diff --git a/.clang-format b/.clang-format new file mode 100644 index 000000000..45232b80e --- /dev/null +++ b/.clang-format @@ -0,0 +1,161 @@ +--- +Language: Cpp +AlignAfterOpenBracket: Align +AlignArrayOfStructures: Left +AlignConsecutiveAssignments: AcrossComments +AlignConsecutiveBitFields: AcrossComments +AlignConsecutiveDeclarations: AcrossComments +AlignConsecutiveMacros: AcrossComments +# AlignConsecutiveShortCaseStatements: AcrossComments +AlignEscapedNewlines: Left # LeftWithLastLine +AlignOperands: Align +AlignTrailingComments: + Kind: Always + OverEmptyLines: 1 +AllowAllArgumentsOnNextLine: true +AllowAllParametersOfDeclarationOnNextLine: false +# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen +AllowShortBlocksOnASingleLine: Never +AllowShortCaseLabelsOnASingleLine: false +AllowShortFunctionsOnASingleLine: Inline +AllowShortIfStatementsOnASingleLine: Never +AllowShortLambdasOnASingleLine: Inline +AllowShortLoopsOnASingleLine: false +AlwaysBreakBeforeMultilineStrings: true +BinPackArguments: true +BinPackParameters: true # OnePerLine +BitFieldColonSpacing: Both +BreakBeforeBraces: Custom # Attach +BraceWrapping: + AfterCaseLabel: true + AfterClass: false + AfterControlStatement: false + AfterEnum: false + AfterFunction: false + AfterNamespace: false + AfterObjCDeclaration: false + AfterStruct: false + AfterUnion: false + AfterExternBlock: false + BeforeCatch: false + BeforeElse: false + BeforeLambdaBody: false + BeforeWhile: false + IndentBraces: false + SplitEmptyFunction: false + SplitEmptyRecord: false + SplitEmptyNamespace: false +# BreakAdjacentStringLiterals: true +BreakAfterAttributes: Never +BreakBeforeBinaryOperators: None +BreakBeforeInlineASMColon: OnlyMultiline +BreakBeforeTernaryOperators: false +# BreakBinaryOperations: Never +BreakConstructorInitializers: AfterColon +# BreakFunctionDefinitionParameters: false +BreakInheritanceList: AfterComma +BreakStringLiterals: true +# BreakTemplateDeclarations: Yes +ColumnLimit: 120 +CommentPragmas: '^ IWYU pragma:' +CompactNamespaces: false +ConstructorInitializerIndentWidth: 4 +ContinuationIndentWidth: 4 +Cpp11BracedListStyle: false +DerivePointerAlignment: false +DisableFormat: false +EmptyLineBeforeAccessModifier: Leave +EmptyLineAfterAccessModifier: Never +ExperimentalAutoDetectBinPacking: false +FixNamespaceComments: true +IncludeBlocks: Regroup +IncludeCategories: + - Regex: '^<.*\.h>' + Priority: 1 + SortPriority: 0 + - Regex: '^<.*' + Priority: 2 + SortPriority: 0 + - Regex: '.*' + Priority: 3 + SortPriority: 0 +IncludeIsMainRegex: '([-_](test|unittest))?$' +IncludeIsMainSourceRegex: '' +IndentAccessModifiers: false +IndentCaseBlocks: true +IndentCaseLabels: true +IndentExternBlock: NoIndent +IndentGotoLabels: false +IndentPPDirectives: AfterHash +IndentWidth: 4 +IndentWrappedFunctionNames: false +InsertBraces: true # NOTE: may lead to incorrect formatting +InsertNewlineAtEOF: true +JavaScriptQuotes: Leave +JavaScriptWrapImports: true +KeepEmptyLinesAtTheStartOfBlocks: false +LambdaBodyIndentation: Signature +LineEnding: LF +MacroBlockBegin: '' +MacroBlockEnd: '' +MaxEmptyLinesToKeep: 1 +NamespaceIndentation: None +ObjCBinPackProtocolList: Auto +ObjCBlockIndentWidth: 4 +ObjCSpaceAfterProperty: true +ObjCSpaceBeforeProtocolList: true +PPIndentWidth: -1 +PackConstructorInitializers: CurrentLine +PenaltyBreakAssignment: 2 +PenaltyBreakBeforeFirstCallParameter: 1 +PenaltyBreakComment: 300 +PenaltyBreakFirstLessLess: 120 +PenaltyBreakString: 1000 +PenaltyBreakTemplateDeclaration: 10 +PenaltyExcessCharacter: 1000000 +PenaltyReturnTypeOnItsOwnLine: 200 +PointerAlignment: Middle +QualifierAlignment: Left +#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict'] +RawStringFormats: + - Language: Cpp + Delimiters: + - cc + - CC + - cpp + - Cpp + - CPP + - 'c++' + - 'C++' + CanonicalDelimiter: '' +ReferenceAlignment: Middle +ReflowComments: false # IndentOnly +SeparateDefinitionBlocks: Always +SortIncludes: CaseInsensitive +SortUsingDeclarations: LexicographicNumeric +SpaceAfterCStyleCast: true +SpaceAfterLogicalNot: false +SpaceAfterTemplateKeyword: true +SpaceBeforeAssignmentOperators: true +SpaceBeforeCpp11BracedList: false +SpaceBeforeCtorInitializerColon: true +SpaceBeforeInheritanceColon: true +SpaceBeforeParens: ControlStatements +SpaceBeforeRangeBasedForLoopColon: true +SpaceInEmptyBlock: false +SpaceInEmptyParentheses: false +SpacesBeforeTrailingComments: 2 +SpacesInAngles: Never +SpacesInContainerLiterals: true +SpacesInLineCommentPrefix: + Minimum: 1 + Maximum: -1 +SpacesInParentheses: false +SpacesInSquareBrackets: false +SpaceBeforeSquareBrackets: false +Standard: c++17 +TabWidth: 4 +UseTab: Never +WhitespaceSensitiveMacros: ['STRINGIZE'] +... + diff --git a/Makefile b/Makefile index 95110d4eb..5c8994385 100644 --- a/Makefile +++ b/Makefile @@ -730,10 +730,10 @@ GLSLC_CMD = glslc _ggml_vk_genshaders_cmd = $(shell pwd)/vulkan-shaders-gen _ggml_vk_header = ggml/src/ggml-vulkan-shaders.hpp _ggml_vk_source = ggml/src/ggml-vulkan-shaders.cpp -_ggml_vk_input_dir = ggml/src/vulkan-shaders +_ggml_vk_input_dir = ggml/src/ggml-vulkan/vulkan-shaders _ggml_vk_shader_deps = $(echo $(_ggml_vk_input_dir)/*.comp) -ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source) +ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source) $(CXX) $(CXXFLAGS) $(shell pkg-config --cflags vulkan) -c $< -o $@ $(_ggml_vk_header): $(_ggml_vk_source) @@ -745,8 +745,8 @@ $(_ggml_vk_source): $(_ggml_vk_shader_deps) vulkan-shaders-gen --target-hpp $(_ggml_vk_header) \ --target-cpp $(_ggml_vk_source) -vulkan-shaders-gen: ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp - $(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +vulkan-shaders-gen: ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp + $(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp endif # GGML_VULKAN diff --git a/docs/backend/SYCL.md b/docs/backend/SYCL.md index e431f51f1..8d8312e91 100644 --- a/docs/backend/SYCL.md +++ b/docs/backend/SYCL.md @@ -34,9 +34,10 @@ The SYCL backend would be broken by some PRs due to no online CI. The following release is verified with good quality: -|Commit ID|Tag|Release|Verified Platform| -|-|-|-|-| -|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1
MTL Arc GPU/Windows 11/oneAPI 2024.1| +|Commit ID|Tag|Release|Verified Platform| Update date| +|-|-|-|-|-| +|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1
MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19| +|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1
MTL Arc GPU/Windows 11/oneAPI 2024.1|| ## News diff --git a/examples/llama-bench/llama-bench.cpp b/examples/llama-bench/llama-bench.cpp index 8f4e0e206..3dc84a75c 100644 --- a/examples/llama-bench/llama-bench.cpp +++ b/examples/llama-bench/llama-bench.cpp @@ -6,28 +6,28 @@ #include #include #include +#include #include #include -#include #include #include #include #include #include #include -#include #include +#include +#include "common.h" #include "ggml.h" #include "llama.h" -#include "common.h" #ifdef _WIN32 -#define WIN32_LEAN_AND_MEAN -#ifndef NOMINMAX -# define NOMINMAX -#endif -#include +# define WIN32_LEAN_AND_MEAN +# ifndef NOMINMAX +# define NOMINMAX +# endif +# include #endif // utils @@ -36,8 +36,7 @@ static uint64_t get_time_ns() { return std::chrono::nanoseconds(clock::now().time_since_epoch()).count(); } -template -static std::string join(const std::vector & values, const std::string & delim) { +template static std::string join(const std::vector & values, const std::string & delim) { std::ostringstream str; for (size_t i = 0; i < values.size(); i++) { str << values[i]; @@ -48,38 +47,35 @@ static std::string join(const std::vector & values, const std::string & delim return str.str(); } -template -static std::vector transform_to_str(const std::vector & values, F f) { +template static std::vector transform_to_str(const std::vector & values, F f) { std::vector str_values; std::transform(values.begin(), values.end(), std::back_inserter(str_values), f); return str_values; } -template -static T avg(const std::vector & v) { +template static T avg(const std::vector & v) { if (v.empty()) { return 0; } T sum = std::accumulate(v.begin(), v.end(), T(0)); - return sum / (T)v.size(); + return sum / (T) v.size(); } -template -static T stdev(const std::vector & v) { +template static T stdev(const std::vector & v) { if (v.size() <= 1) { return 0; } - T mean = avg(v); + T mean = avg(v); T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0)); - T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1)); + T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1)); return stdev; } static std::string get_cpu_info() { std::vector cpu_list; for (size_t i = 0; i < ggml_backend_dev_count(); i++) { - auto * dev = ggml_backend_dev_get(i); - auto dev_type = ggml_backend_dev_type(dev); + auto * dev = ggml_backend_dev_get(i); + auto dev_type = ggml_backend_dev_type(dev); if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) { cpu_list.push_back(ggml_backend_dev_description(dev)); } @@ -90,8 +86,8 @@ static std::string get_cpu_info() { static std::string get_gpu_info() { std::vector gpu_list; for (size_t i = 0; i < ggml_backend_dev_count(); i++) { - auto * dev = ggml_backend_dev_get(i); - auto dev_type = ggml_backend_dev_type(dev); + auto * dev = ggml_backend_dev_get(i); + auto dev_type = ggml_backend_dev_type(dev); if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) { gpu_list.push_back(ggml_backend_dev_description(dev)); } @@ -100,17 +96,24 @@ static std::string get_gpu_info() { } // command line params -enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL}; +enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL }; static const char * output_format_str(output_formats format) { switch (format) { - case NONE: return "none"; - case CSV: return "csv"; - case JSON: return "json"; - case JSONL: return "jsonl"; - case MARKDOWN: return "md"; - case SQL: return "sql"; - default: GGML_ABORT("invalid output format"); + case NONE: + return "none"; + case CSV: + return "csv"; + case JSON: + return "json"; + case JSONL: + return "jsonl"; + case MARKDOWN: + return "md"; + case SQL: + return "sql"; + default: + GGML_ABORT("invalid output format"); } } @@ -135,10 +138,14 @@ static bool output_format_from_str(const std::string & s, output_formats & forma static const char * split_mode_str(llama_split_mode mode) { switch (mode) { - case LLAMA_SPLIT_MODE_NONE: return "none"; - case LLAMA_SPLIT_MODE_LAYER: return "layer"; - case LLAMA_SPLIT_MODE_ROW: return "row"; - default: GGML_ABORT("invalid split mode"); + case LLAMA_SPLIT_MODE_NONE: + return "none"; + case LLAMA_SPLIT_MODE_LAYER: + return "layer"; + case LLAMA_SPLIT_MODE_ROW: + return "row"; + default: + GGML_ABORT("invalid split mode"); } } @@ -149,59 +156,59 @@ static std::string pair_str(const std::pair & p) { } struct cmd_params { - std::vector model; - std::vector n_prompt; - std::vector n_gen; + std::vector model; + std::vector n_prompt; + std::vector n_gen; std::vector> n_pg; - std::vector n_batch; - std::vector n_ubatch; - std::vector type_k; - std::vector type_v; - std::vector n_threads; - std::vector cpu_mask; - std::vector cpu_strict; - std::vector poll; - std::vector n_gpu_layers; - std::vector rpc_servers; - std::vector split_mode; - std::vector main_gpu; - std::vector no_kv_offload; - std::vector flash_attn; - std::vector> tensor_split; - std::vector use_mmap; - std::vector embeddings; - ggml_numa_strategy numa; - int reps; - ggml_sched_priority prio; - int delay; - bool verbose; - bool progress; - output_formats output_format; - output_formats output_format_stderr; + std::vector n_batch; + std::vector n_ubatch; + std::vector type_k; + std::vector type_v; + std::vector n_threads; + std::vector cpu_mask; + std::vector cpu_strict; + std::vector poll; + std::vector n_gpu_layers; + std::vector rpc_servers; + std::vector split_mode; + std::vector main_gpu; + std::vector no_kv_offload; + std::vector flash_attn; + std::vector> tensor_split; + std::vector use_mmap; + std::vector embeddings; + ggml_numa_strategy numa; + int reps; + ggml_sched_priority prio; + int delay; + bool verbose; + bool progress; + output_formats output_format; + output_formats output_format_stderr; }; static const cmd_params cmd_params_defaults = { - /* model */ {"models/7B/ggml-model-q4_0.gguf"}, - /* n_prompt */ {512}, - /* n_gen */ {128}, + /* model */ { "models/7B/ggml-model-q4_0.gguf" }, + /* n_prompt */ { 512 }, + /* n_gen */ { 128 }, /* n_pg */ {}, - /* n_batch */ {2048}, - /* n_ubatch */ {512}, - /* type_k */ {GGML_TYPE_F16}, - /* type_v */ {GGML_TYPE_F16}, - /* n_threads */ {cpu_get_num_math()}, - /* cpu_mask */ {"0x0"}, - /* cpu_strict */ {false}, - /* poll */ {50}, - /* n_gpu_layers */ {99}, - /* rpc_servers */ {""}, - /* split_mode */ {LLAMA_SPLIT_MODE_LAYER}, - /* main_gpu */ {0}, - /* no_kv_offload */ {false}, - /* flash_attn */ {false}, - /* tensor_split */ {std::vector(llama_max_devices(), 0.0f)}, - /* use_mmap */ {true}, - /* embeddings */ {false}, + /* n_batch */ { 2048 }, + /* n_ubatch */ { 512 }, + /* type_k */ { GGML_TYPE_F16 }, + /* type_v */ { GGML_TYPE_F16 }, + /* n_threads */ { cpu_get_num_math() }, + /* cpu_mask */ { "0x0" }, + /* cpu_strict */ { false }, + /* poll */ { 50 }, + /* n_gpu_layers */ { 99 }, + /* rpc_servers */ { "" }, + /* split_mode */ { LLAMA_SPLIT_MODE_LAYER }, + /* main_gpu */ { 0 }, + /* no_kv_offload */ { false }, + /* flash_attn */ { false }, + /* tensor_split */ { std::vector(llama_max_devices(), 0.0f) }, + /* use_mmap */ { true }, + /* embeddings */ { false }, /* numa */ GGML_NUMA_STRATEGY_DISABLED, /* reps */ 5, /* prio */ GGML_SCHED_PRIO_NORMAL, @@ -218,38 +225,59 @@ static void print_usage(int /* argc */, char ** argv) { printf("options:\n"); printf(" -h, --help\n"); printf(" -m, --model (default: %s)\n", join(cmd_params_defaults.model, ",").c_str()); - printf(" -p, --n-prompt (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str()); + printf(" -p, --n-prompt (default: %s)\n", + join(cmd_params_defaults.n_prompt, ",").c_str()); printf(" -n, --n-gen (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str()); - printf(" -pg (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str()); - printf(" -b, --batch-size (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str()); - printf(" -ub, --ubatch-size (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str()); - printf(" -ctk, --cache-type-k (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str()); - printf(" -ctv, --cache-type-v (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); - printf(" -t, --threads (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str()); - printf(" -C, --cpu-mask (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str()); - printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str()); + printf(" -pg (default: %s)\n", + join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str()); + printf(" -b, --batch-size (default: %s)\n", + join(cmd_params_defaults.n_batch, ",").c_str()); + printf(" -ub, --ubatch-size (default: %s)\n", + join(cmd_params_defaults.n_ubatch, ",").c_str()); + printf(" -ctk, --cache-type-k (default: %s)\n", + join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str()); + printf(" -ctv, --cache-type-v (default: %s)\n", + join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str()); + printf(" -t, --threads (default: %s)\n", + join(cmd_params_defaults.n_threads, ",").c_str()); + printf(" -C, --cpu-mask (default: %s)\n", + join(cmd_params_defaults.cpu_mask, ",").c_str()); + printf(" --cpu-strict <0|1> (default: %s)\n", + join(cmd_params_defaults.cpu_strict, ",").c_str()); printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str()); - printf(" -ngl, --n-gpu-layers (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str()); + printf(" -ngl, --n-gpu-layers (default: %s)\n", + join(cmd_params_defaults.n_gpu_layers, ",").c_str()); if (llama_supports_rpc()) { - printf(" -rpc, --rpc (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str()); + printf(" -rpc, --rpc (default: %s)\n", + join(cmd_params_defaults.rpc_servers, ",").c_str()); } - printf(" -sm, --split-mode (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); - printf(" -mg, --main-gpu (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str()); - printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str()); - printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str()); - printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str()); + printf(" -sm, --split-mode (default: %s)\n", + join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str()); + printf(" -mg, --main-gpu (default: %s)\n", + join(cmd_params_defaults.main_gpu, ",").c_str()); + printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", + join(cmd_params_defaults.no_kv_offload, ",").c_str()); + printf(" -fa, --flash-attn <0|1> (default: %s)\n", + join(cmd_params_defaults.flash_attn, ",").c_str()); + printf(" -mmp, --mmap <0|1> (default: %s)\n", + join(cmd_params_defaults.use_mmap, ",").c_str()); printf(" --numa (default: disabled)\n"); - printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str()); + printf(" -embd, --embeddings <0|1> (default: %s)\n", + join(cmd_params_defaults.embeddings, ",").c_str()); printf(" -ts, --tensor-split (default: 0)\n"); printf(" -r, --repetitions (default: %d)\n", cmd_params_defaults.reps); printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio); printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay); - printf(" -o, --output (default: %s)\n", output_format_str(cmd_params_defaults.output_format)); - printf(" -oe, --output-err (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr)); + printf(" -o, --output (default: %s)\n", + output_format_str(cmd_params_defaults.output_format)); + printf(" -oe, --output-err (default: %s)\n", + output_format_str(cmd_params_defaults.output_format_stderr)); printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0"); printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0"); printf("\n"); - printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n"); + printf( + "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter " + "multiple times.\n"); } static ggml_type ggml_type_from_name(const std::string & s) { @@ -281,22 +309,21 @@ static ggml_type ggml_type_from_name(const std::string & s) { return GGML_TYPE_COUNT; } - static cmd_params parse_cmd_params(int argc, char ** argv) { - cmd_params params; - std::string arg; - bool invalid_param = false; - const std::string arg_prefix = "--"; - const char split_delim = ','; + cmd_params params; + std::string arg; + bool invalid_param = false; + const std::string arg_prefix = "--"; + const char split_delim = ','; - params.verbose = cmd_params_defaults.verbose; - params.output_format = cmd_params_defaults.output_format; + params.verbose = cmd_params_defaults.verbose; + params.output_format = cmd_params_defaults.output_format; params.output_format_stderr = cmd_params_defaults.output_format_stderr; - params.reps = cmd_params_defaults.reps; - params.numa = cmd_params_defaults.numa; - params.prio = cmd_params_defaults.prio; - params.delay = cmd_params_defaults.delay; - params.progress = cmd_params_defaults.progress; + params.reps = cmd_params_defaults.reps; + params.numa = cmd_params_defaults.numa; + params.prio = cmd_params_defaults.prio; + params.delay = cmd_params_defaults.delay; + params.progress = cmd_params_defaults.progress; for (int i = 1; i < argc; i++) { arg = argv[i]; @@ -338,7 +365,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])}); + params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) }); } else if (arg == "-b" || arg == "--batch-size") { if (++i >= argc) { invalid_param = true; @@ -358,7 +385,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = string_split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); std::vector types; for (const auto & t : p) { ggml_type gt = ggml_type_from_name(t); @@ -377,7 +404,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = string_split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); std::vector types; for (const auto & t : p) { ggml_type gt = ggml_type_from_name(t); @@ -437,7 +464,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { invalid_param = true; break; } - auto p = string_split(argv[i], split_delim); + auto p = string_split(argv[i], split_delim); std::vector modes; for (const auto & m : p) { llama_split_mode mode; @@ -476,10 +503,16 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { break; } else { std::string value(argv[i]); - /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; } - else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; } - else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; } - else { invalid_param = true; break; } + /**/ if (value == "distribute" || value == "") { + params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; + } else if (value == "isolate") { + params.numa = GGML_NUMA_STRATEGY_ISOLATE; + } else if (value == "numactl") { + params.numa = GGML_NUMA_STRATEGY_NUMACTL; + } else { + invalid_param = true; + break; + } } } else if (arg == "-fa" || arg == "--flash-attn") { if (++i >= argc) { @@ -509,9 +542,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { } for (auto ts : string_split(argv[i], split_delim)) { // split string by ; and / - const std::regex regex{R"([;/]+)"}; - std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1}; - std::vector split_arg{it, {}}; + const std::regex regex{ R"([;/]+)" }; + std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 }; + std::vector split_arg{ it, {} }; GGML_ASSERT(split_arg.size() <= llama_max_devices()); std::vector tensor_split(llama_max_devices()); @@ -570,52 +603,94 @@ static cmd_params parse_cmd_params(int argc, char ** argv) { } // set defaults - if (params.model.empty()) { params.model = cmd_params_defaults.model; } - if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; } - if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; } - if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; } - if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; } - if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; } - if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; } - if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; } - if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; } - if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; } - if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; } - if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; } - if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; } - if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; } - if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; } - if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; } - if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; } - if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; } - if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; } - if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; } - if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; } + if (params.model.empty()) { + params.model = cmd_params_defaults.model; + } + if (params.n_prompt.empty()) { + params.n_prompt = cmd_params_defaults.n_prompt; + } + if (params.n_gen.empty()) { + params.n_gen = cmd_params_defaults.n_gen; + } + if (params.n_pg.empty()) { + params.n_pg = cmd_params_defaults.n_pg; + } + if (params.n_batch.empty()) { + params.n_batch = cmd_params_defaults.n_batch; + } + if (params.n_ubatch.empty()) { + params.n_ubatch = cmd_params_defaults.n_ubatch; + } + if (params.type_k.empty()) { + params.type_k = cmd_params_defaults.type_k; + } + if (params.type_v.empty()) { + params.type_v = cmd_params_defaults.type_v; + } + if (params.n_gpu_layers.empty()) { + params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; + } + if (params.rpc_servers.empty()) { + params.rpc_servers = cmd_params_defaults.rpc_servers; + } + if (params.split_mode.empty()) { + params.split_mode = cmd_params_defaults.split_mode; + } + if (params.main_gpu.empty()) { + params.main_gpu = cmd_params_defaults.main_gpu; + } + if (params.no_kv_offload.empty()) { + params.no_kv_offload = cmd_params_defaults.no_kv_offload; + } + if (params.flash_attn.empty()) { + params.flash_attn = cmd_params_defaults.flash_attn; + } + if (params.tensor_split.empty()) { + params.tensor_split = cmd_params_defaults.tensor_split; + } + if (params.use_mmap.empty()) { + params.use_mmap = cmd_params_defaults.use_mmap; + } + if (params.embeddings.empty()) { + params.embeddings = cmd_params_defaults.embeddings; + } + if (params.n_threads.empty()) { + params.n_threads = cmd_params_defaults.n_threads; + } + if (params.cpu_mask.empty()) { + params.cpu_mask = cmd_params_defaults.cpu_mask; + } + if (params.cpu_strict.empty()) { + params.cpu_strict = cmd_params_defaults.cpu_strict; + } + if (params.poll.empty()) { + params.poll = cmd_params_defaults.poll; + } return params; } struct cmd_params_instance { - std::string model; - int n_prompt; - int n_gen; - int n_batch; - int n_ubatch; - ggml_type type_k; - ggml_type type_v; - int n_threads; - std::string cpu_mask; - bool cpu_strict; - int poll; - int n_gpu_layers; - std::string rpc_servers; - llama_split_mode split_mode; - int main_gpu; - bool no_kv_offload; - bool flash_attn; + std::string model; + int n_prompt; + int n_gen; + int n_batch; + int n_ubatch; + ggml_type type_k; + ggml_type type_v; + int n_threads; + std::string cpu_mask; + bool cpu_strict; + int poll; + int n_gpu_layers; + std::string rpc_servers; + llama_split_mode split_mode; + int main_gpu; + bool no_kv_offload; + bool flash_attn; std::vector tensor_split; - bool use_mmap; - bool embeddings; + bool use_mmap; + bool embeddings; llama_model_params to_llama_mparams() const { llama_model_params mparams = llama_model_default_params(); @@ -624,35 +699,31 @@ struct cmd_params_instance { if (!rpc_servers.empty()) { mparams.rpc_servers = rpc_servers.c_str(); } - mparams.split_mode = split_mode; - mparams.main_gpu = main_gpu; + mparams.split_mode = split_mode; + mparams.main_gpu = main_gpu; mparams.tensor_split = tensor_split.data(); - mparams.use_mmap = use_mmap; + mparams.use_mmap = use_mmap; return mparams; } bool equal_mparams(const cmd_params_instance & other) const { - return model == other.model && - n_gpu_layers == other.n_gpu_layers && - rpc_servers == other.rpc_servers && - split_mode == other.split_mode && - main_gpu == other.main_gpu && - use_mmap == other.use_mmap && + return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers && + split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap && tensor_split == other.tensor_split; } llama_context_params to_llama_cparams() const { llama_context_params cparams = llama_context_default_params(); - cparams.n_ctx = n_prompt + n_gen; - cparams.n_batch = n_batch; - cparams.n_ubatch = n_ubatch; - cparams.type_k = type_k; - cparams.type_v = type_v; + cparams.n_ctx = n_prompt + n_gen; + cparams.n_batch = n_batch; + cparams.n_ubatch = n_ubatch; + cparams.type_k = type_k; + cparams.type_v = type_v; cparams.offload_kqv = !no_kv_offload; - cparams.flash_attn = flash_attn; - cparams.embeddings = embeddings; + cparams.flash_attn = flash_attn; + cparams.embeddings = embeddings; return cparams; } @@ -662,6 +733,7 @@ static std::vector get_cmd_params_instances(const cmd_param std::vector instances; // this ordering minimizes the number of times that each model needs to be reloaded + // clang-format off for (const auto & m : params.model) for (const auto & nl : params.n_gpu_layers) for (const auto & rpc : params.rpc_servers) @@ -767,100 +839,94 @@ static std::vector get_cmd_params_instances(const cmd_param instances.push_back(instance); } } + // clang-format on return instances; } struct test { static const std::string build_commit; - static const int build_number; + static const int build_number; static const std::string cpu_info; static const std::string gpu_info; - std::string model_filename; - std::string model_type; - uint64_t model_size; - uint64_t model_n_params; - int n_batch; - int n_ubatch; - int n_threads; - std::string cpu_mask; - bool cpu_strict; - int poll; - ggml_type type_k; - ggml_type type_v; - int n_gpu_layers; - llama_split_mode split_mode; - int main_gpu; - bool no_kv_offload; - bool flash_attn; - std::vector tensor_split; - bool use_mmap; - bool embeddings; - int n_prompt; - int n_gen; - std::string test_time; - std::vector samples_ns; + std::string model_filename; + std::string model_type; + uint64_t model_size; + uint64_t model_n_params; + int n_batch; + int n_ubatch; + int n_threads; + std::string cpu_mask; + bool cpu_strict; + int poll; + ggml_type type_k; + ggml_type type_v; + int n_gpu_layers; + llama_split_mode split_mode; + int main_gpu; + bool no_kv_offload; + bool flash_attn; + std::vector tensor_split; + bool use_mmap; + bool embeddings; + int n_prompt; + int n_gen; + std::string test_time; + std::vector samples_ns; test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) { model_filename = inst.model; char buf[128]; llama_model_desc(lmodel, buf, sizeof(buf)); - model_type = buf; - model_size = llama_model_size(lmodel); + model_type = buf; + model_size = llama_model_size(lmodel); model_n_params = llama_model_n_params(lmodel); - n_batch = inst.n_batch; - n_ubatch = inst.n_ubatch; - n_threads = inst.n_threads; - cpu_mask = inst.cpu_mask; - cpu_strict = inst.cpu_strict; - poll = inst.poll; - type_k = inst.type_k; - type_v = inst.type_v; - n_gpu_layers = inst.n_gpu_layers; - split_mode = inst.split_mode; - main_gpu = inst.main_gpu; - no_kv_offload = inst.no_kv_offload; - flash_attn = inst.flash_attn; - tensor_split = inst.tensor_split; - use_mmap = inst.use_mmap; - embeddings = inst.embeddings; - n_prompt = inst.n_prompt; - n_gen = inst.n_gen; + n_batch = inst.n_batch; + n_ubatch = inst.n_ubatch; + n_threads = inst.n_threads; + cpu_mask = inst.cpu_mask; + cpu_strict = inst.cpu_strict; + poll = inst.poll; + type_k = inst.type_k; + type_v = inst.type_v; + n_gpu_layers = inst.n_gpu_layers; + split_mode = inst.split_mode; + main_gpu = inst.main_gpu; + no_kv_offload = inst.no_kv_offload; + flash_attn = inst.flash_attn; + tensor_split = inst.tensor_split; + use_mmap = inst.use_mmap; + embeddings = inst.embeddings; + n_prompt = inst.n_prompt; + n_gen = inst.n_gen; // RFC 3339 date-time format - time_t t = time(NULL); + time_t t = time(NULL); std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t)); test_time = buf; (void) ctx; } - uint64_t avg_ns() const { - return ::avg(samples_ns); - } + uint64_t avg_ns() const { return ::avg(samples_ns); } - uint64_t stdev_ns() const { - return ::stdev(samples_ns); - } + uint64_t stdev_ns() const { return ::stdev(samples_ns); } std::vector get_ts() const { - int n_tokens = n_prompt + n_gen; + int n_tokens = n_prompt + n_gen; std::vector ts; - std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; }); + std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), + [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; }); return ts; } - double avg_ts() const { - return ::avg(get_ts()); - } + double avg_ts() const { return ::avg(get_ts()); } - double stdev_ts() const { - return ::stdev(get_ts()); - } + double stdev_ts() const { return ::stdev(get_ts()); } static std::string get_backend() { std::vector backends; for (size_t i = 0; i < ggml_backend_reg_count(); i++) { - auto * reg = ggml_backend_reg_get(i); + auto * reg = ggml_backend_reg_get(i); std::string name = ggml_backend_reg_name(reg); if (name != "CPU") { backends.push_back(ggml_backend_reg_name(reg)); @@ -871,36 +937,27 @@ struct test { static const std::vector & get_fields() { static const std::vector fields = { - "build_commit", "build_number", - "cpu_info", "gpu_info", "backends", - "model_filename", "model_type", "model_size", "model_n_params", - "n_batch", "n_ubatch", - "n_threads", "cpu_mask", "cpu_strict", "poll", - "type_k", "type_v", - "n_gpu_layers", "split_mode", - "main_gpu", "no_kv_offload", "flash_attn", - "tensor_split", "use_mmap", "embeddings", - "n_prompt", "n_gen", "test_time", - "avg_ns", "stddev_ns", - "avg_ts", "stddev_ts", + "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename", + "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads", + "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers", + "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap", + "embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns", + "avg_ts", "stddev_ts", }; return fields; } - enum field_type {STRING, BOOL, INT, FLOAT}; + enum field_type { STRING, BOOL, INT, FLOAT }; static field_type get_field_type(const std::string & field) { - if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || - field == "n_threads" || field == "poll" || - field == "model_size" || field == "model_n_params" || - field == "n_gpu_layers" || field == "main_gpu" || - field == "n_prompt" || field == "n_gen" || - field == "avg_ns" || field == "stddev_ns") { + if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" || + field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" || + field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" || + field == "stddev_ns") { return INT; } - if (field == "f16_kv" || field == "no_kv_offload" || - field == "cpu_strict" || - field == "flash_attn" || field == "use_mmap" || field == "embeddings") { + if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" || + field == "use_mmap" || field == "embeddings") { return BOOL; } if (field == "avg_ts" || field == "stddev_ts") { @@ -911,7 +968,7 @@ struct test { std::vector get_values() const { std::string tensor_split_str; - int max_nonzero = 0; + int max_nonzero = 0; for (size_t i = 0; i < llama_max_devices(); i++) { if (tensor_split[i] > 0) { max_nonzero = i; @@ -925,29 +982,47 @@ struct test { tensor_split_str += "/"; } } - std::vector values = { - build_commit, std::to_string(build_number), - cpu_info, gpu_info, get_backend(), - model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params), - std::to_string(n_batch), std::to_string(n_ubatch), - std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll), - ggml_type_name(type_k), ggml_type_name(type_v), - std::to_string(n_gpu_layers), split_mode_str(split_mode), - std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn), - tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings), - std::to_string(n_prompt), std::to_string(n_gen), test_time, - std::to_string(avg_ns()), std::to_string(stdev_ns()), - std::to_string(avg_ts()), std::to_string(stdev_ts()) - }; + std::vector values = { build_commit, + std::to_string(build_number), + cpu_info, + gpu_info, + get_backend(), + model_filename, + model_type, + std::to_string(model_size), + std::to_string(model_n_params), + std::to_string(n_batch), + std::to_string(n_ubatch), + std::to_string(n_threads), + cpu_mask, + std::to_string(cpu_strict), + std::to_string(poll), + ggml_type_name(type_k), + ggml_type_name(type_v), + std::to_string(n_gpu_layers), + split_mode_str(split_mode), + std::to_string(main_gpu), + std::to_string(no_kv_offload), + std::to_string(flash_attn), + tensor_split_str, + std::to_string(use_mmap), + std::to_string(embeddings), + std::to_string(n_prompt), + std::to_string(n_gen), + test_time, + std::to_string(avg_ns()), + std::to_string(stdev_ns()), + std::to_string(avg_ts()), + std::to_string(stdev_ts()) }; return values; } std::map get_map() const { std::map map; - auto fields = get_fields(); - auto values = get_values(); - std::transform(fields.begin(), fields.end(), values.begin(), - std::inserter(map, map.end()), std::make_pair); + auto fields = get_fields(); + auto values = get_values(); + std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()), + std::make_pair); return map; } }; @@ -961,9 +1036,12 @@ struct printer { virtual ~printer() {} FILE * fout; + virtual void print_header(const cmd_params & params) { (void) params; } + virtual void print_test(const test & t) = 0; - virtual void print_footer() { } + + virtual void print_footer() {} }; struct csv_printer : public printer { @@ -979,7 +1057,7 @@ struct csv_printer : public printer { return escaped; } - void print_header(const cmd_params & params) override { + void print_header(const cmd_params & params) override { std::vector fields = test::get_fields(); fprintf(fout, "%s\n", join(fields, ",").c_str()); (void) params; @@ -992,7 +1070,6 @@ struct csv_printer : public printer { } }; - static std::string escape_json(const std::string & value) { std::string escaped; for (auto c : value) { @@ -1000,7 +1077,7 @@ static std::string escape_json(const std::string & value) { escaped += "\\\""; } else if (c == '\\') { escaped += "\\\\"; - } else if (c <= 0x1f) { + } else if (c <= 0x1f) { char buf[8]; snprintf(buf, sizeof(buf), "\\u%04x", c); escaped += buf; @@ -1033,7 +1110,8 @@ struct json_printer : public printer { void print_fields(const std::vector & fields, const std::vector & values) { assert(fields.size() == values.size()); for (size_t i = 0; i < fields.size(); i++) { - fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str()); + fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), + format_json_value(fields.at(i), values.at(i)).c_str()); } } @@ -1051,12 +1129,9 @@ struct json_printer : public printer { fflush(fout); } - void print_footer() override { - fprintf(fout, "\n]\n"); - } + void print_footer() override { fprintf(fout, "\n]\n"); } }; - struct jsonl_printer : public printer { void print_fields(const std::vector & fields, const std::vector & values) { assert(fields.size() == values.size()); @@ -1116,7 +1191,7 @@ struct markdown_printer : public printer { return 13; } - int width = std::max((int)field.length(), 10); + int width = std::max((int) field.length(), 10); if (test::get_field_type(field) == test::STRING) { return -width; @@ -1230,18 +1305,18 @@ struct markdown_printer : public printer { fprintf(fout, "|"); for (const auto & field : fields) { std::string value; - char buf[128]; + char buf[128]; if (field == "model") { value = t.model_type; } else if (field == "size") { - if (t.model_size < 1024*1024*1024) { + if (t.model_size < 1024 * 1024 * 1024) { snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0); } else { snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0); } value = buf; } else if (field == "params") { - if (t.model_n_params < 1000*1000*1000) { + if (t.model_n_params < 1000 * 1000 * 1000) { snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6); } else { snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9); @@ -1303,7 +1378,8 @@ struct sql_printer : public printer { std::vector fields = test::get_fields(); fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n"); for (size_t i = 0; i < fields.size(); i++) { - fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : ""); + fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), + i < fields.size() - 1 ? "," : ""); } fprintf(fout, ");\n"); fprintf(fout, "\n"); @@ -1324,8 +1400,8 @@ struct sql_printer : public printer { static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) { llama_set_n_threads(ctx, n_threads, n_threads); - const llama_model * model = llama_get_model(ctx); - const int32_t n_vocab = llama_n_vocab(model); + const llama_model * model = llama_get_model(ctx); + const int32_t n_vocab = llama_n_vocab(model); std::vector tokens(n_batch); @@ -1333,7 +1409,7 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th while (n_processed < n_prompt) { int n_tokens = std::min(n_prompt - n_processed, n_batch); - tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab; + tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab; for (int i = 1; i < n_tokens; i++) { tokens[i] = std::rand() % n_vocab; } @@ -1347,8 +1423,8 @@ static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_th static void test_gen(llama_context * ctx, int n_gen, int n_threads) { llama_set_n_threads(ctx, n_threads, n_threads); - const llama_model * model = llama_get_model(ctx); - const int32_t n_vocab = llama_n_vocab(model); + const llama_model * model = llama_get_model(ctx); + const int32_t n_vocab = llama_n_vocab(model); llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab; @@ -1411,7 +1487,7 @@ int main(int argc, char ** argv) { set_process_priority(params.prio); // initialize printer - std::unique_ptr p = create_printer(params.output_format); + std::unique_ptr p = create_printer(params.output_format); std::unique_ptr p_err = create_printer(params.output_format_stderr); if (p) { @@ -1426,13 +1502,13 @@ int main(int argc, char ** argv) { std::vector params_instances = get_cmd_params_instances(params); - llama_model * lmodel = nullptr; + llama_model * lmodel = nullptr; const cmd_params_instance * prev_inst = nullptr; - int params_idx = 0; + int params_idx = 0; auto params_count = params_instances.size(); for (const auto & inst : params_instances) { - params_idx ++; + params_idx++; if (params.progress) { fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count); } @@ -1475,7 +1551,7 @@ int main(int argc, char ** argv) { tpp.poll = t.poll; tpp.prio = params.prio; - struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp); + struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp); if (!threadpool) { fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads); exit(1); @@ -1505,13 +1581,15 @@ int main(int argc, char ** argv) { if (t.n_prompt > 0) { if (params.progress) { - fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps); + fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, + i + 1, params.reps); } test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads); } if (t.n_gen > 0) { if (params.progress) { - fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps); + fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, + i + 1, params.reps); } test_gen(ctx, t.n_gen, t.n_threads); } diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp index 21fee2f3d..ca71da2f7 100644 --- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp +++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp @@ -158,6 +158,7 @@ struct vk_device_struct { std::string name; uint64_t max_memory_allocation_size; bool fp16; + bool pipeline_robustness; vk::Device device; uint32_t vendor_id; vk_queue compute_queue; @@ -654,7 +655,7 @@ static uint32_t compile_count = 0; static std::mutex compile_count_mutex; static std::condition_variable compile_count_cond; -static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, std::vector specialization_constants, uint32_t align) { +static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, std::vector specialization_constants, uint32_t align, bool disable_robustness) { VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")"); GGML_ASSERT(parameter_count > 0); GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT @@ -724,6 +725,15 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin vk::PipelineCreateFlags(), pipeline_shader_create_info, pipeline->layout); + + vk::PipelineRobustnessCreateInfoEXT rci; + + if (device->pipeline_robustness && disable_robustness) { + rci.storageBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled; + rci.uniformBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled; + compute_pipeline_create_info.setPNext(&rci); + } + pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value; { @@ -1261,7 +1271,7 @@ static void ggml_vk_load_shaders(vk_device& device) { device->pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL] = std::make_shared(); std::vector> compiles; - auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, const std::vector& specialization_constants, uint32_t align) { + auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array wg_denoms, const std::vector& specialization_constants, uint32_t align, bool disable_robustness = false) { { // wait until fewer than N compiles are in progress uint32_t N = std::max(1u, std::thread::hardware_concurrency()); @@ -1271,7 +1281,7 @@ static void ggml_vk_load_shaders(vk_device& device) { } compile_count++; } - compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align)); + compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness)); }; if (device->fp16) { @@ -1370,45 +1380,45 @@ static void ggml_vk_load_shaders(vk_device& device) { // computing two rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0. ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1, true); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1); - ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true); + ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true); // dequant shaders ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1); @@ -1591,12 +1601,15 @@ static vk_device ggml_vk_get_device(size_t idx) { bool fp16_storage = false; bool fp16_compute = false; + bool pipeline_robustness = false; for (const auto& properties : ext_props) { if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) { fp16_storage = true; } else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) { fp16_compute = true; + } else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) { + pipeline_robustness = true; } } @@ -1642,10 +1655,22 @@ static vk_device ggml_vk_get_device(size_t idx) { vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES; vk11_features.pNext = &vk12_features; + VkPhysicalDevicePipelineRobustnessFeaturesEXT pl_robustness_features; + pl_robustness_features.pNext = nullptr; + pl_robustness_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT; + pl_robustness_features.pipelineRobustness = VK_FALSE; + + if (pipeline_robustness) { + vk12_features.pNext = &pl_robustness_features; + device_extensions.push_back("VK_EXT_pipeline_robustness"); + } + vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2); device->fp16 = device->fp16 && vk12_features.shaderFloat16; + device->pipeline_robustness = pl_robustness_features.pipelineRobustness; + if (!vk11_features.storageBuffer16BitAccess) { std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl; throw std::runtime_error("Unsupported device"); @@ -3190,7 +3215,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& if (ne01 > max_groups_x) { groups_z = 64; - groups_x /= groups_z; + groups_x = CEIL_DIV(groups_x, groups_z); } // compute @@ -3767,7 +3792,7 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte if (ne01 > max_groups_x) { groups_z = 64; - groups_x /= groups_z; + groups_x = CEIL_DIV(groups_x, groups_z); } // compute diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs.comp b/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs.comp index d5b989735..5fc1ba4ad 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs.comp @@ -2,6 +2,15 @@ #extension GL_EXT_shader_explicit_arithmetic_types_int8 : require #endif +#include "types.comp" + +#if defined(A_TYPE_PACKED16) +layout (binding = 0) readonly buffer A_PACKED16 {A_TYPE_PACKED16 data_a_packed16[];}; +#endif +#if defined(A_TYPE_PACKED32) +layout (binding = 0) readonly buffer A_PACKED32 {A_TYPE_PACKED32 data_a_packed32[];}; +#endif + #if defined(DATA_A_F32) vec2 dequantize(uint ib, uint iqs, uint a_offset) { return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]); @@ -20,6 +29,11 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) { const uint vui = uint(data_a[a_offset + ib].qs[iqs]); return (vec2(vui & 0xF, vui >> 4) - 8.0f) * d; } +vec4 dequantize4(uint ib, uint iqs, uint a_offset) { + const float d = float(data_a_packed16[a_offset + ib].d); + const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]); + return (vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, (vui >> 12) & 0xF) - 8.0f) * d; +} #endif #if defined(DATA_A_Q4_1) @@ -29,6 +43,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) { const uint vui = uint(data_a[a_offset + ib].qs[iqs]); return vec2(vui & 0xF, vui >> 4) * d + m; } +vec4 dequantize4(uint ib, uint iqs, uint a_offset) { + const float d = float(data_a_packed16[a_offset + ib].d); + const float m = float(data_a_packed16[a_offset + ib].m); + const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]); + return vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, (vui >> 12) & 0xF) * d + m; +} #endif #if defined(DATA_A_Q5_0) @@ -39,6 +59,14 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) { const uint vui = uint(data_a[a_offset + ib].qs[iqs]); return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d; } +vec4 dequantize4(uint ib, uint iqs, uint a_offset) { + const float d = float(data_a_packed16[a_offset + ib].d); + const uint uint_qh = uint(data_a_packed16[a_offset + ib].qh[1]) << 16 | data_a_packed16[a_offset + ib].qh[0]; + const ivec2 qh0 = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); + const ivec2 qh1 = ivec2(((uint_qh >> (iqs + 1)) << 4) & 0x10, (uint_qh >> (iqs + 13)) & 0x10); + const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]); + return (vec4(((vui >> 0) & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) - 16.0f) * d; +} #endif #if defined(DATA_A_Q5_1) @@ -50,6 +78,15 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) { const uint vui = uint(data_a[a_offset + ib].qs[iqs]); return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m; } +vec4 dequantize4(uint ib, uint iqs, uint a_offset) { + const float d = float(data_a_packed16[a_offset + ib].d); + const float m = float(data_a_packed16[a_offset + ib].m); + const uint uint_qh = data_a_packed16[a_offset + ib].qh; + const ivec2 qh0 = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10); + const ivec2 qh1 = ivec2(((uint_qh >> (iqs + 1)) << 4) & 0x10, (uint_qh >> (iqs + 13)) & 0x10); + const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]); + return vec4(((vui >> 0) & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) * d + m; +} #endif #if defined(DATA_A_Q8_0) @@ -57,6 +94,12 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) { const float d = float(data_a[a_offset + ib].d); return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1])) * d; } +vec4 dequantize4(uint ib, uint iqs, uint a_offset) { + const float d = float(data_a_packed16[a_offset + ib].d); + uint32_t v0 = data_a_packed16[a_offset + ib].qs[iqs/2]; + uint32_t v1 = data_a_packed16[a_offset + ib].qs[iqs/2 + 1]; + return vec4(int8_t(v0 & 0xFF), int8_t((v0 >> 8) & 0xFF), int8_t(v1 & 0xFF), int8_t((v1 >> 8) & 0xFF)) * d; +} #endif #if defined(DATA_A_IQ4_NL) @@ -65,4 +108,9 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) { const uint vui = uint(data_a[a_offset + ib].qs[iqs]); return vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]) * d; } +vec4 dequantize4(uint ib, uint iqs, uint a_offset) { + const float d = float(data_a_packed16[a_offset + ib].d); + const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]); + return vec4(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[(vui >> 4) & 0xF], kvalues_iq4nl[(vui >> 8) & 0xF], kvalues_iq4nl[(vui >> 12) & 0xF]) * d; +} #endif diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_nl.comp b/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_nl.comp index 34ef3da30..8de14fc03 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_nl.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_nl.comp @@ -10,6 +10,8 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];}; void main() { const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64; + init_iq4nl_shmem(); + const uint tid = gl_LocalInvocationID.x % 64; const uint il = tid/32; const uint ir = tid%32; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp index 8d30b63c1..7f608315b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp @@ -12,6 +12,10 @@ void main() { const uint i11 = (gl_GlobalInvocationID.z)/p.ne12; const uint i12 = (gl_GlobalInvocationID.z)%p.ne12; +#if defined(DATA_A_IQ4_NL) + init_iq4nl_shmem(); +#endif + if (i00 >= p.ne00) { return; } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp index 970aac6ef..2d5b8e466 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp @@ -3,7 +3,7 @@ #ifdef FLOAT16 #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #endif -#extension GL_EXT_shader_explicit_arithmetic_types_int32 : require +#extension GL_EXT_shader_explicit_arithmetic_types : require #include "mul_mat_vec_base.comp" @@ -12,16 +12,48 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in; layout (constant_id = 0) const uint BLOCK_SIZE = 32; layout (constant_id = 1) const uint NUM_ROWS = 1; +#if !defined(DATA_A_F32) && !defined(DATA_A_F16) +#define K_PER_ITER 8 +#else +#define K_PER_ITER 2 +#endif + + uint a_offset, b_offset, d_offset, y_offset; shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE]; void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter) { - const uint col = i*BLOCK_SIZE + 2*tid; + const uint col = i*BLOCK_SIZE + K_PER_ITER*tid; const uint iqs = (col%QUANT_K)/QUANT_R; // quant index const uint iybs = col - col%QUANT_K; // y block start index +#if K_PER_ITER == 8 +#if QUANT_R == 2 + B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4]; + B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4]; + FLOAT_TYPE b0 = FLOAT_TYPE(bv02.x); + FLOAT_TYPE b1 = FLOAT_TYPE(bv13.x); + FLOAT_TYPE b2 = FLOAT_TYPE(bv02.y); + FLOAT_TYPE b3 = FLOAT_TYPE(bv13.y); + FLOAT_TYPE b4 = FLOAT_TYPE(bv02.z); + FLOAT_TYPE b5 = FLOAT_TYPE(bv13.z); + FLOAT_TYPE b6 = FLOAT_TYPE(bv02.w); + FLOAT_TYPE b7 = FLOAT_TYPE(bv13.w); +#else + B_TYPE_VEC4 bv0 = data_b_v4[(b_offset + iybs + iqs) / 4]; + B_TYPE_VEC4 bv1 = data_b_v4[(b_offset + iybs + iqs) / 4 + 1]; + FLOAT_TYPE b0 = FLOAT_TYPE(bv0.x); + FLOAT_TYPE b1 = FLOAT_TYPE(bv0.y); + FLOAT_TYPE b2 = FLOAT_TYPE(bv0.z); + FLOAT_TYPE b3 = FLOAT_TYPE(bv0.w); + FLOAT_TYPE b4 = FLOAT_TYPE(bv1.x); + FLOAT_TYPE b5 = FLOAT_TYPE(bv1.y); + FLOAT_TYPE b6 = FLOAT_TYPE(bv1.z); + FLOAT_TYPE b7 = FLOAT_TYPE(bv1.w); +#endif +#else // Check if the second of the pair of elements is OOB, and don't fetch B or // accumulate it. We still fetch a pair of elements for A, which is fine for // quantized formats since they'll be within the same block. We should @@ -34,9 +66,24 @@ void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_ if (!OOB) { b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]); } +#endif [[unroll]] for (uint n = 0; n < num_rows; ++n) { const uint ib = ((first_row + n)*p.ncols + col)/QUANT_K; // block index +#if K_PER_ITER == 8 + const vec4 v = dequantize4(ib, iqs, a_offset); + const vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset); + + // matrix multiplication + temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]); + temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]); + temp[n] = fma(FLOAT_TYPE(v.z), b2, temp[n]); + temp[n] = fma(FLOAT_TYPE(v.w), b3, temp[n]); + temp[n] = fma(FLOAT_TYPE(v2.x), b4, temp[n]); + temp[n] = fma(FLOAT_TYPE(v2.y), b5, temp[n]); + temp[n] = fma(FLOAT_TYPE(v2.z), b6, temp[n]); + temp[n] = fma(FLOAT_TYPE(v2.w), b7, temp[n]); +#else const vec2 v = dequantize(ib, iqs, a_offset); // matrix multiplication @@ -44,6 +91,7 @@ void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_ if (!OOB) { temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]); } +#endif } } @@ -61,22 +109,33 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { temp[i] = FLOAT_TYPE(0); } - const int unroll_count = 8; - - const uint num_iters = (p.ncols >= 2*tid) ? ((p.ncols - 2*tid + BLOCK_SIZE - 1) / BLOCK_SIZE) : 0; - const uint unrolled_iters = num_iters & ~(2*unroll_count - 1); + uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE); + if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) { + num_iters++; + } + int unroll_count = 4; + uint unrolled_iters = num_iters & ~(unroll_count - 1); uint i = 0; while (i < unrolled_iters) { // Manually partially unroll the loop [[unroll]] for (uint k = 0; k < unroll_count; ++k) { - iter(temp, first_row, num_rows, tid, i, false); - i += 2; + iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false); + i++; + } + } + unroll_count = 2; + unrolled_iters = num_iters & ~(unroll_count - 1); + while (i < unrolled_iters) { + // Manually partially unroll the loop + [[unroll]] for (uint k = 0; k < unroll_count; ++k) { + iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false); + i++; } } while (i < num_iters) { - iter(temp, first_row, num_rows, tid, i, true); - i += 2; + iter(temp, first_row, num_rows, tid, i*K_PER_ITER, true); + i++; } // sum up partial sums and write back result @@ -102,10 +161,17 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) { void main() { const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z); +#if defined(DATA_A_IQ4_NL) + init_iq4nl_shmem(); +#endif + // do NUM_ROWS at a time, unless there aren't enough remaining rows if (first_row + NUM_ROWS <= p.stride_d) { compute_outputs(first_row, NUM_ROWS); } else { + if (first_row >= p.stride_d) { + return; + } compute_outputs(first_row, p.stride_d - first_row); } } diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp index 5920bc936..8d0a57913 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp @@ -12,6 +12,9 @@ layout (binding = 0) readonly buffer A {A_TYPE data_a[];}; layout (binding = 1) readonly buffer B {B_TYPE data_b[];}; +layout (binding = 1) readonly buffer BV2 {B_TYPE_VEC2 data_b_v2[];}; +layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; + layout (binding = 2) writeonly buffer D {D_TYPE data_d[];}; #ifdef MUL_MAT_ID layout (binding = 3) readonly buffer IDS {int data_ids[];}; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp index ec8eadcd5..e2625d32b 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp @@ -9,6 +9,10 @@ shared FLOAT_TYPE tmp[32]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; + if (row >= p.stride_d) { + return; + } + uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp index 3ca4ad85a..a28804533 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp @@ -9,6 +9,10 @@ shared FLOAT_TYPE tmp[32]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; + if (row >= p.stride_d) { + return; + } + uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp index b7c9b722d..5846f2e86 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp @@ -8,30 +8,14 @@ layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; shared FLOAT_TYPE tmp[32]; -// Declare aliased versions of A and B bindings that can use 16b/32b loads for -// the quantized values, and vec4 loads for B. -struct block_q4_K_u32 -{ - f16vec2 d; - uint32_t scales[3*QUANT_K/64/4]; - uint32_t qs[QUANT_K/2/4]; -}; - -struct block_q4_K_u16 -{ - f16vec2 d; - uint16_t scales[3*QUANT_K/64/2]; - uint16_t qs[QUANT_K/2/2]; -}; - -layout (binding = 0) readonly buffer A_u32 {block_q4_K_u32 data_a_u32[];}; -layout (binding = 0) readonly buffer A_u16 {block_q4_K_u16 data_a_u16[];}; -layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; - // This shader assumes K_QUANTS_PER_ITERATION == 2 for alignment of loads void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; + if (row >= p.stride_d) { + return; + } + uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); @@ -64,9 +48,9 @@ void main() { const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); - uint32_t scale0_u32 = data_a_u16[ib0 + i].scales[v_im ]; - uint32_t scale4_u32 = data_a_u16[ib0 + i].scales[v_im + 2]; - uint32_t scale8_u32 = data_a_u16[ib0 + i].scales[v_im + 4]; + uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; + uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; + uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; uvec4 scale0 = uvec4(unpack8(scale0_u32)); uvec4 scale4 = uvec4(unpack8(scale4_u32)); uvec4 scale8 = uvec4(unpack8(scale8_u32)); @@ -80,8 +64,8 @@ void main() { const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); - uint32_t qs0_u32 = data_a_u32[ib0 + i].qs[q_offset / 4]; - uint32_t qs64_u32 = data_a_u32[ib0 + i].qs[q_offset / 4 + 16]; + uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4]; + uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16]; uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F; uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F; diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp index 2306785af..22a6bfae4 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp @@ -1,5 +1,7 @@ #version 450 +#extension GL_EXT_shader_explicit_arithmetic_types : require + #include "mul_mat_vec_base.comp" layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; @@ -9,6 +11,10 @@ shared FLOAT_TYPE tmp[32]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; + if (row >= p.stride_d) { + return; + } + uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); @@ -31,70 +37,106 @@ void main() { const uint8_t hm1 = uint8_t(1 << (2*v_im)); const uint8_t hm2 = uint8_t(hm1 << 4); - tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; - const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x); - const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y); + f16vec2 d = data_a[ib0 + i].d; + const FLOAT_TYPE dall = FLOAT_TYPE(d.x); + const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); - const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f); - const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f); - const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f); - const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f); - const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2)); - const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2)); - const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2)); - const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2)); + uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ]; + uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2]; + uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4]; + uvec4 scale0 = uvec4(unpack8(scale0_u32)); + uvec4 scale4 = uvec4(unpack8(scale4_u32)); + uvec4 scale8 = uvec4(unpack8(scale8_u32)); - const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf); - const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf); - const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf); - const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf); - const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4); - const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4); - const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] >> 4); - const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] >> 4); - const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf); - const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf); - const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf); - const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf); - const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4); - const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4); - const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4); - const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4); + const uint32_t sc0 = ( scale0.x & 0x3f); + const uint32_t sc1 = ( scale0.y & 0x3f); + const uint32_t sc2 = ( scale4.x & 0x3f); + const uint32_t sc3 = ( scale4.y & 0x3f); + const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); + const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); + const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); + const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); + + uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16); + uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16); + + uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F; + uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F; + uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F; + uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F; + + uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4)); + uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4)); + uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4)); + uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4)); + + const uint32_t q4_0 = qs0_16_lo4.x; + const uint32_t q4_1 = qs0_16_lo4.y; + const uint32_t q4_2 = qs0_16_lo4.z; + const uint32_t q4_3 = qs0_16_lo4.w; + const uint32_t q4_4 = qs0_16_hi4.x; + const uint32_t q4_5 = qs0_16_hi4.y; + const uint32_t q4_6 = qs0_16_hi4.z; + const uint32_t q4_7 = qs0_16_hi4.w; + const uint32_t q4_8 = qs64_80_lo4.x; + const uint32_t q4_9 = qs64_80_lo4.y; + const uint32_t q4_10 = qs64_80_lo4.z; + const uint32_t q4_11 = qs64_80_lo4.w; + const uint32_t q4_12 = qs64_80_hi4.x; + const uint32_t q4_13 = qs64_80_hi4.y; + const uint32_t q4_14 = qs64_80_hi4.z; + const uint32_t q4_15 = qs64_80_hi4.w; + + B_TYPE_VEC2 by10 = data_b_v2[(b_offset + y1_idx) / 2]; + B_TYPE_VEC2 by116 = data_b_v2[(b_offset + y1_idx) / 2 + 8]; + B_TYPE_VEC2 by132 = data_b_v2[(b_offset + y1_idx) / 2 + 16]; + B_TYPE_VEC2 by148 = data_b_v2[(b_offset + y1_idx) / 2 + 24]; + B_TYPE_VEC2 by20 = data_b_v2[(b_offset + y2_idx) / 2]; + B_TYPE_VEC2 by216 = data_b_v2[(b_offset + y2_idx) / 2 + 8]; + B_TYPE_VEC2 by232 = data_b_v2[(b_offset + y2_idx) / 2 + 16]; + B_TYPE_VEC2 by248 = data_b_v2[(b_offset + y2_idx) / 2 + 24]; + + uint32_t qh0 = data_a_packed16[ib0 + i].qh[l0 / 2]; + uint32_t qh1 = qh0 >> 8; + uint32_t qh16 = data_a_packed16[ib0 + i].qh[l0 / 2 + 8]; + uint32_t qh17 = qh16 >> 8; const FLOAT_TYPE sx = - fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]), (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 1]), (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 16]), (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0)), - FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0))))); + fma(FLOAT_TYPE(by10.x), (q4_0 + (((qh0 & hm1) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by10.y), (q4_1 + (((qh1 & hm1) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by116.x), (q4_2 + (((qh16 & hm1) != 0) ? 16 : 0)), + FLOAT_TYPE(by116.y) * (q4_3 + (((qh17 & hm1) != 0) ? 16 : 0))))); const FLOAT_TYPE sy = - fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]), (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 33]), (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 48]), (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0)), - FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0))))); + fma(FLOAT_TYPE(by132.x), (q4_4 + (((qh0 & (hm1 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by132.y), (q4_5 + (((qh1 & (hm1 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by148.x), (q4_6 + (((qh16 & (hm1 << 1)) != 0) ? 16 : 0)), + FLOAT_TYPE(by148.y) * (q4_7 + (((qh17 & (hm1 << 1)) != 0) ? 16 : 0))))); const FLOAT_TYPE sz = - fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]), (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 1]), (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 16]), (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0)), - FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0))))); + fma(FLOAT_TYPE(by20.x), (q4_8 + (((qh0 & hm2) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by20.y), (q4_9 + (((qh1 & hm2) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by216.x), (q4_10 + (((qh16 & hm2) != 0) ? 16 : 0)), + FLOAT_TYPE(by216.y) * (q4_11 + (((qh17 & hm2) != 0) ? 16 : 0))))); const FLOAT_TYPE sw = - fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]), (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 33]), (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0)), - fma(FLOAT_TYPE(data_b[b_offset + y2_idx + 48]), (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0)), - FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0))))); + fma(FLOAT_TYPE(by232.x), (q4_12 + (((qh0 & (hm2 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by232.y), (q4_13 + (((qh1 & (hm2 << 1)) != 0) ? 16 : 0)), + fma(FLOAT_TYPE(by248.x), (q4_14 + (((qh16 & (hm2 << 1)) != 0) ? 16 : 0)), + FLOAT_TYPE(by248.y) * (q4_15 + (((qh17 & (hm2 << 1)) != 0) ? 16 : 0))))); const FLOAT_TYPE smin = - fma(FLOAT_TYPE(data_b[b_offset + y1_idx ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17]), sc2, - fma(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49]), sc3, - fma(FLOAT_TYPE(data_b[b_offset + y2_idx ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1 ]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17]), sc6, - (FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7))); - const uint tmp_idx = 16 * ix + tid; - tmp[tmp_idx] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, tmp[tmp_idx])); + fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2, + fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3, + fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6, + (FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7))); + temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); } + tmp[gl_LocalInvocationID.x] = temp; + // sum up partial sums and write back result barrier(); [[unroll]] for (uint s = 16; s > 0; s >>= 1) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp index 95c286eeb..0b392d68d 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp @@ -1,5 +1,7 @@ #version 450 +#extension GL_EXT_shader_explicit_arithmetic_types : require + #include "mul_mat_vec_base.comp" layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; @@ -9,6 +11,10 @@ shared FLOAT_TYPE tmp[32]; void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; + if (row >= p.stride_d) { + return; + } + uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); @@ -36,41 +42,66 @@ void main() { const uint s_offset = 8*v_im + is; const uint y_offset = 128*v_im + l0; - tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp + FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const uint y_idx = i * QUANT_K + y_offset; const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d); -#if K_QUANTS_PER_ITERATION == 1 - const uint tmp_idx = 16 * ix + tid; - tmp[tmp_idx] = fma(FLOAT_TYPE(data_b[b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32), tmp[tmp_idx])))))))); -#else + FLOAT_TYPE scales[4]; + scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]); + scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]); + scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]); + scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]); + + uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16); + uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16); + + uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F; + uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F; + uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F; + uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F; + + uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16); + uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4; + uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2; + uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0; + uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2; + + uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32; + uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32; + uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32; + uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32; + + uvec4 q0 = uvec4(unpack8(q0_u32)); + uvec4 q1 = uvec4(unpack8(q1_u32)); + uvec4 q2 = uvec4(unpack8(q2_u32)); + uvec4 q3 = uvec4(unpack8(q3_u32)); + + B_TYPE_VEC4 by0 = data_b_v4[(b_offset + y_idx) / 4]; + B_TYPE_VEC4 by32 = data_b_v4[(b_offset + y_idx) / 4 + 8]; + B_TYPE_VEC4 by64 = data_b_v4[(b_offset + y_idx) / 4 + 16]; + B_TYPE_VEC4 by96 = data_b_v4[(b_offset + y_idx) / 4 + 24]; + FLOAT_TYPE sum = FLOAT_TYPE(0.0); [[unroll]] for (int l = 0; l < 4; ++l) { - sum = fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32), - fma(FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d, FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32), sum)))); + sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32), + fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32), + fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32), + fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum)))); } - tmp[16 * ix + tid] += sum; -#endif + temp += sum * d; } + tmp[gl_LocalInvocationID.x] = temp; + // sum up partial sums and write back result barrier(); [[unroll]] for (uint s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; - } + } barrier(); } if (tid == 0) { diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp index fffdd1818..2ff5c4305 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp @@ -75,6 +75,10 @@ shared u16vec2 row_ids[3072]; #endif void main() { +#if defined(DATA_A_IQ4_NL) + init_iq4nl_shmem(); +#endif + #ifdef MUL_MAT_ID const uint expert_idx = gl_GlobalInvocationID.z; #else diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/types.comp b/ggml/src/ggml-vulkan/vulkan-shaders/types.comp index 21dce72fc..bc28e0ab8 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/types.comp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/types.comp @@ -1,6 +1,8 @@ -#if !defined(DATA_A_F32) && !defined(DATA_A_F16) -#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require -#endif + +#if !defined(GGML_TYPES_COMP) +#define GGML_TYPES_COMP + +#extension GL_EXT_shader_explicit_arithmetic_types : require #if defined(DATA_A_F32) #define QUANT_K 1 @@ -38,8 +40,14 @@ struct block_q4_0 float16_t d; uint8_t qs[16]; }; +struct block_q4_0_packed16 +{ + float16_t d; + uint16_t qs[16/2]; +}; #define A_TYPE block_q4_0 +#define A_TYPE_PACKED16 block_q4_0_packed16 #endif #if defined(DATA_A_Q4_1) @@ -54,7 +62,15 @@ struct block_q4_1 uint8_t qs[16]; }; +struct block_q4_1_packed16 +{ + float16_t d; + float16_t m; + uint16_t qs[16/2]; +}; + #define A_TYPE block_q4_1 +#define A_TYPE_PACKED16 block_q4_1_packed16 #endif #if defined(DATA_A_Q5_0) @@ -70,7 +86,15 @@ struct block_q5_0 uint8_t qs[16]; }; +struct block_q5_0_packed16 +{ + float16_t d; + uint16_t qh[2]; + uint16_t qs[16/2]; +}; + #define A_TYPE block_q5_0 +#define A_TYPE_PACKED16 block_q5_0_packed16 #endif #if defined(DATA_A_Q5_1) @@ -87,7 +111,16 @@ struct block_q5_1 uint8_t qs[16]; }; +struct block_q5_1_packed16 +{ + float16_t d; + float16_t m; + uint qh; + uint16_t qs[16/2]; +}; + #define A_TYPE block_q5_1 +#define A_TYPE_PACKED16 block_q5_1_packed16 #endif #if defined(DATA_A_Q8_0) @@ -100,8 +133,14 @@ struct block_q8_0 float16_t d; int8_t qs[32]; }; +struct block_q8_0_packed16 +{ + float16_t d; + uint16_t qs[32/2]; +}; #define A_TYPE block_q8_0 +#define A_TYPE_PACKED16 block_q8_0_packed16 #endif // K-quants @@ -116,7 +155,23 @@ struct block_q2_K f16vec2 d; }; +struct block_q2_K_packed16 +{ + uint16_t scales[QUANT_K/16/2]; + uint16_t qs[QUANT_K/4/2]; + f16vec2 d; +}; + +struct block_q2_K_packed32 +{ + uint32_t scales[QUANT_K/16/4]; + uint32_t qs[QUANT_K/4/4]; + f16vec2 d; +}; + #define A_TYPE block_q2_K +#define A_TYPE_PACKED16 block_q2_K_packed16 +#define A_TYPE_PACKED32 block_q2_K_packed32 #endif #if defined(DATA_A_Q3_K) @@ -131,7 +186,16 @@ struct block_q3_K float16_t d; }; +struct block_q3_K_packed16 +{ + uint16_t hmask[QUANT_K/8/2]; + uint16_t qs[QUANT_K/4/2]; + uint16_t scales[12/2]; + float16_t d; +}; + #define A_TYPE block_q3_K +#define A_TYPE_PACKED16 block_q3_K_packed16 #endif #if defined(DATA_A_Q4_K) @@ -145,7 +209,23 @@ struct block_q4_K uint8_t qs[QUANT_K/2]; }; +struct block_q4_K_packed16 +{ + f16vec2 d; + uint16_t scales[3*QUANT_K/64/2]; + uint16_t qs[QUANT_K/2/2]; +}; + +struct block_q4_K_packed32 +{ + f16vec2 d; + uint32_t scales[3*QUANT_K/64/4]; + uint32_t qs[QUANT_K/2/4]; +}; + #define A_TYPE block_q4_K +#define A_TYPE_PACKED16 block_q4_K_packed16 +#define A_TYPE_PACKED32 block_q4_K_packed32 #endif #if defined(DATA_A_Q5_K) @@ -160,7 +240,16 @@ struct block_q5_K uint8_t qs[QUANT_K/2]; }; +struct block_q5_K_packed16 +{ + f16vec2 d; + uint16_t scales[12/2]; + uint16_t qh[QUANT_K/8/2]; + uint16_t qs[QUANT_K/2/2]; +}; + #define A_TYPE block_q5_K +#define A_TYPE_PACKED16 block_q5_K_packed16 #endif #if defined(DATA_A_Q6_K) @@ -175,7 +264,16 @@ struct block_q6_K float16_t d; }; +struct block_q6_K_packed16 +{ + uint16_t ql[QUANT_K/2/2]; + uint16_t qh[QUANT_K/4/2]; + int8_t scales[QUANT_K/16]; + float16_t d; +}; + #define A_TYPE block_q6_K +#define A_TYPE_PACKED16 block_q6_K_packed16 #endif // IQuants @@ -191,10 +289,30 @@ struct block_iq4_nl uint8_t qs[QUANT_K/2]; }; -#define A_TYPE block_iq4_nl +struct block_iq4_nl_packed16 +{ + float16_t d; + uint16_t qs[QUANT_K/2/2]; +}; -const int8_t kvalues_iq4nl[16] = { +#define A_TYPE block_iq4_nl +#define A_TYPE_PACKED16 block_iq4_nl_packed16 + +const int8_t kvalues_iq4nl_const[16] = { int8_t(-127), int8_t(-104), int8_t(-83), int8_t(-65), int8_t(-49), int8_t(-35), int8_t(-22), int8_t(-10), int8_t(1), int8_t(13), int8_t(25), int8_t(38), int8_t(53), int8_t(69), int8_t(89), int8_t(113) }; + +shared FLOAT_TYPE kvalues_iq4nl[16]; + +void init_iq4nl_shmem() +{ + // copy the table into shared memory and sync + if (gl_LocalInvocationIndex.x < 16) { + kvalues_iq4nl[gl_LocalInvocationIndex.x] = FLOAT_TYPE(kvalues_iq4nl_const[gl_LocalInvocationIndex.x]); + } + barrier(); +} #endif + +#endif // !defined(GGML_TYPES_COMP) diff --git a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp index fe3e4cb39..6bbe8e96e 100644 --- a/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +++ b/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp @@ -317,10 +317,10 @@ void process_shaders() { std::string data_a_key = "DATA_A_" + to_uppercase(tname); std::string shader = (string_ends_with(tname, "_k")) ? "mul_mat_vec_" + tname + ".comp" : "mul_mat_vec.comp"; - string_to_spv("mul_mat_vec_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); - string_to_spv("mul_mat_vec_" + tname + "_f16_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}})); + string_to_spv("mul_mat_vec_" + tname + "_f32_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); + string_to_spv("mul_mat_vec_" + tname + "_f16_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "float16_t"}, {"B_TYPE_VEC2", "f16vec2"}, {"B_TYPE_VEC4", "f16vec4"}, {"D_TYPE", "float"}})); - string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); + string_to_spv("mul_mat_vec_id_" + tname + "_f32", shader, merge_maps(base_dict, {{"MUL_MAT_ID", "1"}, {data_a_key, "1"}, {"B_TYPE", "float"}, {"B_TYPE_VEC2", "vec2"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}})); // Dequant shaders if (tname != "f16") { @@ -331,11 +331,11 @@ void process_shaders() { shader = (tname == "f32" || tname == "f16") ? "get_rows.comp" : "get_rows_quant.comp"; if (tname == "f16") { - string_to_spv("get_rows_" + tname, shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}); + string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}})); } else { - string_to_spv("get_rows_" + tname, shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}}); + string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}})); } - string_to_spv("get_rows_" + tname + "_f32", shader, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}}); + string_to_spv("get_rows_" + tname + "_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}})); } }