip

View file

@ -1,14 +1,16 @@
#!/bin/bash
cp -rpv ../ggml/src/ggml.c ./ggml.c
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/src/ggml.c ./ggml.c
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
cp -rpv ../ggml/tests/test-opt.cpp ./tests/test-opt.cpp
cp -rpv ../ggml/tests/test-grad0.cpp ./tests/test-grad0.cpp

View file

@ -1,15 +1,37 @@
function(llama_add_test source)
function(llama_build_executable source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source})
install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE llama)
target_link_libraries(${TEST_TARGET} PRIVATE llama common)
endfunction()
function(llama_test_executable name source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
# add_executable(${TEST_TARGET} ${source})
# install(TARGETS ${TEST_TARGET} RUNTIME)
# target_link_libraries(${TEST_TARGET} PRIVATE llama)
add_test(NAME ${name} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
function(llama_build_and_test_executable source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source})
install(TARGETS ${TEST_TARGET} RUNTIME)
target_link_libraries(${TEST_TARGET} PRIVATE llama common)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
# llama_add_test(test-double-float.cpp) # SLOW
llama_add_test(test-quantize-fns.cpp)
llama_add_test(test-quantize-perf.cpp)
llama_add_test(test-sampling.cpp)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
llama_add_test(test-grad0.cpp) # SLOW
# llama_add_test(test-opt.cpp) # SLOW
# llama_build_and_test_executable(test-double-float.cpp) # SLOW
llama_build_and_test_executable(test-quantize-fns.cpp)
llama_build_and_test_executable(test-quantize-perf.cpp)
llama_build_and_test_executable(test-sampling.cpp)
llama_build_executable(test-tokenizer-0.cpp)
llama_test_executable (test-tokenizer-0.llama test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama.gguf)
llama_build_executable(test-tokenizer-1.cpp)
# test-tokenizer-1 requires a BPE vocab. re-enable when we have one.
#llama_test_executable (test-tokenizer-1.llama test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
#llama_test_executable(test-tokenizer-1.aquila test-tokenizer-1.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
llama_build_and_test_executable(test-grammar-parser.cpp)
llama_build_and_test_executable(test-llama-grammar.cpp)
llama_build_and_test_executable(test-grad0.cpp) # SLOW
# llama_build_and_test_executable(test-opt.cpp) # SLOW

View file

@ -0,0 +1,250 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include "llama.h"
#include "grammar-parser.h"
#include <cassert>
int main()
{
grammar_parser::parse_state parsed_grammar;
const char *grammar_bytes = R"""(root ::= (expr "=" term "\n")+
expr ::= term ([-+*/] term)*
term ::= [0-9]+)""";
parsed_grammar = grammar_parser::parse(grammar_bytes);
std::vector<std::pair<std::string, uint32_t>> expected = {
{"expr", 2},
{"expr_5", 5},
{"expr_6", 6},
{"root", 0},
{"root_1", 1},
{"root_4", 4},
{"term", 3},
{"term_7", 7},
};
uint32_t index = 0;
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it)
{
std::string key = it->first;
uint32_t value = it->second;
std::pair<std::string, uint32_t> expected_pair = expected[index];
// pretty print error message before asserting
if (expected_pair.first != key || expected_pair.second != value)
{
fprintf(stderr, "expected_pair: %s, %d\n", expected_pair.first.c_str(), expected_pair.second);
fprintf(stderr, "actual_pair: %s, %d\n", key.c_str(), value);
fprintf(stderr, "expected_pair != actual_pair\n");
}
assert(expected_pair.first == key && expected_pair.second == value);
index++;
}
std::vector<llama_grammar_element> expected_rules = {
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 10},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 6},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 1},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_RULE_REF, 1},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 45},
{LLAMA_GRETYPE_CHAR_ALT, 43},
{LLAMA_GRETYPE_CHAR_ALT, 42},
{LLAMA_GRETYPE_CHAR_ALT, 47},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_RULE_REF, 6},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_END, 0},
};
index = 0;
for (auto rule : parsed_grammar.rules)
{
// compare rule to expected rule
for (uint32_t i = 0; i < rule.size(); i++)
{
llama_grammar_element element = rule[i];
llama_grammar_element expected_element = expected_rules[index];
// pretty print error message before asserting
if (expected_element.type != element.type || expected_element.value != element.value)
{
fprintf(stderr, "index: %d\n", index);
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
fprintf(stderr, "actual_element: %d, %d\n", element.type, element.value);
fprintf(stderr, "expected_element != actual_element\n");
}
assert(expected_element.type == element.type && expected_element.value == element.value);
index++;
}
}
const char *longer_grammar_bytes = R"""(
root ::= (expr "=" ws term "\n")+
expr ::= term ([-+*/] term)*
term ::= ident | num | "(" ws expr ")" ws
ident ::= [a-z] [a-z0-9_]* ws
num ::= [0-9]+ ws
ws ::= [ \t\n]*
)""";
parsed_grammar = grammar_parser::parse(longer_grammar_bytes);
expected = {
{"expr", 2},
{"expr_6", 6},
{"expr_7", 7},
{"ident", 8},
{"ident_10", 10},
{"num", 9},
{"num_11", 11},
{"root", 0},
{"root_1", 1},
{"root_5", 5},
{"term", 4},
{"ws", 3},
{"ws_12", 12},
};
index = 0;
for (auto it = parsed_grammar.symbol_ids.begin(); it != parsed_grammar.symbol_ids.end(); ++it)
{
std::string key = it->first;
uint32_t value = it->second;
std::pair<std::string, uint32_t> expected_pair = expected[index];
// pretty print error message before asserting
if (expected_pair.first != key || expected_pair.second != value)
{
fprintf(stderr, "expected_pair: %s, %d\n", expected_pair.first.c_str(), expected_pair.second);
fprintf(stderr, "actual_pair: %s, %d\n", key.c_str(), value);
fprintf(stderr, "expected_pair != actual_pair\n");
}
assert(expected_pair.first == key && expected_pair.second == value);
index++;
}
expected_rules = {
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_CHAR, 10},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 12},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 8},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_RULE_REF, 9},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 40},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 41},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 1},
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_RULE_REF, 1},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 45},
{LLAMA_GRETYPE_CHAR_ALT, 43},
{LLAMA_GRETYPE_CHAR_ALT, 42},
{LLAMA_GRETYPE_CHAR_ALT, 47},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 6},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 97},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
{LLAMA_GRETYPE_RULE_REF, 10},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_RULE_REF, 11},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 97},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
{LLAMA_GRETYPE_CHAR_ALT, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_CHAR_ALT, 95},
{LLAMA_GRETYPE_RULE_REF, 10},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_RULE_REF, 11},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_END, 0},
{LLAMA_GRETYPE_CHAR, 32},
{LLAMA_GRETYPE_CHAR_ALT, 9},
{LLAMA_GRETYPE_CHAR_ALT, 10},
{LLAMA_GRETYPE_RULE_REF, 12},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
};
index = 0;
for (auto rule : parsed_grammar.rules)
{
// compare rule to expected rule
for (uint32_t i = 0; i < rule.size(); i++)
{
llama_grammar_element element = rule[i];
llama_grammar_element expected_element = expected_rules[index];
// pretty print error message before asserting
if (expected_element.type != element.type || expected_element.value != element.value)
{
fprintf(stderr, "index: %d\n", index);
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
fprintf(stderr, "actual_element: %d, %d\n", element.type, element.value);
fprintf(stderr, "expected_element != actual_element\n");
}
assert(expected_element.type == element.type && expected_element.value == element.value);
index++;
}
}
return 0;
}

View file

@ -0,0 +1,403 @@
#ifdef NDEBUG
#undef NDEBUG
#endif
#include "llama.cpp" // TODO: not great
#include "grammar-parser.h"
#include <cassert>
int main()
{
grammar_parser::parse_state parsed_grammar;
std::vector<std::pair<std::string, uint32_t>> expected = {
{"expr", 2},
{"expr_6", 6},
{"expr_7", 7},
{"ident", 8},
{"ident_10", 10},
{"num", 9},
{"num_11", 11},
{"root", 0},
{"root_1", 1},
{"root_5", 5},
{"term", 4},
{"ws", 3},
{"ws_12", 12},
};
std::vector<std::vector<llama_grammar_element>> expected_rules = {
{{LLAMA_GRETYPE_RULE_REF, 5}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_CHAR, 10},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 4}, {LLAMA_GRETYPE_RULE_REF, 7}, {LLAMA_GRETYPE_END, 0}},
{{LLAMA_GRETYPE_RULE_REF, 12}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_RULE_REF, 8},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_RULE_REF, 9},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 40},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_RULE_REF, 2},
{LLAMA_GRETYPE_CHAR, 41},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 1}, {LLAMA_GRETYPE_RULE_REF, 5}, {LLAMA_GRETYPE_ALT, 0}, {LLAMA_GRETYPE_RULE_REF, 1}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_CHAR, 45},
{LLAMA_GRETYPE_CHAR_ALT, 43},
{LLAMA_GRETYPE_CHAR_ALT, 42},
{LLAMA_GRETYPE_CHAR_ALT, 47},
{LLAMA_GRETYPE_RULE_REF, 4},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 6}, {LLAMA_GRETYPE_RULE_REF, 7}, {LLAMA_GRETYPE_ALT, 0}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_CHAR, 97},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
{LLAMA_GRETYPE_RULE_REF, 10},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_END, 0},
},
{{LLAMA_GRETYPE_RULE_REF, 11}, {LLAMA_GRETYPE_RULE_REF, 3}, {LLAMA_GRETYPE_END, 0}},
{
{LLAMA_GRETYPE_CHAR, 97},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 122},
{LLAMA_GRETYPE_CHAR_ALT, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_CHAR_ALT, 95},
{LLAMA_GRETYPE_RULE_REF, 10},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
},
{
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_RULE_REF, 11},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_CHAR, 48},
{LLAMA_GRETYPE_CHAR_RNG_UPPER, 57},
{LLAMA_GRETYPE_END, 0},
},
{
{LLAMA_GRETYPE_CHAR, 32},
{LLAMA_GRETYPE_CHAR_ALT, 9},
{LLAMA_GRETYPE_CHAR_ALT, 10},
{LLAMA_GRETYPE_RULE_REF, 12},
{LLAMA_GRETYPE_ALT, 0},
{LLAMA_GRETYPE_END, 0},
},
};
for (auto pair : expected)
{
parsed_grammar.symbol_ids[pair.first] = pair.second;
}
for (auto rule : expected_rules)
{
parsed_grammar.rules.push_back({});
for (auto element : rule)
{
parsed_grammar.rules.back().push_back(element);
}
}
llama_grammar *grammar = NULL;
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
grammar = llama_grammar_init(
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
std::vector<std::vector<llama_grammar_element>> expected_stacks = {
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 97},
},
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_RULE_REF, 5},
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 40},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 97},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_RULE_REF, 3},
{LLAMA_GRETYPE_CHAR, 48},
},
{
{LLAMA_GRETYPE_CHAR, 61},
{LLAMA_GRETYPE_RULE_REF, 7},
{LLAMA_GRETYPE_CHAR, 40},
}};
auto index = 0;
for (auto stack : grammar->stacks)
{
// compare stack to expected_stack
for (uint32_t i = 0; i < stack.size(); i++)
{
auto element = stack[i];
auto expected_element = expected_stacks[index][i];
// pretty print error message before asserting
if (expected_element.type != element->type || expected_element.value != element->value)
{
fprintf(stderr, "index: %d\n", index);
fprintf(stderr, "expected_element: %d, %d\n", expected_element.type, expected_element.value);
fprintf(stderr, "actual_element: %d, %d\n", element->type, element->value);
fprintf(stderr, "expected_element != actual_element\n");
}
assert(expected_element.type == element->type && expected_element.value == element->value);
}
index++;
}
std::vector<std::vector<const llama_grammar_element *>> next_stacks;
std::vector<llama_grammar_candidate> next_candidates;
next_candidates.resize(24);
for (size_t i = 0; i < 24; ++i)
{
uint32_t *cp = new uint32_t[2]; // dynamically allocate memory for code_point
cp[0] = 37 + i;
cp[1] = 0;
next_candidates[i] = {i, cp, {}};
}
std::vector<std::vector<std::pair<uint32_t, uint16_t>>> expected_reject = {
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{3, 40},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{21, 58},
{22, 59},
{23, 60},
},
{
{0, 37},
{1, 38},
{2, 39},
{4, 41},
{5, 42},
{6, 43},
{7, 44},
{8, 45},
{9, 46},
{10, 47},
{11, 48},
{12, 49},
{13, 50},
{14, 51},
{15, 52},
{16, 53},
{17, 54},
{18, 55},
{19, 56},
{20, 57},
{21, 58},
{22, 59},
{23, 60},
},
};
std::vector<llama_grammar_candidate> rejects = llama_grammar_reject_candidates_for_stack(grammar->rules, grammar->stacks[0], next_candidates);
std::vector<std::vector<llama_grammar_candidate>> all_rejects;
for (std::size_t count = 0; count < grammar->stacks.size(); ++count)
{
rejects = llama_grammar_reject_candidates_for_stack(grammar->rules, grammar->stacks[count], next_candidates);
all_rejects.push_back(rejects);
}
index = 0;
for (auto rej : all_rejects)
{
for (uint32_t i = 0; i < rej.size(); i++)
{
auto element = rej[i];
auto expected_element = expected_reject[index][i];
assert(element.index == expected_element.first && *element.code_points == expected_element.second);
}
index++;
}
for (auto &candidate : next_candidates)
{
delete[] candidate.code_points;
candidate.code_points = nullptr;
}
delete grammar;
return 0;
}

View file

@ -1,22 +1,55 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <string>
#include <map>
#include <vector>
static const std::map<std::string, std::vector<llama_token>> & k_tests()
{
static std::string unescape_whitespace(llama_context* ctx, const std::vector<llama_token>& tokens) {
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
result += llama_token_to_str(ctx, tokens[i]);
}
return result;
}
static const std::map<std::string, std::vector<llama_token>> & k_tests() {
static std::map<std::string, std::vector<llama_token>> _k_tests = {
{ "Hello World", { 1, 10994, 2787, }, },
{ " Hello World", { 1, 15043, 2787, }, },
{ " Hello World!", { 1, 15043, 2787, 29991, }, },
{ " this is 🦙.cpp", { 1, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
{ "w048 7tuijk dsdfhu", { 1, 29893, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
{ "нещо на Български", { 1, 821, 4851, 665, 1386, 29713, 1305, }, },
{ " ", {1, 259, }, },
{ " ", { 1, 1678, }, },
{ " ", { 1, 268, }, },
{ "\t", { 1, 29871, 12, }, },
{ "\n", { 1, 29871, 13, }, },
{ "\t\n", { 1, 29871, 12, 13, }, },
{ "Hello world", { 1, 15043, 3186, }, },
{ " Hello world", { 1, 29871, 15043, 3186, }, },
{ "Hello World", { 1, 15043, 2787, }, },
{ " Hello World", { 1, 29871, 15043, 2787, }, },
{ " Hello World!", { 1, 29871, 15043, 2787, 29991, }, },
{ " this is 🦙.cpp", { 1, 29871, 445, 338, 29871, 243, 162, 169, 156, 29889, 8223, }, },
{ "w048 7tuijk dsdfhu", { 1, 281, 29900, 29946, 29947, 29871, 29955, 9161, 13535, 18031, 2176, 6905, }, },
{ "нещо на Български", { 1, 1538, 4851, 665, 1386, 29713, 1305, }, },
{ "កាន់តែពិសេសអាចខលចេញ", { 1, 29871, 31849, 31324, 31934, 228, 162, 142, 228, 161,
146, 228, 162, 133, 228, 161, 153, 228, 161, 186,
31708, 228, 162, 132, 31708, 228, 161, 165, 31324, 228,
161, 136, 228, 161, 132, 228, 161, 158, 228, 161,
136, 228, 162, 132, 228, 161, 140, }, },
{ "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
{ 1, 29871, 243, 162, 157, 131, 313, 8945, 29897, 29871,
243, 162, 155, 185, 30722, 243, 162, 143, 174, 30598,
313, 20787, 953, 3848, 275, 16125, 630, 29897, 29871, 31681,
313, 6194, 953, 29877, 2397, 393, 756, 967, 1914, 5993, 29897, }, },
{ "Hello", { 1, 15043 }, },
{ " Hello", { 1, 29871, 15043 }, },
{ " Hello", { 1, 259, 15043 }, },
{ " Hello", { 1, 1678, 15043 }, },
{ " Hello", { 1, 268, 15043 }, },
{ " Hello\n Hello", { 1, 268, 15043, 13, 1678, 15043 }, },
};
return _k_tests;
};
}
int main(int argc, char **argv) {
if (argc < 2) {
@ -64,10 +97,12 @@ int main(int argc, char **argv) {
return 2;
}
bool success = true;
for (const auto & test_kv : k_tests()) {
std::vector<llama_token> res(test_kv.first.size());
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), int(res.size()), true);
res.resize(n);
std::vector<llama_token> res = llama_tokenize(ctx, test_kv.first, true);
fprintf(stderr, "%s : '%s' tokenized to '%s'\n",
__func__, test_kv.first.c_str(), unescape_whitespace(ctx, res).c_str());
bool correct = res.size() == test_kv.second.size();
@ -78,7 +113,9 @@ int main(int argc, char **argv) {
}
if (!correct) {
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : failed test: '%s'\n", __func__, test_kv.first.c_str());
fprintf(stderr, "%s : detokenized to: '%s' instead of '%s'\n", __func__,
unescape_whitespace(ctx, res).c_str(), unescape_whitespace(ctx, test_kv.second).c_str());
fprintf(stderr, "%s : expected tokens: ", __func__);
for (const auto & t : test_kv.second) {
fprintf(stderr, "%6d, ", t);
@ -90,9 +127,7 @@ int main(int argc, char **argv) {
}
fprintf(stderr, "\n");
llama_free_model(model);
llama_free(ctx);
return 3;
success = false;
}
}
@ -101,5 +136,5 @@ int main(int argc, char **argv) {
llama_backend_free();
return 0;
return success ? 0 : 3;
}

116
tests/test-tokenizer-1.cpp Normal file
View file

@ -0,0 +1,116 @@
#include "llama.h"
#include "common.h"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <string>
#include <codecvt>
#include <map>
#include <vector>
#include <locale>
static std::string escape_whitespace(const std::string& text) {
std::string result = "\xe2\x96\x81";
for (size_t offs = 0; offs < text.length(); ++offs) {
if (text[offs] == ' ') {
result += "\xe2\x96\x81";
} else {
result += text[offs];
}
}
return result;
}
static std::string unescape_whitespace(llama_context * ctx, const std::vector<llama_token> & tokens) {
std::string result;
for (size_t i = 0; i < tokens.size(); ++i) {
result += llama_token_to_str(ctx, tokens[i]);
}
return result;
}
int main(int argc, char **argv) {
if (argc < 2) {
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
return 1;
}
const std::string fname = argv[1];
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
llama_model * model;
llama_context * ctx;
llama_backend_init(false);
// load the vocab
{
auto lparams = llama_context_default_params();
lparams.vocab_only = true;
model = llama_load_model_from_file(fname.c_str(), lparams);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
return 1;
}
ctx = llama_new_context_with_model(model, lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
llama_free_model(model);
return 1;
}
}
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_BPE);
const int n_vocab = llama_n_vocab(ctx);
for (int i = 0; i < n_vocab; ++i) {
std::string forward = llama_token_to_str(ctx, i);
std::vector<llama_token> tokens = llama_tokenize(ctx, forward, false);
if (tokens.size() == 1) {
if (i != tokens[0]) {
std::string backward = llama_token_to_str(ctx, tokens[0]);
fprintf(stderr, "%s : error: token %d is string %s but bpe returns token %d %s\n",
__func__, i, llama_token_to_str(ctx, i).c_str(), tokens[0], backward.c_str());
return 2;
}
}
}
#ifdef _WIN32
std::wstring_convert<typename std::codecvt_utf8<char16_t>, char16_t> u16converter;
for (char16_t ch = 0x0000; ch < 0xffff; ++ch) {
std::u16string u16str(1, ch);
std::string str = u16converter.to_bytes(u16str);
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
if (tokens.size() == 1) {
fprintf(stderr, "%s : info: %s tokenized to %d \n",
__func__, str.c_str(), tokens[0]);
}
}
std::wstring_convert<typename std::codecvt_utf8<char32_t>, char32_t> u32converter;
for (char32_t ch = 0x0000; ch < 0x0010ffff; ++ch) {
std::u32string u32str(1, ch);
std::string str = u32converter.to_bytes(u32str);
std::vector<llama_token> tokens = llama_tokenize(ctx, escape_whitespace(str).c_str(), false);
if (tokens.size() == 1) {
fprintf(stderr, "%s : info: %s tokenized to %d \n", __func__, str.c_str(), tokens[0]);
}
}
#endif
llama_free_model(model);
llama_free(ctx);
llama_backend_free();
return 0;
}