diff --git a/common/common.cpp b/common/common.cpp index 8503da88a..e2faeee0d 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -724,7 +724,7 @@ std::tuple llama_init_from_gpt_par return std::make_tuple(nullptr, nullptr); } - for (int i = 0; i < params.lora_adapter.size(); ++i) { + for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) { const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]); float lora_scale = std::get<1>(params.lora_adapter[i]); int err = llama_model_apply_lora_from_file(model, diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 9da63d8c9..b092bd612 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -406,18 +406,13 @@ void init_model(struct llama_model * input, struct my_llama_model * model, uint3 hparams.n_layer = llama_model_n_layer(input); hparams.n_rot = llama_model_n_rot(input); - const uint32_t n_embd = hparams.n_embd; - const uint32_t n_layer = hparams.n_layer; - const uint32_t n_vocab = hparams.n_vocab; - const uint32_t n_ff = hparams.n_ff; - model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT)); - model->layers.resize(n_layer); + model->layers.resize(hparams.n_layer); - for (uint32_t i = 0; i < n_layer; ++i) { + for (uint32_t i = 0; i < hparams.n_layer; ++i) { auto & layer = model->layers[i]; layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i)); @@ -654,7 +649,7 @@ struct ggml_tensor * llama_build_lora_finetune_graphs( const float rope_freq_base = lora->hparams.rope_freq_base; const float rope_freq_scale = lora->hparams.rope_freq_scale; - GGML_ASSERT(n_layer == lora->layers.size()); + GGML_ASSERT((size_t) n_layer == lora->layers.size()); auto set_name = [](struct ggml_tensor * t, const char * n) { ggml_set_name(t, n); @@ -828,15 +823,12 @@ struct ggml_tensor * llama_build_lora_finetune_graphs( // allocating checkpoints in one block to reduce memory fragmentation // note: they will be freed in reverse order - for (int i = 0; i < checkpoints.size(); ++i) { + for (unsigned int i = 0; i < checkpoints.size(); ++i) { if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) { ggml_allocr_alloc(alloc, checkpoints[i]); } } - int n_leafs_after = gb->n_leafs; - int n_nodes_after = gb->n_nodes; - ggml_allocr_alloc_graph(alloc, gb); // remove the additional nodes and leafs diff --git a/ggml.c b/ggml.c index 77abf7c8f..8ade33957 100644 --- a/ggml.c +++ b/ggml.c @@ -4851,7 +4851,6 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { } void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) { - const int64_t ne3 = tensor->ne[3]; const int64_t ne2 = tensor->ne[2]; const int64_t ne1 = tensor->ne[1]; const int64_t ne0 = tensor->ne[0]; @@ -16214,16 +16213,16 @@ struct hash_map { void * vals[GGML_GRAPH_HASHTABLE_SIZE]; }; -struct hash_map * new_hash_map() { +static struct hash_map * new_hash_map(void) { struct hash_map * result = malloc(sizeof(struct hash_map)); for (int i=0; ikeys[i] = NULL; result->vals[i] = NULL; } return result; -}; +} -void free_hash_map(struct hash_map * map) { +static void free_hash_map(struct hash_map * map) { free(map); } @@ -19176,7 +19175,6 @@ static enum ggml_opt_result linesearch_backtracking( float * step, const float * xp, struct ggml_tensor * f, - struct ggml_cgraph * gf, struct ggml_cgraph * gb, struct ggml_cplan * cplan, const int np, @@ -19421,7 +19419,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, xp, x); ggml_vec_cpy_f32(nx, gp, g); - ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data); + ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, callback, callback_data); if (ls < 0) { // linesearch failed - go back to the previous point and return