diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 645648585..977685154 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -10,3 +10,4 @@ llama_add_test(test-quantize-fns.cpp) llama_add_test(test-quantize-perf.cpp) llama_add_test(test-sampling.cpp) llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin) +llama_add_test(test-grad0.c) diff --git a/tests/test-grad0.c b/tests/test-grad0.c new file mode 100644 index 000000000..37ee24b9e --- /dev/null +++ b/tests/test-grad0.c @@ -0,0 +1,389 @@ +#include "ggml.h" + +#include +#include +#include +#include + +#define MAX_NARGS 2 + +float frand() { + return (float)rand()/(float)RAND_MAX; +} + +int irand(int n) { + return rand()%n; +} + +void get_random_dims(int64_t * dims, int ndims) { + dims[0] = dims[1] = dims[2] = dims[3] = 1; + + for (int i = 0; i < ndims; i++) { + dims[i] = 1 + irand(4); + } +} + +struct ggml_tensor * get_random_tensor( + struct ggml_context * ctx0, + int ndims, + int64_t ne[], + float fmin, + float fmax) { + struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); + + switch (ndims) { + case 1: + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; + } + break; + case 2: + for (int i1 = 0; i1 < ne[1]; i1++) { + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; + } + } + break; + case 3: + for (int i2 = 0; i2 < ne[2]; i2++) { + for (int i1 = 0; i1 < ne[1]; i1++) { + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; + } + } + } + break; + case 4: + for (int i3 = 0; i3 < ne[3]; i3++) { + for (int i2 = 0; i2 < ne[2]; i2++) { + for (int i1 = 0; i1 < ne[1]; i1++) { + for (int i0 = 0; i0 < ne[0]; i0++) { + ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; + } + } + } + } + break; + default: + assert(false); + }; + + return result; +} + +float get_element(const struct ggml_tensor * t, int idx) { + return ((float *)t->data)[idx]; +} + +void set_element(struct ggml_tensor * t, int idx, float value) { + ((float *)t->data)[idx] = value; +} + +bool check_gradient( + const char * op_name, + struct ggml_context * ctx0, + struct ggml_tensor * x[], + struct ggml_tensor * f, + int ndims, + int nargs, + float eps, + float max_error_abs, + float max_error_rel) { + + struct ggml_cgraph gf = ggml_build_forward (f); + struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); + + ggml_graph_compute(ctx0, &gf); + ggml_graph_reset (&gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx0, &gb); + + ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot"); + ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot"); + + for (int i = 0; i < nargs; ++i) { + const int nelements = ggml_nelements(x[i]); + for (int k = 0; k < nelements; ++k) { + // compute gradient using finite differences + const float x0 = get_element(x[i], k); + const float xm = x0 - eps; + const float xp = x0 + eps; + set_element(x[i], k, xp); + ggml_graph_compute(ctx0, &gf); + + const float f0 = ggml_get_f32_1d(f, 0); + + set_element(x[i], k, xm); + ggml_graph_compute(ctx0, &gf); + + const float f1 = ggml_get_f32_1d(f, 0); + + const float g0 = (f0 - f1)/(2.0f*eps); + + set_element(x[i], k, x0); + + // compute gradient using backward graph + ggml_graph_reset (&gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(ctx0, &gb); + + const float g1 = get_element(x[i]->grad, k); + + const float error_abs = fabsf(g0 - g1); + const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0; + + printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n", + op_name, ndims, i, k, x0, xm, xp, f0, f1, g0, g1, eps, error_abs, error_rel); + if (error_abs > max_error_abs || error_rel > max_error_rel) { + assert(false); + } + } + } + + return true; +} + +// TODO: clean-up this .. +bool check_mat_mul( + const struct ggml_tensor * y, + const struct ggml_tensor * x0, + const struct ggml_tensor * x1) { + float * dst = (float *) y->data; + float * src0 = (float *) x0->data; + float * src1 = (float *) x1->data; + + const int nc = x0->ne[1]; + const int nr = x1->ne[1]; + const int nk = x0->ne[0]; + + printf("check_mat_mul: nc=%d, nr=%d, nk=%d\n", nc, nr, nk); + + printf("x0:\n"); + for (int j = 0; j < x0->ne[1]; ++j) { + for (int i = 0; i < x0->ne[0]; ++i) { + printf("%6.3f ", src0[j*nk + i]); + } + printf("\n"); + } + printf("\n"); + + printf("x1:\n"); + for (int j = 0; j < x1->ne[1]; ++j) { + for (int i = 0; i < x1->ne[0]; ++i) { + printf("%6.3f ", src1[j*nk + i]); + } + printf("\n"); + } + printf("\n"); + + printf("y: n_dims = %d, (%lld, %lld)\n", y->n_dims, y->ne[0], y->ne[1]); + for (int j = 0; j < y->ne[1]; ++j) { + for (int i = 0; i < y->ne[0]; ++i) { + printf("%6.3f ", dst[j*nr + i]); + } + printf("\n"); + } + + for (int i = 0; i < nr; ++i) { + for (int j = 0; j < nc; ++j) { + float sum = 0.0f; + + for (int k = 0; k < nk; ++k) { + sum += src0[j*nk + k]*src1[i*nk + k]; + } + + if (fabsf(dst[i*nc + j] - sum) > 1e-5f) { + printf("check_mat_mul: dst[%d] = %f, sum = %f\n", i*nc + j, dst[i*nc + j], sum); + assert(false); + return false; + } + } + } + + return true; +} + +int main(int argc, const char ** argv) { + struct ggml_init_params params = { + .mem_size = 128*1024*1024, + .mem_buffer = NULL, + .no_alloc = false, + }; + + int64_t ne[4]; + + // original loop: 1000 + int niter = 1000; + const char *env = getenv("GGML_NLOOP"); + if (env != NULL) { + niter = atoi(env); + } + if (argc > 1) { + niter = atoi(argv[1]); + } + for (int iter = 0; iter < niter; ++iter) { + printf("test-grad0: iter:%d/%d\n", iter, niter); + struct ggml_context * ctx0 = ggml_init(params); + + get_random_dims(ne, 4); + + struct ggml_tensor * x[MAX_NARGS]; + + // add + { + const int nargs = 2; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); + + check_gradient("add", ctx0, x, f, ndims, nargs, 1, 1e-3f, 1e-3f); + } + } + + // sub + { + const int nargs = 2; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_sub(ctx0, x[0], x[1])); + + check_gradient("sub", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f); + } + } + + // mul + { + const int nargs = 2; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_mul(ctx0, x[0], x[1])); + + check_gradient("mul", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); + } + } + + // div + { + const int nargs = 2; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, 0.5f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_div(ctx0, x[0], x[1])); + + check_gradient("div", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-2f); + } + } + + // sqr + { + const int nargs = 1; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, x[0])); + + check_gradient("sqr", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); + } + } + + // sqrt + { + const int nargs = 1; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqrt(ctx0, x[0])); + + check_gradient("sqrt", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-1f); + } + } + + // sum + { + const int nargs = 1; + + for (int ndims = 1; ndims <= 2; ++ndims) { + for (int i = 0; i < nargs; ++i) { + x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + ggml_set_param(ctx0, x[i]); + } + + struct ggml_tensor * f = ggml_sum(ctx0, x[0]); + + check_gradient("sum", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f); + } + } + + // abs (finite differences do not work) + //{ + // const int nargs = 1; + + // for (int ndims = 1; ndims <= 2; ++ndims) { + // for (int i = 0; i < nargs; ++i) { + // x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + // ggml_set_param(ctx0, x[i]); + // } + + // struct ggml_tensor * f = ggml_sum(ctx0, ggml_abs(ctx0, x[0])); + + // check_gradient("abs", ctx0, x, f, ndims, nargs, 1e-3f, INFINITY, 1e-3f); + // } + //} + + // mul_mat + { + const int nargs = 1; + + for (int ndims = 2; ndims <= 2; ++ndims) { + x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); + { + int64_t ne2[4]; + get_random_dims(ne2, 4); + ne2[0] = ne[0]; + x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); + } + + ggml_set_param(ctx0, x[0]); + + struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]); + struct ggml_tensor * f = ggml_sum(ctx0, m); + + printf("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims); + + check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); + check_mat_mul(m, x[1], x[0]); + } + } + + ggml_free(ctx0); + } + + return 0; +}