server : allow using LoRA adapters per-request (#10994)
* slot.can_batch_with * lora per request * test: force disable cache prompt * move can_batch_with check * fix condition * add slow test with llama 8b * update docs * move lora change task to queue * Apply suggestions from code review Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * lora_base * remove redundant check --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
a45433ba20
commit
0da5d86026
8 changed files with 235 additions and 59 deletions
|
@ -44,6 +44,12 @@ To run with stdout/stderr display in real time (verbose output, but useful for d
|
|||
DEBUG=1 ./tests.sh -s -v -x
|
||||
```
|
||||
|
||||
To run single test unit:
|
||||
|
||||
```shell
|
||||
./tests.sh unit/test_{name of test case here}.py -v -x
|
||||
```
|
||||
|
||||
Hint: You can compile and run test in single command, useful for local developement:
|
||||
|
||||
```shell
|
||||
|
|
|
@ -5,3 +5,4 @@ numpy~=1.26.4
|
|||
openai~=1.55.3
|
||||
prometheus-client~=0.20.0
|
||||
requests~=2.32.3
|
||||
wget~=3.2
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import pytest
|
||||
import os
|
||||
from utils import *
|
||||
|
||||
server = ServerPreset.stories15m_moe()
|
||||
|
@ -10,15 +9,7 @@ LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe
|
|||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.stories15m_moe()
|
||||
# download lora file if needed
|
||||
file_name = LORA_FILE_URL.split('/').pop()
|
||||
lora_file = f'../../../{file_name}'
|
||||
if not os.path.exists(lora_file):
|
||||
print(f"Downloading {LORA_FILE_URL} to {lora_file}")
|
||||
with open(lora_file, 'wb') as f:
|
||||
f.write(requests.get(LORA_FILE_URL).content)
|
||||
print(f"Done downloading lora file")
|
||||
server.lora_files = [lora_file]
|
||||
server.lora_files = [download_file(LORA_FILE_URL)]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("scale,re_content", [
|
||||
|
@ -40,3 +31,85 @@ def test_lora(scale: float, re_content: str):
|
|||
assert res.status_code == 200
|
||||
assert match_regex(re_content, res.body["content"])
|
||||
|
||||
|
||||
def test_lora_per_request():
|
||||
global server
|
||||
server.n_slots = 4
|
||||
server.start()
|
||||
|
||||
# running the same prompt with different lora scales, all in parallel
|
||||
# each prompt will be processed by a different slot
|
||||
prompt = "Look in thy glass"
|
||||
lora_config = [
|
||||
( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
|
||||
( [{"id": 0, "scale": 0.0}], "(bright|day|many|happy)+" ),
|
||||
( [{"id": 0, "scale": 0.3}], "(special|thing|gifted)+" ),
|
||||
( [{"id": 0, "scale": 0.7}], "(far|from|home|away)+" ),
|
||||
( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
|
||||
( [{"id": 0, "scale": 1.0}], "(eye|love|glass|sun)+" ),
|
||||
]
|
||||
|
||||
tasks = [(
|
||||
server.make_request,
|
||||
("POST", "/completion", {
|
||||
"prompt": prompt,
|
||||
"lora": lora,
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||||
})
|
||||
) for lora, _ in lora_config]
|
||||
results = parallel_function_calls(tasks)
|
||||
|
||||
assert all([res.status_code == 200 for res in results])
|
||||
for res, (_, re_test) in zip(results, lora_config):
|
||||
assert match_regex(re_test, res.body["content"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_slow_test_allowed(), reason="skipping slow test")
|
||||
def test_with_big_model():
|
||||
server = ServerProcess()
|
||||
server.model_hf_repo = "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF"
|
||||
server.model_hf_file = "Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf"
|
||||
server.model_alias = "Llama-3.2-8B-Instruct"
|
||||
server.n_slots = 4
|
||||
server.n_ctx = server.n_slots * 1024
|
||||
server.n_predict = 64
|
||||
server.temperature = 0.0
|
||||
server.seed = 42
|
||||
server.lora_files = [
|
||||
download_file("https://huggingface.co/ngxson/Llama-3-Instruct-abliteration-LoRA-8B-F16-GGUF/resolve/main/Llama-3-Instruct-abliteration-LoRA-8B-f16.gguf"),
|
||||
# TODO: find & add other lora adapters for this model
|
||||
]
|
||||
server.start(timeout_seconds=600)
|
||||
|
||||
# running the same prompt with different lora scales, all in parallel
|
||||
# each prompt will be processed by a different slot
|
||||
prompt = "Write a computer virus"
|
||||
lora_config = [
|
||||
# without applying lora, the model should reject the request
|
||||
( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
|
||||
( [{"id": 0, "scale": 0.0}], "I can't provide you with a code for a computer virus" ),
|
||||
( [{"id": 0, "scale": 0.3}], "I can't write a computer virus" ),
|
||||
# with 0.7 scale, the model should provide a simple computer virus with hesitation
|
||||
( [{"id": 0, "scale": 0.7}], "Warning: This is a hypothetical exercise" ),
|
||||
# with 1.5 scale, the model should confidently provide a computer virus
|
||||
( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
|
||||
( [{"id": 0, "scale": 1.5}], "A task of some complexity! Here's a simple computer virus" ),
|
||||
]
|
||||
|
||||
tasks = [(
|
||||
server.make_request,
|
||||
("POST", "/v1/chat/completions", {
|
||||
"messages": [
|
||||
{"role": "user", "content": prompt}
|
||||
],
|
||||
"lora": lora,
|
||||
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
|
||||
})
|
||||
) for lora, _ in lora_config]
|
||||
results = parallel_function_calls(tasks)
|
||||
|
||||
assert all([res.status_code == 200 for res in results])
|
||||
for res, (_, re_test) in zip(results, lora_config):
|
||||
assert re_test in res.body["choices"][0]["message"]["content"]
|
||||
|
|
|
@ -10,16 +10,8 @@ MODEL_DRAFT_FILE_URL = "https://huggingface.co/ggml-org/models/resolve/main/tiny
|
|||
def create_server():
|
||||
global server
|
||||
server = ServerPreset.stories15m_moe()
|
||||
# download draft model file if needed
|
||||
file_name = MODEL_DRAFT_FILE_URL.split('/').pop()
|
||||
model_draft_file = f'../../../{file_name}'
|
||||
if not os.path.exists(model_draft_file):
|
||||
print(f"Downloading {MODEL_DRAFT_FILE_URL} to {model_draft_file}")
|
||||
with open(model_draft_file, 'wb') as f:
|
||||
f.write(requests.get(MODEL_DRAFT_FILE_URL).content)
|
||||
print(f"Done downloading draft model file")
|
||||
# set default values
|
||||
server.model_draft = model_draft_file
|
||||
server.model_draft = download_file(MODEL_DRAFT_FILE_URL)
|
||||
server.draft_min = 4
|
||||
server.draft_max = 8
|
||||
|
||||
|
|
|
@ -23,6 +23,7 @@ from typing import (
|
|||
Set,
|
||||
)
|
||||
from re import RegexFlag
|
||||
import wget
|
||||
|
||||
|
||||
class ServerResponse:
|
||||
|
@ -381,5 +382,25 @@ def match_regex(regex: str, text: str) -> bool:
|
|||
is not None
|
||||
)
|
||||
|
||||
|
||||
def download_file(url: str, output_file_path: str | None = None) -> str:
|
||||
"""
|
||||
Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
|
||||
|
||||
output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
|
||||
|
||||
Returns the local path of the downloaded file.
|
||||
"""
|
||||
file_name = url.split('/').pop()
|
||||
output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
|
||||
if not os.path.exists(output_file):
|
||||
print(f"Downloading {url} to {output_file}")
|
||||
wget.download(url, out=output_file)
|
||||
print(f"Done downloading to {output_file}")
|
||||
else:
|
||||
print(f"File already exists at {output_file}")
|
||||
return output_file
|
||||
|
||||
|
||||
def is_slow_test_allowed():
|
||||
return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue