Merge branch 'master' into xsn/improve_server_works
This commit is contained in:
commit
0eac1a3ec3
29 changed files with 932 additions and 595 deletions
|
@ -936,10 +936,16 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
|
|||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
|
||||
# Android armeabi-v7a
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
else()
|
||||
# Raspberry Pi 2
|
||||
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Android arm64-v8a
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
list(APPEND ARCH_FLAGS -mno-unaligned-access)
|
||||
endif()
|
||||
|
|
|
@ -295,9 +295,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
||||
else { invalid_param = true; break; }
|
||||
} else if (arg == "--rope-scale") {
|
||||
if (++i >= argc) {
|
||||
|
@ -630,11 +630,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
}
|
||||
std::string arg_next = argv[i];
|
||||
if (arg_next == "none") {
|
||||
params.split_mode = LLAMA_SPLIT_NONE;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
} else if (arg_next == "layer") {
|
||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (arg_next == "row") {
|
||||
params.split_mode = LLAMA_SPLIT_ROW;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
|
@ -837,15 +837,15 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
|
|
|
@ -61,7 +61,7 @@ struct gpt_params {
|
|||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
|
@ -75,7 +75,7 @@ struct gpt_params {
|
|||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED;
|
||||
int32_t rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
||||
|
||||
// // sampling parameters
|
||||
|
|
|
@ -31,7 +31,7 @@ struct train_state * init_train_state() {
|
|||
|
||||
state->opt = new struct ggml_opt_context;
|
||||
state->opt->ctx = NULL;
|
||||
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
state->opt->loss_after = 0.0f;
|
||||
|
||||
|
@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
|||
std::string opt_type;
|
||||
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
|
||||
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
|
||||
opt->params.type = GGML_OPT_ADAM;
|
||||
opt->params.type = GGML_OPT_TYPE_ADAM;
|
||||
|
||||
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
|
||||
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
|
||||
|
@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
|
|||
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
|
||||
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
|
||||
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
|
||||
opt->params.type = GGML_OPT_LBFGS;
|
||||
opt->params.type = GGML_OPT_TYPE_LBFGS;
|
||||
|
||||
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
|
||||
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
|
||||
|
@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
|
|||
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
|
||||
|
||||
switch (opt->params.type) {
|
||||
case GGML_OPT_ADAM:
|
||||
case GGML_OPT_TYPE_ADAM:
|
||||
{
|
||||
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
|
||||
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
|
||||
|
@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
|
|||
gguf_add_tensor(fctx, opt->adam.pf);
|
||||
}
|
||||
} break;
|
||||
case GGML_OPT_LBFGS:
|
||||
case GGML_OPT_TYPE_LBFGS:
|
||||
{
|
||||
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
|
||||
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
|
||||
|
|
|
@ -192,7 +192,7 @@ class Model:
|
|||
return RefactModel
|
||||
if model_architecture == "PersimmonForCausalLM":
|
||||
return PersimmonModel
|
||||
if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
if model_architecture in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return StableLMModel
|
||||
if model_architecture == "QWenLMHeadModel":
|
||||
return QwenModel
|
||||
|
@ -253,7 +253,7 @@ class Model:
|
|||
return gguf.MODEL_ARCH.REFACT
|
||||
if arch == "PersimmonForCausalLM":
|
||||
return gguf.MODEL_ARCH.PERSIMMON
|
||||
if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
if arch in ("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
|
||||
return gguf.MODEL_ARCH.STABLELM
|
||||
if arch == "QWenLMHeadModel":
|
||||
return gguf.MODEL_ARCH.QWEN
|
||||
|
@ -1074,10 +1074,11 @@ class StableLMModel(Model):
|
|||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||
|
||||
|
||||
class MixtralModel(Model):
|
||||
|
|
|
@ -1547,7 +1547,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
|
||||
opt_params_lbfgs.print_forward_graph = false;
|
||||
opt_params_lbfgs.print_backward_graph = false;
|
||||
opt_params_lbfgs.lbfgs.n_iter = 16;
|
||||
|
|
|
@ -1531,7 +1531,7 @@ int main(int argc, char ** argv) {
|
|||
lora.hparams.n_rank_output = n_rank_output;
|
||||
|
||||
// set opt params from command line
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
opt->params.print_forward_graph = false;
|
||||
opt->params.print_backward_graph = false;
|
||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
|
|
|
@ -157,9 +157,9 @@ static const char * output_format_str(output_formats format) {
|
|||
|
||||
static const char * split_mode_str(llama_split_mode mode) {
|
||||
switch (mode) {
|
||||
case LLAMA_SPLIT_NONE: return "none";
|
||||
case LLAMA_SPLIT_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_ROW: return "row";
|
||||
case LLAMA_SPLIT_MODE_NONE: return "none";
|
||||
case LLAMA_SPLIT_MODE_LAYER: return "layer";
|
||||
case LLAMA_SPLIT_MODE_ROW: return "row";
|
||||
default: GGML_ASSERT(!"invalid split mode");
|
||||
}
|
||||
}
|
||||
|
@ -193,7 +193,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* type_v */ {GGML_TYPE_F16},
|
||||
/* n_threads */ {get_num_physical_cores()},
|
||||
/* n_gpu_layers */ {99},
|
||||
/* split_mode */ {LLAMA_SPLIT_LAYER},
|
||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
|
@ -358,11 +358,11 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
for (const auto & m : p) {
|
||||
llama_split_mode mode;
|
||||
if (m == "none") {
|
||||
mode = LLAMA_SPLIT_NONE;
|
||||
mode = LLAMA_SPLIT_MODE_NONE;
|
||||
} else if (m == "layer") {
|
||||
mode = LLAMA_SPLIT_LAYER;
|
||||
mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
} else if (m == "row") {
|
||||
mode = LLAMA_SPLIT_ROW;
|
||||
mode = LLAMA_SPLIT_MODE_ROW;
|
||||
} else {
|
||||
invalid_param = true;
|
||||
break;
|
||||
|
|
|
@ -152,7 +152,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
|||
|
||||
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
||||
if (newline_tmp->backend != GGML_BACKEND_CPU) {
|
||||
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
||||
if (newline_tmp->buffer == NULL) {
|
||||
printf("newline_tmp tensor buffer is NULL\n");
|
||||
}
|
||||
|
|
|
@ -39,9 +39,12 @@ see https://github.com/ggerganov/llama.cpp/issues/1437
|
|||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `-n, --n-predict`: Set the maximum tokens to predict (default: -1)
|
||||
- `-n N, --n-predict N`: Set the maximum tokens to predict (default: -1)
|
||||
- `--slots-endpoint-disable`: To disable slots state monitoring endpoint. Slots state may contain user data, prompts included.
|
||||
- `--metrics`: enable prometheus `/metrics` compatible endpoint (default: disabled)
|
||||
- `--chat-template JINJA_TEMPLATE`: Set custom jinja chat template. This parameter accepts a string, not a file name (default: template taken from model's metadata). We only support [some pre-defined templates](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template)
|
||||
- `--log-disable`: Output logs to stdout only, default: enabled.
|
||||
- `--log-format FORMAT`: Define the log output to FORMAT: json or text (default: json)
|
||||
|
||||
## Build
|
||||
|
||||
|
@ -457,6 +460,18 @@ Notice that each `probs` is an array of length `n_probs`.
|
|||
]
|
||||
```
|
||||
|
||||
- **GET** `/metrics`: [Prometheus](https://prometheus.io/) compatible metrics exporter endpoint if `--metrics` is enabled:
|
||||
|
||||
Available metrics:
|
||||
- `llamacpp:prompt_tokens_total`: Number of prompt tokens processed.
|
||||
- `llamacpp:tokens_predicted_total`: Number of generation tokens processed.
|
||||
- `llamacpp:prompt_tokens_seconds`: Average prompt throughput in tokens/s.
|
||||
- `llamacpp:predicted_tokens_seconds`: Average generation throughput in tokens/s.
|
||||
- `llamacpp:kv_cache_usage_ratio`: KV-cache usage. 1 means 100 percent usage.
|
||||
- `llamacpp:kv_cache_tokens`: KV-cache tokens.
|
||||
- `llamacpp:requests_processing`: Number of request processing.
|
||||
- `llamacpp:requests_deferred`: Number of request deferred.
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
|
|
|
@ -43,9 +43,11 @@ struct server_params
|
|||
int32_t read_timeout = 600;
|
||||
int32_t write_timeout = 600;
|
||||
bool slots_endpoint = true;
|
||||
bool metrics_endpoint = false;
|
||||
};
|
||||
|
||||
bool server_verbose = false;
|
||||
bool server_log_json = true;
|
||||
|
||||
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
||||
{
|
||||
|
@ -301,12 +303,76 @@ struct llama_client_slot
|
|||
}
|
||||
|
||||
void print_timings() const {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
||||
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
|
||||
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
|
||||
char buffer[512];
|
||||
double t_token = t_prompt_processing / num_prompt_tokens_processed;
|
||||
double n_tokens_second = 1e3 / t_prompt_processing * num_prompt_tokens_processed;
|
||||
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_prompt_processing, num_prompt_tokens_processed,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"num_prompt_tokens_processed", num_prompt_tokens_processed},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
||||
t_token = t_token_generation / n_decoded;
|
||||
n_tokens_second = 1e3 / t_token_generation * n_decoded;
|
||||
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
|
||||
t_token_generation, n_decoded,
|
||||
t_token, n_tokens_second);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_token_generation", t_token_generation},
|
||||
{"n_decoded", n_decoded},
|
||||
{"t_token", t_token},
|
||||
{"n_tokens_second", n_tokens_second},
|
||||
});
|
||||
|
||||
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
|
||||
LOG_INFO(buffer, {
|
||||
{"slot_id", id},
|
||||
{"task_id", task_id},
|
||||
{"t_prompt_processing", t_prompt_processing},
|
||||
{"t_token_generation", t_token_generation},
|
||||
{"t_total", t_prompt_processing + t_token_generation},
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
struct llama_metrics {
|
||||
uint64_t n_prompt_tokens_processed_total = 0;
|
||||
uint64_t n_tokens_predicted_total = 0;
|
||||
|
||||
uint64_t n_prompt_tokens_processed = 0;
|
||||
uint64_t t_prompt_processing = 0;
|
||||
|
||||
uint64_t n_tokens_predicted = 0;
|
||||
uint64_t t_tokens_generation = 0;
|
||||
|
||||
|
||||
void on_prompt_eval(const llama_client_slot &slot) {
|
||||
n_prompt_tokens_processed_total += slot.num_prompt_tokens_processed;
|
||||
|
||||
n_prompt_tokens_processed += slot.num_prompt_tokens_processed;
|
||||
t_prompt_processing += slot.t_prompt_processing;
|
||||
}
|
||||
|
||||
void on_prediction(const llama_client_slot &slot) {
|
||||
n_tokens_predicted_total += slot.n_decoded;
|
||||
|
||||
n_tokens_predicted += slot.n_decoded;
|
||||
t_tokens_generation += slot.t_token_generation;
|
||||
}
|
||||
|
||||
void reset_bucket() {
|
||||
n_prompt_tokens_processed = 0;
|
||||
t_prompt_processing = 0;
|
||||
n_tokens_predicted = 0;
|
||||
t_tokens_generation = 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -344,6 +410,8 @@ struct llama_server_context
|
|||
llama_server_queue queue_tasks;
|
||||
llama_server_response queue_results;
|
||||
|
||||
llama_metrics metrics;
|
||||
|
||||
~llama_server_context()
|
||||
{
|
||||
if (ctx)
|
||||
|
@ -363,7 +431,7 @@ struct llama_server_context
|
|||
params = params_;
|
||||
if (!params.mmproj.empty()) {
|
||||
multimodal = true;
|
||||
LOG_TEE("Multi Modal Mode Enabled");
|
||||
LOG_INFO("Multi Modal Mode Enabled", {});
|
||||
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
|
||||
if(clp_ctx == nullptr) {
|
||||
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
|
||||
|
@ -416,7 +484,7 @@ struct llama_server_context
|
|||
|
||||
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
||||
|
||||
LOG_TEE("Available slots:\n");
|
||||
LOG_INFO("initializing slots", {{"n_slots", params.n_parallel}});
|
||||
for (int i = 0; i < params.n_parallel; i++)
|
||||
{
|
||||
llama_client_slot slot;
|
||||
|
@ -425,7 +493,10 @@ struct llama_server_context
|
|||
slot.n_ctx = n_ctx_slot;
|
||||
slot.n_predict = params.n_predict;
|
||||
|
||||
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
|
||||
LOG_INFO("new slot", {
|
||||
{"slot_id", slot.id},
|
||||
{"n_ctx_slot", slot.n_ctx}
|
||||
});
|
||||
|
||||
const int ga_n = params.grp_attn_n;
|
||||
const int ga_w = params.grp_attn_w;
|
||||
|
@ -435,7 +506,12 @@ struct llama_server_context
|
|||
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
|
||||
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
|
||||
LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
|
||||
|
||||
LOG_INFO("slot self-extend", {
|
||||
{"slot_id", slot.id},
|
||||
{"ga_n", ga_n},
|
||||
{"ga_w", ga_w}
|
||||
});
|
||||
}
|
||||
|
||||
slot.ga_i = 0;
|
||||
|
@ -729,10 +805,16 @@ struct llama_server_context
|
|||
img_sl.img_data = clip_image_u8_init();
|
||||
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
|
||||
{
|
||||
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
|
||||
LOG_ERROR("failed to load image", {
|
||||
{"slot_id", slot->id},
|
||||
{"img_sl_id", img_sl.id}
|
||||
});
|
||||
return false;
|
||||
}
|
||||
LOG_TEE("slot %i - loaded image\n", slot->id);
|
||||
LOG_VERBOSE("image loaded", {
|
||||
{"slot_id", slot->id},
|
||||
{"img_sl_id", img_sl.id}
|
||||
});
|
||||
img_sl.request_encode_image = true;
|
||||
slot->images.push_back(img_sl);
|
||||
}
|
||||
|
@ -792,7 +874,10 @@ struct llama_server_context
|
|||
|
||||
all_slots_are_idle = false;
|
||||
|
||||
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
|
||||
LOG_INFO("slot is processing task", {
|
||||
{"slot_id", slot->id},
|
||||
{"task_id", slot->task_id},
|
||||
});
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -1365,7 +1450,7 @@ struct llama_server_context
|
|||
if (slot == nullptr)
|
||||
{
|
||||
// if no slot is available, we defer this task for processing later
|
||||
LOG_VERBOSE("no slot is available", {});
|
||||
LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
|
||||
queue_tasks.defer(task);
|
||||
break;
|
||||
}
|
||||
|
@ -1414,7 +1499,7 @@ struct llama_server_context
|
|||
case TASK_TYPE_NEXT_RESPONSE: {
|
||||
// do nothing
|
||||
} break;
|
||||
case TASK_TYPE_SLOTS_DATA: {
|
||||
case TASK_TYPE_METRICS: {
|
||||
json slots_data = json::array();
|
||||
int n_idle_slots = 0;
|
||||
int n_processing_slots = 0;
|
||||
|
@ -1441,7 +1526,17 @@ struct llama_server_context
|
|||
}
|
||||
slots_data.push_back(slot_data);
|
||||
}
|
||||
LOG_TEE("task %i - slots data: idle=%i processing=%i\n", task.id, n_idle_slots, n_processing_slots);
|
||||
LOG_INFO("slot data", {
|
||||
{"task_id", task.id},
|
||||
{"n_idle_slots", n_idle_slots},
|
||||
{"n_processing_slots", n_processing_slots}
|
||||
});
|
||||
LOG_VERBOSE("slot data", {
|
||||
{"task_id", task.id},
|
||||
{"n_idle_slots", n_idle_slots},
|
||||
{"n_processing_slots", n_processing_slots},
|
||||
{"slots", slots_data}
|
||||
});
|
||||
task_result res;
|
||||
res.id = task.id;
|
||||
res.multitask_id = task.multitask_id;
|
||||
|
@ -1450,8 +1545,22 @@ struct llama_server_context
|
|||
res.result_json = {
|
||||
{ "idle", n_idle_slots },
|
||||
{ "processing", n_processing_slots },
|
||||
{ "slots", slots_data }
|
||||
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
|
||||
|
||||
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
|
||||
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
|
||||
|
||||
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
|
||||
{ "t_prompt_processing", metrics.t_prompt_processing},
|
||||
{ "n_tokens_predicted", metrics.n_tokens_predicted},
|
||||
{ "t_tokens_generation", metrics.t_tokens_generation},
|
||||
|
||||
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
|
||||
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
|
||||
|
||||
{ "slots", slots_data },
|
||||
};
|
||||
metrics.reset_bucket();
|
||||
queue_results.send(res);
|
||||
} break;
|
||||
}
|
||||
|
@ -1481,7 +1590,7 @@ struct llama_server_context
|
|||
|
||||
if (system_need_update)
|
||||
{
|
||||
LOG_TEE("updating system prompt\n");
|
||||
LOG_INFO("updating system prompt", {});
|
||||
update_system_prompt();
|
||||
}
|
||||
|
||||
|
@ -1491,7 +1600,7 @@ struct llama_server_context
|
|||
{
|
||||
if (system_prompt.empty() && clean_kv_cache)
|
||||
{
|
||||
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
|
||||
LOG_INFO("all slots are idle and system prompt is empty, clear the KV cache", {});
|
||||
kv_cache_clear();
|
||||
}
|
||||
return;
|
||||
|
@ -1505,10 +1614,20 @@ struct llama_server_context
|
|||
{
|
||||
// Shift context
|
||||
const int n_keep = slot.params.n_keep + add_bos_token;
|
||||
const int n_left = system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
|
||||
const int n_discard = n_left / 2;
|
||||
|
||||
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, n_keep, n_left, n_discard);
|
||||
LOG_INFO("slot context shift", {
|
||||
{"slot_id", slot.id},
|
||||
{"task_id", slot.task_id},
|
||||
{"n_keep", n_keep},
|
||||
{"n_left", n_left},
|
||||
{"n_discard", n_discard},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()}
|
||||
});
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
|
@ -1522,17 +1641,12 @@ struct llama_server_context
|
|||
slot.n_past -= n_discard;
|
||||
|
||||
slot.truncated = true;
|
||||
|
||||
LOG_VERBOSE("context shift", {
|
||||
{ "n_ctx", n_ctx },
|
||||
{ "n_keep", n_keep },
|
||||
{ "n_left", n_left },
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// decode any currently ongoing sequences
|
||||
LOG_VERBOSE("decoding ongoing sequences", {});
|
||||
for (auto & slot : slots)
|
||||
{
|
||||
// release the slot
|
||||
|
@ -1542,7 +1656,15 @@ struct llama_server_context
|
|||
slot.command = NONE;
|
||||
slot.t_last_used = ggml_time_us();
|
||||
|
||||
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
|
||||
LOG_INFO("slot released", {
|
||||
{"slot_id", slot.id},
|
||||
{"task_id", slot.task_id},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_past", slot.n_past},
|
||||
{"n_system_tokens", system_tokens.size()},
|
||||
{"n_cache_tokens", slot.cache_tokens.size()},
|
||||
{"truncated", slot.truncated}
|
||||
});
|
||||
queue_tasks.notify_slot_changed();
|
||||
|
||||
continue;
|
||||
|
@ -1690,7 +1812,12 @@ struct llama_server_context
|
|||
slot.ga_i = ga_i;
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
||||
LOG_INFO("slot progression", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "n_past", slot.n_past },
|
||||
{ "num_prompt_tokens_processed", slot.num_prompt_tokens_processed }
|
||||
});
|
||||
}
|
||||
|
||||
slot.cache_tokens = prompt_tokens;
|
||||
|
@ -1698,7 +1825,10 @@ struct llama_server_context
|
|||
if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
|
||||
LOG_INFO("we have to evaluate at least 1 token to generate logits", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id }
|
||||
});
|
||||
slot.n_past--;
|
||||
if (slot.ga_i > 0)
|
||||
{
|
||||
|
@ -1706,9 +1836,13 @@ struct llama_server_context
|
|||
}
|
||||
}
|
||||
|
||||
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
||||
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
||||
int p0 = (int) system_tokens.size() + slot.n_past;
|
||||
LOG_INFO("kv cache rm [p0, end)", {
|
||||
{ "slot_id", slot.id },
|
||||
{ "task_id", slot.task_id },
|
||||
{ "p0", p0 }
|
||||
});
|
||||
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", slot.n_past},
|
||||
|
@ -1743,7 +1877,10 @@ struct llama_server_context
|
|||
|
||||
if (has_images && !ingest_images(slot, n_batch))
|
||||
{
|
||||
LOG_TEE("failed processing images\n");
|
||||
LOG_ERROR("failed processing images", {
|
||||
"slot_id", slot.id,
|
||||
"task_id", slot.task_id,
|
||||
});
|
||||
send_error(slot, "failed processing images");
|
||||
continue;
|
||||
}
|
||||
|
@ -1862,6 +1999,7 @@ struct llama_server_context
|
|||
{
|
||||
slot.t_start_genereration = ggml_time_us();
|
||||
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
|
||||
metrics.on_prompt_eval(slot);
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
||||
|
@ -1884,6 +2022,7 @@ struct llama_server_context
|
|||
slot.release();
|
||||
slot.print_timings();
|
||||
send_final_response(slot);
|
||||
metrics.on_prediction(slot);
|
||||
}
|
||||
|
||||
// if slot is not yet finish its work, we schedule next run
|
||||
|
@ -1903,6 +2042,8 @@ struct llama_server_context
|
|||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
}
|
||||
|
||||
LOG_VERBOSE("slots run completed", {});
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -1975,8 +2116,10 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
||||
printf(" KV cache data type for V (default: f16)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-format log output format: json or text (default: json)\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
|
||||
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
|
||||
printf("\n");
|
||||
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
|
@ -2108,9 +2251,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
break;
|
||||
}
|
||||
std::string value(argv[i]);
|
||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
||||
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
|
||||
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
|
||||
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
|
||||
else { invalid_param = true; break; }
|
||||
}
|
||||
else if (arg == "--rope-freq-base")
|
||||
|
@ -2234,15 +2377,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
std::string arg_next = argv[i];
|
||||
if (arg_next == "none")
|
||||
{
|
||||
params.split_mode = LLAMA_SPLIT_NONE;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_NONE;
|
||||
}
|
||||
else if (arg_next == "layer")
|
||||
{
|
||||
params.split_mode = LLAMA_SPLIT_LAYER;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
|
||||
}
|
||||
else if (arg_next == "row")
|
||||
{
|
||||
params.split_mode = LLAMA_SPLIT_ROW;
|
||||
params.split_mode = LLAMA_SPLIT_MODE_ROW;
|
||||
}
|
||||
else {
|
||||
invalid_param = true;
|
||||
|
@ -2427,6 +2570,27 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
params.mmproj = argv[i];
|
||||
}
|
||||
else if (arg == "--log-format")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
if (std::strcmp(argv[i], "json") == 0)
|
||||
{
|
||||
server_log_json = true;
|
||||
}
|
||||
else if (std::strcmp(argv[i], "text") == 0)
|
||||
{
|
||||
server_log_json = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (arg == "--log-disable")
|
||||
{
|
||||
log_set_target(stdout);
|
||||
|
@ -2436,6 +2600,10 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
{
|
||||
sparams.slots_endpoint = false;
|
||||
}
|
||||
else if (arg == "--metrics")
|
||||
{
|
||||
sparams.metrics_endpoint = true;
|
||||
}
|
||||
else if (arg == "--chat-template")
|
||||
{
|
||||
if (++i >= argc)
|
||||
|
@ -2469,15 +2637,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
sep++;
|
||||
if (strncmp(sep, "int:", 4) == 0) {
|
||||
sep += 4;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_INT;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
|
||||
kvo.int_value = std::atol(sep);
|
||||
} else if (strncmp(sep, "float:", 6) == 0) {
|
||||
sep += 6;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
|
||||
kvo.float_value = std::atof(sep);
|
||||
} else if (strncmp(sep, "bool:", 5) == 0) {
|
||||
sep += 5;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
|
||||
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
|
||||
if (std::strcmp(sep, "true") == 0) {
|
||||
kvo.bool_value = true;
|
||||
} else if (std::strcmp(sep, "false") == 0) {
|
||||
|
@ -2537,18 +2705,26 @@ static json format_partial_response(
|
|||
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
||||
{
|
||||
return json {
|
||||
{"tokens", tokens}};
|
||||
{"tokens", tokens}
|
||||
};
|
||||
}
|
||||
|
||||
static json format_detokenized_response(std::string content)
|
||||
{
|
||||
return json {
|
||||
{"content", content}};
|
||||
{"content", content}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
|
||||
{
|
||||
// skip GH copilot requests when using default port
|
||||
if (req.path == "/v1/health" || req.path == "/v1/completions")
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
LOG_INFO("request", {
|
||||
{"remote_addr", req.remote_addr},
|
||||
{"remote_port", req.remote_port},
|
||||
|
@ -2643,7 +2819,7 @@ int main(int argc, char **argv)
|
|||
// request slots data using task queue
|
||||
task_server task;
|
||||
task.id = llama.queue_tasks.get_new_id();
|
||||
task.type = TASK_TYPE_SLOTS_DATA;
|
||||
task.type = TASK_TYPE_METRICS;
|
||||
task.target_id = -1;
|
||||
|
||||
llama.queue_results.add_waiting_task_id(task.id);
|
||||
|
@ -2690,7 +2866,7 @@ int main(int argc, char **argv)
|
|||
// request slots data using task queue
|
||||
task_server task;
|
||||
task.id = llama.queue_tasks.get_new_id();
|
||||
task.type = TASK_TYPE_SLOTS_DATA;
|
||||
task.type = TASK_TYPE_METRICS;
|
||||
task.target_id = -1;
|
||||
|
||||
llama.queue_results.add_waiting_task_id(task.id);
|
||||
|
@ -2705,6 +2881,87 @@ int main(int argc, char **argv)
|
|||
});
|
||||
}
|
||||
|
||||
if (sparams.metrics_endpoint) {
|
||||
svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
|
||||
// request slots data using task queue
|
||||
task_server task;
|
||||
task.id = llama.queue_tasks.get_new_id();
|
||||
task.type = TASK_TYPE_METRICS;
|
||||
task.target_id = -1;
|
||||
|
||||
llama.queue_results.add_waiting_task_id(task.id);
|
||||
llama.queue_tasks.post(task);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task.id);
|
||||
llama.queue_results.remove_waiting_task_id(task.id);
|
||||
|
||||
json data = result.result_json;
|
||||
|
||||
uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
|
||||
uint64_t t_prompt_processing = data["t_prompt_processing"];
|
||||
|
||||
uint64_t n_tokens_predicted = data["n_tokens_predicted"];
|
||||
uint64_t t_tokens_generation = data["t_tokens_generation"];
|
||||
|
||||
int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
|
||||
|
||||
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
|
||||
json all_metrics_def = json {
|
||||
{"counter", {{
|
||||
{"name", "prompt_tokens_total"},
|
||||
{"help", "Number of prompt tokens processed."},
|
||||
{"value", data["n_prompt_tokens_processed_total"]}
|
||||
}, {
|
||||
{"name", "tokens_predicted_total"},
|
||||
{"help", "Number of generation tokens processed."},
|
||||
{"value", data["n_tokens_predicted_total"]}
|
||||
}}},
|
||||
{"gauge", {{
|
||||
{"name", "prompt_tokens_seconds"},
|
||||
{"help", "Average prompt throughput in tokens/s."},
|
||||
{"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
|
||||
},{
|
||||
{"name", "predicted_tokens_seconds"},
|
||||
{"help", "Average generation throughput in tokens/s."},
|
||||
{"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
|
||||
},{
|
||||
{"name", "kv_cache_usage_ratio"},
|
||||
{"help", "KV-cache usage. 1 means 100 percent usage."},
|
||||
{"value", 1. * kv_cache_used_cells / params.n_ctx}
|
||||
},{
|
||||
{"name", "kv_cache_tokens"},
|
||||
{"help", "KV-cache tokens."},
|
||||
{"value", data["kv_cache_tokens_count"]}
|
||||
},{
|
||||
{"name", "requests_processing"},
|
||||
{"help", "Number of request processing."},
|
||||
{"value", data["processing"]}
|
||||
},{
|
||||
{"name", "requests_deferred"},
|
||||
{"help", "Number of request deferred."},
|
||||
{"value", data["deferred"]}
|
||||
}}}
|
||||
};
|
||||
|
||||
std::stringstream prometheus;
|
||||
for (const auto& el : all_metrics_def.items()) {
|
||||
const auto& type = el.key();
|
||||
const auto& metrics_def = el.value();
|
||||
for (const auto& metric_def : metrics_def) {
|
||||
std::string name = metric_def["name"];
|
||||
std::string help = metric_def["help"];
|
||||
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
||||
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
||||
<< "llamacpp:" << name << " " << metric_def["value"] << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
|
||||
res.status = 200; // HTTP OK
|
||||
});
|
||||
}
|
||||
|
||||
svr.set_logger(log_server_request);
|
||||
|
||||
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
||||
|
@ -2757,9 +3014,6 @@ int main(int argc, char **argv)
|
|||
// Set the base directory for serving static files
|
||||
svr.set_base_dir(sparams.public_path);
|
||||
|
||||
// to make it ctrl+clickable:
|
||||
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
||||
|
||||
std::unordered_map<std::string, std::string> log_data;
|
||||
log_data["hostname"] = sparams.hostname;
|
||||
log_data["port"] = std::to_string(sparams.port);
|
||||
|
|
|
@ -32,6 +32,7 @@ It's possible to override some scenario steps values with environment variables:
|
|||
- `PORT` -> `context.server_port` to set the listening port of the server during scenario, default: `8080`
|
||||
- `LLAMA_SERVER_BIN_PATH` -> to change the server binary path, default: `../../../build/bin/server`
|
||||
- `DEBUG` -> "ON" to enable steps and server verbose mode `--verbose`
|
||||
- `SERVER_LOG_FORMAT_JSON` -> if set switch server logs to json format
|
||||
|
||||
### Run @bug, @wip or @wrong_usage annotated scenario
|
||||
|
||||
|
|
|
@ -16,6 +16,8 @@ def before_scenario(context, scenario):
|
|||
|
||||
|
||||
def after_scenario(context, scenario):
|
||||
if context.server_process is None:
|
||||
return
|
||||
if scenario.status == "failed":
|
||||
if 'GITHUB_ACTIONS' in os.environ:
|
||||
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n\n")
|
||||
|
|
|
@ -13,6 +13,7 @@ Feature: llama.cpp server
|
|||
And 1 slots
|
||||
And embeddings extraction
|
||||
And 32 server max tokens to predict
|
||||
And prometheus compatible metrics exposed
|
||||
Then the server is starting
|
||||
Then the server is healthy
|
||||
|
||||
|
@ -25,11 +26,12 @@ Feature: llama.cpp server
|
|||
And <n_predict> max tokens to predict
|
||||
And a completion request with no api error
|
||||
Then <n_predicted> tokens are predicted matching <re_content>
|
||||
And prometheus metrics are exposed
|
||||
|
||||
Examples: Prompts
|
||||
| prompt | n_predict | re_content | n_predicted |
|
||||
| I believe the meaning of life is | 8 | read | 8 |
|
||||
| Write a joke about AI | 64 | (park<or>friends<or>scared)+ | 32 |
|
||||
| I believe the meaning of life is | 8 | (read<or>going)+ | 8 |
|
||||
| Write a joke about AI | 64 | (park<or>friends<or>scared<or>always)+ | 32 |
|
||||
|
||||
Scenario Outline: OAI Compatibility
|
||||
Given a model <model>
|
||||
|
|
|
@ -13,6 +13,7 @@ import aiohttp
|
|||
import openai
|
||||
from behave import step
|
||||
from behave.api.async_step import async_run_until_complete
|
||||
from prometheus_client import parser
|
||||
|
||||
|
||||
@step(u"a server listening on {server_fqdn}:{server_port}")
|
||||
|
@ -34,6 +35,8 @@ def step_server_config(context, server_fqdn, server_port):
|
|||
context.server_api_key = None
|
||||
context.server_continuous_batching = False
|
||||
context.server_embeddings = False
|
||||
context.server_metrics = False
|
||||
context.server_process = None
|
||||
context.server_seed = None
|
||||
context.user_api_key = None
|
||||
|
||||
|
@ -82,6 +85,11 @@ def step_server_embeddings(context):
|
|||
context.server_embeddings = True
|
||||
|
||||
|
||||
@step(u'prometheus compatible metrics exposed')
|
||||
def step_server_metrics(context):
|
||||
context.server_metrics = True
|
||||
|
||||
|
||||
@step(u"the server is starting")
|
||||
def step_start_server(context):
|
||||
start_server_background(context)
|
||||
|
@ -424,6 +432,23 @@ def step_check_options_header_value(context, cors_header, cors_header_value):
|
|||
assert context.options_response.headers[cors_header] == cors_header_value
|
||||
|
||||
|
||||
@step(u'prometheus metrics are exposed')
|
||||
@async_run_until_complete
|
||||
async def step_prometheus_metrics_exported(context):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with await session.get(f'{context.base_url}/metrics') as metrics_response:
|
||||
assert metrics_response.status == 200
|
||||
assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
|
||||
metrics_raw = await metrics_response.text()
|
||||
metric_exported = False
|
||||
for metric in parser.text_string_to_metric_families(metrics_raw):
|
||||
match metric.name:
|
||||
case "llamacpp:kv_cache_usage_ratio":
|
||||
assert len(metric.samples) > 0
|
||||
metric_exported = True
|
||||
assert metric_exported, "No metrics exported"
|
||||
|
||||
|
||||
async def concurrent_requests(context, f_completion, *args, **kwargs):
|
||||
n_prompts = len(context.prompts)
|
||||
if context.debug:
|
||||
|
@ -753,6 +778,8 @@ def start_server_background(context):
|
|||
server_args.append('--cont-batching')
|
||||
if context.server_embeddings:
|
||||
server_args.append('--embedding')
|
||||
if context.server_metrics:
|
||||
server_args.append('--metrics')
|
||||
if context.model_alias is not None:
|
||||
server_args.extend(['--alias', context.model_alias])
|
||||
if context.n_ctx is not None:
|
||||
|
@ -765,6 +792,8 @@ def start_server_background(context):
|
|||
server_args.extend(['--api-key', context.server_api_key])
|
||||
if context.debug:
|
||||
server_args.append('--verbose')
|
||||
if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
|
||||
server_args.extend(['--log-format', "text"])
|
||||
print(f"starting server with: {context.server_path}", *server_args)
|
||||
context.server_process = subprocess.Popen(
|
||||
[str(arg) for arg in [context.server_path, *server_args]],
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
aiohttp~=3.9.3
|
||||
behave~=1.2.6
|
||||
openai~=0.25.0
|
||||
prometheus-client~=0.20.0
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
using json = nlohmann::json;
|
||||
|
||||
extern bool server_verbose;
|
||||
extern bool server_log_json;
|
||||
|
||||
#ifndef SERVER_VERBOSE
|
||||
#define SERVER_VERBOSE 1
|
||||
|
@ -27,13 +28,13 @@ extern bool server_verbose;
|
|||
{ \
|
||||
if (server_verbose) \
|
||||
{ \
|
||||
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_ERROR( MSG, ...) server_log("ERR", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
||||
|
||||
//
|
||||
|
@ -50,7 +51,7 @@ enum task_type {
|
|||
TASK_TYPE_COMPLETION,
|
||||
TASK_TYPE_CANCEL,
|
||||
TASK_TYPE_NEXT_RESPONSE,
|
||||
TASK_TYPE_SLOTS_DATA
|
||||
TASK_TYPE_METRICS
|
||||
};
|
||||
|
||||
struct task_server {
|
||||
|
@ -133,27 +134,49 @@ struct completion_token_output
|
|||
std::string text_to_send;
|
||||
};
|
||||
|
||||
static inline void server_log(const char *level, const char *function, int line,
|
||||
const char *message, const nlohmann::ordered_json &extra)
|
||||
{
|
||||
nlohmann::ordered_json log
|
||||
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra)
|
||||
{
|
||||
std::stringstream ss_tid;
|
||||
ss_tid << std::this_thread::get_id();
|
||||
json log = nlohmann::ordered_json{
|
||||
{"tid", ss_tid.str()},
|
||||
{"timestamp", time(nullptr)},
|
||||
};
|
||||
|
||||
if (server_log_json) {
|
||||
log.merge_patch(
|
||||
{
|
||||
{"level", level},
|
||||
{"function", function},
|
||||
{"line", line},
|
||||
{"message", message},
|
||||
};
|
||||
|
||||
if (!extra.empty())
|
||||
{
|
||||
{"msg", message},
|
||||
});
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
|
||||
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
|
||||
} else {
|
||||
char buf[1024];
|
||||
snprintf(buf, 1024, "%4s [%24s] %s", level, function, message);
|
||||
|
||||
if (!extra.empty()) {
|
||||
log.merge_patch(extra);
|
||||
}
|
||||
std::stringstream ss;
|
||||
ss << buf << " |";
|
||||
for (const auto& el : log.items())
|
||||
{
|
||||
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
|
||||
snprintf(buf, 1024, " %s=%s", el.key().c_str(), value.c_str());
|
||||
ss << buf;
|
||||
}
|
||||
|
||||
const std::string str = ss.str();
|
||||
printf("%.*s\n", (int)str.size(), str.data());
|
||||
fflush(stdout);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// server utils
|
||||
|
@ -234,6 +257,7 @@ struct llama_server_queue {
|
|||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
if (task.id == -1) {
|
||||
task.id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", task.id}});
|
||||
}
|
||||
queue_tasks.push_back(std::move(task));
|
||||
condition_tasks.notify_one();
|
||||
|
@ -249,7 +273,9 @@ struct llama_server_queue {
|
|||
// Get the next id for creating anew task
|
||||
int get_new_id() {
|
||||
std::unique_lock<std::mutex> lock(mutex_tasks);
|
||||
return id++;
|
||||
int new_id = id++;
|
||||
LOG_VERBOSE("new task id", {{"new_id", new_id}});
|
||||
return new_id;
|
||||
}
|
||||
|
||||
// Register function to process a new task
|
||||
|
@ -296,8 +322,7 @@ struct llama_server_queue {
|
|||
void start_loop() {
|
||||
running = true;
|
||||
while (true) {
|
||||
// new task arrived
|
||||
LOG_VERBOSE("have new task", {});
|
||||
LOG_VERBOSE("new task may arrive", {});
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
|
@ -309,7 +334,7 @@ struct llama_server_queue {
|
|||
task_server task = queue_tasks.front();
|
||||
queue_tasks.erase(queue_tasks.begin());
|
||||
lock.unlock();
|
||||
LOG_VERBOSE("callback_new_task", {});
|
||||
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
|
||||
callback_new_task(task);
|
||||
}
|
||||
LOG_VERBOSE("update_multitasks", {});
|
||||
|
@ -392,12 +417,14 @@ struct llama_server_response {
|
|||
|
||||
// add the task_id to the list of tasks waiting for response
|
||||
void add_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.insert(task_id);
|
||||
}
|
||||
|
||||
// when thr request is finished, we can remove task associated with it
|
||||
void remove_waiting_task_id(int task_id) {
|
||||
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
waiting_task_ids.erase(task_id);
|
||||
// also clear pending results, just in case
|
||||
|
@ -418,7 +445,6 @@ struct llama_server_response {
|
|||
condition_results.wait(lock, [&]{
|
||||
return !queue_results.empty();
|
||||
});
|
||||
LOG_VERBOSE("condition_results unblock", {});
|
||||
|
||||
for (int i = 0; i < (int) queue_results.size(); i++)
|
||||
{
|
||||
|
@ -444,20 +470,20 @@ struct llama_server_response {
|
|||
// Send a new result to a waiting task_id
|
||||
void send(task_result result) {
|
||||
std::unique_lock<std::mutex> lock(mutex_results);
|
||||
LOG_VERBOSE("send new result", {});
|
||||
LOG_VERBOSE("send new result", {{"task_id", result.id}});
|
||||
for (auto& task_id : waiting_task_ids) {
|
||||
// LOG_TEE("waiting task id %i \n", task_id);
|
||||
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
||||
if (result.multitask_id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("callback_update_multitask", {});
|
||||
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
|
||||
callback_update_multitask(task_id, result.id, result);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (result.id == task_id)
|
||||
{
|
||||
LOG_VERBOSE("queue_results.push_back", {});
|
||||
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
|
||||
queue_results.push_back(result);
|
||||
condition_results.notify_all();
|
||||
return;
|
||||
|
|
|
@ -960,7 +960,7 @@ int main(int argc, char ** argv) {
|
|||
struct ggml_opt_context * opt = train->opt;
|
||||
|
||||
// set opt params from command line
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
opt->params.print_forward_graph = false;
|
||||
opt->params.print_backward_graph = false;
|
||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
|
|
138
ggml-cuda.cu
138
ggml-cuda.cu
|
@ -6369,11 +6369,11 @@ static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int n
|
|||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||
swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||
swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
|
@ -7927,10 +7927,10 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
|||
|
||||
const dim3 block_dims(ncols, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
if (order == GGML_SORT_ASC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
} else if (order == GGML_SORT_DESC) {
|
||||
k_argsort_f32_i32<GGML_SORT_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
@ -8362,11 +8362,11 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
|||
|
||||
cudaMemcpyKind kind;
|
||||
char * src_ptr;
|
||||
if (src->backend == GGML_BACKEND_CPU) {
|
||||
if (src->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
kind = cudaMemcpyHostToDevice;
|
||||
src_ptr = (char *) src->data;
|
||||
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||
kind = cudaMemcpyDeviceToDevice;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
int id;
|
||||
|
@ -8771,7 +8771,7 @@ static void ggml_cuda_op_mul_mat_q(
|
|||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
|
||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
|
@ -8920,7 +8920,7 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
|||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the kernel writes into
|
||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
|
||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
|
@ -9096,7 +9096,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// ldc == nrows of the matrix that cuBLAS writes into
|
||||
int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
|
||||
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
|
||||
|
||||
const int compute_capability = g_device_caps[id].cc;
|
||||
|
||||
|
@ -9444,7 +9444,7 @@ static void ggml_cuda_op_soft_max(
|
|||
const bool use_src2 = src2 != nullptr;
|
||||
|
||||
if (use_src2) {
|
||||
const bool src2_on_device = src2->backend == GGML_BACKEND_GPU;
|
||||
const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
if (src2_on_device) {
|
||||
ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||
|
@ -9502,16 +9502,16 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
|||
const bool use_src1 = src1 != nullptr;
|
||||
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||||
|
||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
|
||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
// dd = data device
|
||||
float * src0_ddf = nullptr;
|
||||
|
@ -9555,7 +9555,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
|||
CUDA_CHECK(cudaMemcpyAsync(dst->data, dst_ddf, ggml_nbytes(dst), cudaMemcpyDeviceToHost, main_stream));
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
}
|
||||
|
@ -9636,8 +9636,8 @@ static void ggml_cuda_op_mul_mat(
|
|||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
|
||||
|
||||
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
||||
|
@ -9653,20 +9653,20 @@ static void ggml_cuda_op_mul_mat(
|
|||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||||
|
||||
const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
|
||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
GGML_ASSERT(!(split && ne02 > 1));
|
||||
GGML_ASSERT(!(split && ne03 > 1));
|
||||
GGML_ASSERT(!(split && ne02 < ne12));
|
||||
|
||||
std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
|
||||
if (split) {
|
||||
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_GPU_SPLIT check
|
||||
// TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
|
||||
// GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
|
||||
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
||||
tensor_split = buft_ctx->tensor_split;
|
||||
|
@ -9724,8 +9724,8 @@ static void ggml_cuda_op_mul_mat(
|
|||
|
||||
used_devices++;
|
||||
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||
|
||||
ggml_cuda_set_device(id);
|
||||
cudaStream_t stream = g_cudaStreams[id][0];
|
||||
|
@ -9776,8 +9776,8 @@ static void ggml_cuda_op_mul_mat(
|
|||
continue;
|
||||
}
|
||||
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device;
|
||||
const int64_t row_diff = dev[id].row_high - dev[id].row_low;
|
||||
|
||||
ggml_cuda_set_device(id);
|
||||
|
@ -9802,12 +9802,12 @@ static void ggml_cuda_op_mul_mat(
|
|||
|
||||
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
||||
// in that case an offset on dst_ddf_i is needed
|
||||
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device) {
|
||||
dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
|
||||
}
|
||||
|
||||
// copy src0, src1 to device if necessary
|
||||
if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
|
||||
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
|
||||
if (id != g_main_device) {
|
||||
if (convert_src1_to_q8_1) {
|
||||
char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
|
||||
|
@ -9820,14 +9820,14 @@ static void ggml_cuda_op_mul_mat(
|
|||
src1_ncols*ne10*sizeof(float), stream));
|
||||
}
|
||||
}
|
||||
} else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
|
||||
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
|
||||
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
|
||||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
|
||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
|
||||
quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
@ -9845,10 +9845,10 @@ static void ggml_cuda_op_mul_mat(
|
|||
if (!dst_on_device) {
|
||||
void * dst_off_device;
|
||||
cudaMemcpyKind kind;
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
dst_off_device = dst->data;
|
||||
kind = cudaMemcpyDeviceToHost;
|
||||
} else if (dst->backend == GGML_BACKEND_GPU) {
|
||||
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
dst_off_device = dst_extra->data_device[g_main_device];
|
||||
kind = cudaMemcpyDeviceToDevice;
|
||||
} else {
|
||||
|
@ -9913,7 +9913,7 @@ static void ggml_cuda_op_mul_mat(
|
|||
}
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
ggml_cuda_set_device(g_main_device);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
@ -10019,7 +10019,7 @@ GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const stru
|
|||
|
||||
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
|
@ -10050,7 +10050,7 @@ static void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor
|
|||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -10109,7 +10109,7 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
|
|||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
@ -10255,11 +10255,11 @@ static void ggml_cuda_mul_mat_batched_cublas(const ggml_tensor * src0, const ggm
|
|||
|
||||
static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool all_on_device =
|
||||
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
||||
(src1->backend == GGML_BACKEND_GPU) &&
|
||||
( dst->backend == GGML_BACKEND_GPU);
|
||||
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
|
||||
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
|
||||
( dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
|
||||
int64_t min_compute_capability = INT_MAX;
|
||||
|
||||
|
@ -10409,7 +10409,7 @@ static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
|
|||
GGML_ASSERT(!ggml_is_transposed(src00));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
|
||||
|
@ -10553,7 +10553,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||
|
||||
cudaStream_t stream = g_cudaStreams[g_main_device][0];
|
||||
|
||||
if (ids->backend == GGML_BACKEND_GPU) {
|
||||
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device];
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
@ -10570,20 +10570,20 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
src1_row.backend = GGML_BACKEND_GPU;
|
||||
dst_row.backend = GGML_BACKEND_GPU;
|
||||
src1_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||
dst_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
src1_row.extra = &src1_row_extra;
|
||||
dst_row.extra = &dst_row_extra;
|
||||
|
||||
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
|
||||
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
||||
(char *) src1->data : (char *) src1_extra->data_device[g_main_device];
|
||||
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
|
||||
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
||||
(char *) dst->data : (char *) dst_extra->data_device[g_main_device];
|
||||
|
||||
if (src1->ne[1] == 1) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
//int32_t row_id;
|
||||
|
@ -10611,9 +10611,9 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||
src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
|
||||
dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
|
||||
|
||||
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_CPU ?
|
||||
const cudaMemcpyKind src1_kind = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
||||
cudaMemcpyHostToDevice : cudaMemcpyDeviceToDevice;
|
||||
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_CPU ?
|
||||
const cudaMemcpyKind dst_kind = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
||||
cudaMemcpyDeviceToHost : cudaMemcpyDeviceToDevice;
|
||||
|
||||
for (int32_t row_id = 0; row_id < n_as; ++row_id) {
|
||||
|
@ -10668,7 +10668,7 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
|
|||
}
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
}
|
||||
}
|
||||
|
@ -10685,8 +10685,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
|||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
@ -10817,9 +10817,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||
if (!g_cublas_loaded) return false;
|
||||
|
||||
ggml_cuda_func_t func;
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
||||
return false;
|
||||
|
@ -10966,14 +10966,14 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||
return false;
|
||||
}
|
||||
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||
ggml_cuda_set_peer_access(tensor->src[1]->ne[1]);
|
||||
}
|
||||
|
||||
if (params->ith != 0) {
|
||||
return true;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||
return true;
|
||||
}
|
||||
func(tensor->src[0], tensor->src[1], tensor);
|
||||
|
@ -11072,7 +11072,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
|||
|
||||
extra->data_device[ctx->device] = tensor->data;
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
tensor->extra = extra;
|
||||
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
|
@ -11087,7 +11087,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
|||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
|
@ -11098,7 +11098,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t
|
|||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
|
@ -11333,7 +11333,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
|
|||
CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
|
||||
}
|
||||
}
|
||||
tensor->backend = GGML_BACKEND_GPU_SPLIT;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
tensor->extra = extra;
|
||||
}
|
||||
|
||||
|
@ -11605,7 +11605,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
|
|||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStreams[cuda_ctx->device][0]));
|
||||
}
|
||||
|
@ -11614,7 +11614,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
|
|||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStreams[cuda_ctx->device][0]));
|
||||
}
|
||||
|
@ -11644,7 +11644,7 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
|
|||
ggml_cuda_set_main_device(cuda_ctx->device);
|
||||
|
||||
ggml_compute_params params = {};
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
params.ith = 0;
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
@ -11654,13 +11654,13 @@ GGML_CALL static bool ggml_backend_cuda_graph_compute(ggml_backend_t backend, gg
|
|||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
assert(node->backend == GGML_BACKEND_GPU || node->backend == GGML_BACKEND_GPU_SPLIT);
|
||||
assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
|
||||
assert(node->extra != nullptr);
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->backend == GGML_BACKEND_GPU || node->src[j]->backend == GGML_BACKEND_GPU_SPLIT);
|
||||
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
|
||||
assert(node->src[j]->extra != nullptr);
|
||||
}
|
||||
|
|
|
@ -2262,8 +2262,8 @@ static bool ggml_metal_graph_compute(
|
|||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (order) {
|
||||
case GGML_SORT_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
||||
case GGML_SORT_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
||||
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
||||
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
||||
default: GGML_ASSERT(false);
|
||||
};
|
||||
|
||||
|
|
|
@ -1354,7 +1354,7 @@ static void ggml_cl_pool_free(cl_mem mem, size_t size) {
|
|||
}
|
||||
|
||||
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
||||
if (tensor->backend != GGML_BACKEND_GPU) {
|
||||
if (tensor->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -1412,7 +1412,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
|
|||
}
|
||||
|
||||
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
@ -1476,7 +1476,7 @@ void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src
|
|||
}
|
||||
|
||||
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
@ -1566,13 +1566,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
size_t y_size;
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
||||
}
|
||||
cl_mem d_Y = src1->backend == GGML_BACKEND_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = dst->backend == GGML_BACKEND_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
|
||||
size_t x_offset = 0;
|
||||
|
||||
|
@ -1580,7 +1580,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
// TODO: copy src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
if (src0->backend == GGML_BACKEND_GPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||
} else {
|
||||
// copy src0 to device
|
||||
|
@ -1589,7 +1589,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
|
||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
||||
// copy src1 to device
|
||||
if (src1->backend == GGML_BACKEND_CPU) {
|
||||
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||
}
|
||||
|
||||
|
@ -1612,7 +1612,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
}
|
||||
|
||||
// copy dst to host
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||
}
|
||||
|
@ -1621,13 +1621,13 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
}
|
||||
}
|
||||
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_X, x_size);
|
||||
}
|
||||
if (src1->backend != GGML_BACKEND_GPU) {
|
||||
if (src1->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
}
|
||||
if (dst->backend != GGML_BACKEND_GPU) {
|
||||
if (dst->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
}
|
||||
}
|
||||
|
@ -1670,7 +1670,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
size_t y_size;
|
||||
size_t d_size;
|
||||
cl_mem d_X;
|
||||
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
||||
d_X = (cl_mem) src0->extra;
|
||||
} else {
|
||||
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
||||
|
@ -1687,7 +1687,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
// TODO: copy src0 here when r3>1
|
||||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
if (src0->backend == GGML_BACKEND_GPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
x_offset = (i03 * ne02 + i02) * x_ne;
|
||||
} else {
|
||||
// copy src0 to device
|
||||
|
@ -1741,7 +1741,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
}
|
||||
|
||||
// copy dst to host, then convert to float
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||
|
@ -1753,7 +1753,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
}
|
||||
}
|
||||
|
||||
if (src0->backend != GGML_BACKEND_GPU) {
|
||||
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_cl_pool_free(d_X, x_size);
|
||||
}
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
|
@ -1798,7 +1798,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||
cl_mem d_Q;
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
||||
}
|
||||
|
||||
|
@ -1817,10 +1817,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
// copy src0 to device if necessary
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
events.emplace_back();
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
d_Q = (cl_mem) src0->extra;
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
|
@ -1829,7 +1829,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
if (!mul_mat_vec) {
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne / global_denom;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
||||
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||
|
@ -1843,7 +1843,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
|
||||
// compute
|
||||
const size_t global = ne01 * local;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
|
@ -1895,7 +1895,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||
}
|
||||
ggml_cl_pool_free(d_Y, y_size);
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
ggml_cl_pool_free(d_Q, q_size);
|
||||
}
|
||||
}
|
||||
|
@ -1911,7 +1911,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
|
|||
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -1993,7 +1993,7 @@ void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
|||
CL_CHECK(clFinish(queue));
|
||||
|
||||
tensor->extra = dst;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
}
|
||||
|
||||
// ggml-backend
|
||||
|
@ -2045,7 +2045,7 @@ static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
|||
ctx->sub_buffers.push_back(sub_buffer);
|
||||
tensor->extra = sub_buffer;
|
||||
}
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
|
|
152
ggml-sycl.cpp
152
ggml-sycl.cpp
|
@ -3338,7 +3338,7 @@ void print_ggml_tensor(const char*name, struct ggml_tensor *src){
|
|||
|
||||
size_t total_elements = ggml_nelements(src);
|
||||
|
||||
const bool src_on_device = src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src_on_device = src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
float *src_data =NULL;
|
||||
if(src_on_device) {
|
||||
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
|
@ -8086,11 +8086,11 @@ static void k_argsort_f32_i32(const float * x, int * dst, const int ncols,
|
|||
int ixj = col ^ j;
|
||||
if (ixj > col) {
|
||||
if ((col & k) == 0) {
|
||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
|
||||
swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
} else {
|
||||
if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||
if (order == GGML_SORT_ORDER_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
|
||||
swap(dst_row[col], dst_row[ixj]);
|
||||
}
|
||||
}
|
||||
|
@ -10825,7 +10825,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||
|
||||
const sycl::range<3> block_dims(1, 1, ncols);
|
||||
const sycl::range<3> block_nums(1, nrows, 1);
|
||||
if (order == GGML_SORT_ASC) {
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
/*
|
||||
DPCT1049:44: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
|
@ -10834,9 +10834,9 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
k_argsort_f32_i32<GGML_SORT_ASC>(x, dst, ncols, item_ct1);
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(x, dst, ncols, item_ct1);
|
||||
});
|
||||
} else if (order == GGML_SORT_DESC) {
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
/*
|
||||
DPCT1049:45: The work-group size passed to the SYCL kernel may exceed
|
||||
the limit. To get the device limit, query
|
||||
|
@ -10845,7 +10845,7 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
|
|||
stream->parallel_for(
|
||||
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
||||
[=](sycl::nd_item<3> item_ct1) {
|
||||
k_argsort_f32_i32<GGML_SORT_DESC>(x, dst, ncols, item_ct1);
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(x, dst, ncols, item_ct1);
|
||||
});
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
|
@ -11407,12 +11407,12 @@ static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
|
|||
|
||||
dpct::memcpy_direction kind;
|
||||
char * src_ptr;
|
||||
if (src->backend == GGML_BACKEND_CPU) {
|
||||
if (src->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
kind = dpct::host_to_device;
|
||||
src_ptr = (char *) src->data;
|
||||
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_CPU src_ptr %p\n", src_ptr);
|
||||
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||
// GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
|
||||
} else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||
GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||
kind = dpct::device_to_device;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
int id;
|
||||
|
@ -11846,7 +11846,7 @@ inline void ggml_sycl_op_mul_mat_q(
|
|||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
|
||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||
const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
|
@ -12119,7 +12119,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
|||
|
||||
// the main device has a larger memory buffer to hold the results from all GPUs
|
||||
// ldc == nrows of the matrix that cuBLAS writes into
|
||||
int ldc = dst->backend == GGML_BACKEND_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||
int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
|
||||
|
||||
#ifdef GGML_SYCL_F16
|
||||
bool use_fp16 = true; // TODO(Yu) SYCL capability check
|
||||
|
@ -12501,16 +12501,16 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0,
|
|||
const bool use_src1 = src1 != nullptr;
|
||||
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||||
|
||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
|
||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
// dd = data device
|
||||
float * src0_ddf = nullptr;
|
||||
|
@ -12565,7 +12565,7 @@ static void ggml_sycl_op_flatten(const ggml_tensor *src0,
|
|||
main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst))));
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||
dpct::get_current_device().queues_wait_and_throw()));
|
||||
}
|
||||
|
@ -12640,8 +12640,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
|
||||
GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
|
||||
|
||||
|
@ -12656,13 +12656,13 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
||||
const bool src1_is_contiguous = ggml_is_contiguous(src1);
|
||||
|
||||
int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
|
||||
|
||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
GGML_ASSERT(!(split && ne02 > 1));
|
||||
GGML_ASSERT(!(split && ne03 > 1));
|
||||
GGML_ASSERT(!(split && ne02 < ne12));
|
||||
|
@ -12717,8 +12717,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
|
||||
used_devices++;
|
||||
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||
|
||||
ggml_sycl_set_device(get_device_id_by_index(id));
|
||||
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
||||
|
@ -12782,8 +12782,8 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
continue;
|
||||
}
|
||||
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device_index;
|
||||
const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index;
|
||||
const int64_t row_diff = row_high[id] - row_low[id];
|
||||
|
||||
ggml_sycl_set_device(get_device_id_by_index(id));
|
||||
|
@ -12809,12 +12809,12 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
|
||||
// the main device memory buffer can be on VRAM scratch, with space for all partial results
|
||||
// in that case an offset on dst_ddf_i is needed
|
||||
if (dst->backend == GGML_BACKEND_GPU && id == g_main_device_index) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device_index) {
|
||||
dst_dd_i += row_low[id]; // offset is 0 if no tensor split
|
||||
}
|
||||
|
||||
// copy src0, src1 to device if necessary
|
||||
if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
|
||||
if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
|
||||
if (id != g_main_device_index) {
|
||||
if (convert_src1_to_q8_1) {
|
||||
char * src1_ddq_i_source = src1_ddq[g_main_device_index] + src1_ddq_i_offset;
|
||||
|
@ -12830,14 +12830,14 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
src1_ncols * ne10 * sizeof(float))));
|
||||
}
|
||||
}
|
||||
} else if (src1->backend == GGML_BACKEND_CPU || (src1_on_device && !src1_is_contiguous)) {
|
||||
} else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
|
||||
SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
|
||||
src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_CPU || !src1_is_contiguous)) {
|
||||
if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
|
||||
quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
|
||||
/*
|
||||
DPCT1010:92: SYCL uses exceptions to report errors and does
|
||||
|
@ -12867,10 +12867,10 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
if (!dst_on_device) {
|
||||
void * dst_off_device;
|
||||
dpct::memcpy_direction kind;
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
dst_off_device = dst->data;
|
||||
kind = dpct::device_to_host;
|
||||
} else if (dst->backend == GGML_BACKEND_GPU) {
|
||||
} else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
dst_off_device = dst_extra->data_device[g_main_device_index];
|
||||
kind = dpct::device_to_device;
|
||||
} else {
|
||||
|
@ -12954,7 +12954,7 @@ static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
|
|||
}
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||
dpct::get_current_device().queues_wait_and_throw()));
|
||||
|
@ -13091,7 +13091,7 @@ static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
|
|||
const ggml_tensor *src1,
|
||||
ggml_tensor *dst) try {
|
||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
|
@ -13129,7 +13129,7 @@ static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
|
|||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -13196,7 +13196,7 @@ static void ggml_sycl_mul_mat_mat_batched_sycl(const ggml_tensor *src0,
|
|||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -13372,11 +13372,11 @@ catch (sycl::exception const &exc) {
|
|||
|
||||
static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool all_on_device =
|
||||
(src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
|
||||
(src1->backend == GGML_BACKEND_GPU) &&
|
||||
( dst->backend == GGML_BACKEND_GPU);
|
||||
(src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
|
||||
(src1->backend == GGML_BACKEND_TYPE_GPU) &&
|
||||
( dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
|
||||
|
||||
int64_t min_compute_capability = INT_MAX;
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
|
@ -13505,7 +13505,7 @@ static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
|
|||
GGML_ASSERT(!ggml_is_transposed(src00));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
|
||||
GGML_ASSERT(src00->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
|
||||
|
@ -13643,7 +13643,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|||
|
||||
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
||||
|
||||
if (ids->backend == GGML_BACKEND_GPU) {
|
||||
if (ids->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device_index];
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(
|
||||
stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
|
||||
|
@ -13661,20 +13661,20 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
src1_row.backend = GGML_BACKEND_GPU;
|
||||
dst_row.backend = GGML_BACKEND_GPU;
|
||||
src1_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||
dst_row.backend = GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
src1_row.extra = &src1_row_extra;
|
||||
dst_row.extra = &dst_row_extra;
|
||||
|
||||
char * src1_original = src1->backend == GGML_BACKEND_CPU ?
|
||||
char * src1_original = src1->backend == GGML_BACKEND_TYPE_CPU ?
|
||||
(char *) src1->data : (char *) src1_extra->data_device[g_main_device_index];
|
||||
char * dst_original = dst->backend == GGML_BACKEND_CPU ?
|
||||
char * dst_original = dst->backend == GGML_BACKEND_TYPE_CPU ?
|
||||
(char *) dst->data : (char *) dst_extra->data_device[g_main_device_index];
|
||||
|
||||
if (src1->ne[1] == 1) {
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
||||
//int32_t row_id;
|
||||
|
@ -13756,7 +13756,7 @@ static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
|
|||
}
|
||||
}
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
|
||||
}
|
||||
}
|
||||
|
@ -13779,8 +13779,8 @@ static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
|
|||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
||||
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
||||
|
@ -13887,17 +13887,17 @@ void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
|
|||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
for (int64_t id = 0; id < g_device_count; ++id) {
|
||||
if (backend == GGML_BACKEND_GPU && id != g_main_device_index) {
|
||||
if (backend == GGML_BACKEND_TYPE_GPU && id != g_main_device_index) {
|
||||
continue;
|
||||
}
|
||||
ggml_sycl_set_device(get_device_id_by_index(id));
|
||||
const dpct::queue_ptr stream = g_syclStreams[id][0];
|
||||
|
||||
int64_t row_low, row_high;
|
||||
if (backend == GGML_BACKEND_GPU) {
|
||||
if (backend == GGML_BACKEND_TYPE_GPU) {
|
||||
row_low = 0;
|
||||
row_high = nrows;
|
||||
} else if (backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
} else if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||
const int64_t rounding = get_row_rounding(tensor->type);
|
||||
|
||||
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
|
||||
|
@ -13946,7 +13946,7 @@ void ggml_sycl_transform_tensor(void *data, struct ggml_tensor *tensor) try {
|
|||
|
||||
extra->data_device[id] = buf;
|
||||
|
||||
if (backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
if (backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||
for (int64_t is = 0; is < MAX_STREAMS; ++is) {
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(extra->events[id][is] =
|
||||
new sycl::event()));
|
||||
|
@ -13963,7 +13963,7 @@ catch (sycl::exception const &exc) {
|
|||
}
|
||||
|
||||
void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
|
||||
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
|
||||
if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_TYPE_GPU && tensor->backend != GGML_BACKEND_TYPE_GPU_SPLIT) ) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -14016,15 +14016,15 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
|
|||
return;
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
const ggml_op src0_op = tensor->src[0]->op;
|
||||
if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
|
||||
ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
|
||||
}
|
||||
}
|
||||
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
|
||||
if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
|
||||
}
|
||||
|
||||
|
@ -14042,7 +14042,7 @@ static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
|
|||
SYCL_CHECK(ggml_sycl_set_device(g_main_device));
|
||||
const dpct::queue_ptr stream = g_syclStreams[g_main_device_index][0];
|
||||
|
||||
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
|
||||
if (inplace && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
|
||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
|
||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
||||
size_t offset = 0;
|
||||
|
@ -14111,7 +14111,7 @@ void ggml_sycl_assign_scratch_offset(struct ggml_tensor *tensor,
|
|||
|
||||
const bool inplace = tensor->view_src != nullptr;
|
||||
|
||||
if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) {
|
||||
if (inplace && (tensor->view_src->backend == GGML_BACKEND_TYPE_GPU || tensor->view_src->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
|
||||
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra;
|
||||
char * src0_ddc = (char *) src0_extra->data_device[g_main_device_index];
|
||||
size_t view_offset = 0;
|
||||
|
@ -14132,7 +14132,7 @@ catch (sycl::exception const &exc) {
|
|||
}
|
||||
|
||||
void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(ggml_is_contiguous(tensor));
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
@ -14219,9 +14219,9 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
|
|||
if (!g_sycl_loaded) return false;
|
||||
|
||||
ggml_sycl_func_t func;
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
|
||||
return false;
|
||||
|
@ -14359,14 +14359,14 @@ bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_
|
|||
return false;
|
||||
}
|
||||
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
|
||||
ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
|
||||
}
|
||||
|
||||
if (params->ith != 0) {
|
||||
return true;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||
return true;
|
||||
}
|
||||
func(tensor->src[0], tensor->src[1], tensor);
|
||||
|
@ -14517,7 +14517,7 @@ static void ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
|||
|
||||
extra->data_device[ctx->device] = tensor->data;
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
tensor->extra = extra;
|
||||
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
|
@ -14548,7 +14548,7 @@ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
|||
ggml_tensor *tensor,
|
||||
const void *data, size_t offset,
|
||||
size_t size) try {
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||||
|
||||
|
@ -14573,7 +14573,7 @@ static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
|||
const ggml_tensor *tensor,
|
||||
void *data, size_t offset,
|
||||
size_t size) try {
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
|
||||
|
||||
|
@ -14809,7 +14809,7 @@ static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
|
|||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
||||
(char *)tensor->data + offset, data, size)));
|
||||
|
@ -14827,7 +14827,7 @@ static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
|
|||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
|
||||
data, (const char *)tensor->data + offset, size)));
|
||||
|
@ -14880,7 +14880,7 @@ static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||
ggml_sycl_set_main_device(sycl_ctx->device);
|
||||
|
||||
ggml_compute_params params = {};
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
params.ith = 0;
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
@ -14888,13 +14888,13 @@ static bool ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph
|
|||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
||||
continue;
|
||||
|
||||
assert(node->backend == GGML_BACKEND_GPU);
|
||||
assert(node->backend == GGML_BACKEND_TYPE_GPU);
|
||||
assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||||
assert(node->extra != nullptr);
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
assert(node->src[j]->backend == GGML_BACKEND_GPU);
|
||||
assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
|
||||
assert(node->src[j]->extra != nullptr);
|
||||
}
|
||||
|
|
102
ggml-vulkan.cpp
102
ggml-vulkan.cpp
|
@ -2320,8 +2320,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
|||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
|
@ -2453,7 +2453,7 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
|||
// compute
|
||||
ggml_vk_matmul(ctx, subctx, *pipeline, { d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 }, { d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k }, ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21); // NOLINT
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data);
|
||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
|
||||
|
@ -2506,8 +2506,8 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
|||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_x = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
|
@ -2630,7 +2630,7 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
|||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, *dmmv, { { d_X, x_offset, x_sz }, { d_Y, y_buffer_offset, y_sz + y_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 3 * sizeof(int), &pc, { (uint32_t)ne01, 1, 1});
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
|
@ -2647,7 +2647,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
|
@ -2679,7 +2679,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const uint64_t x_ne = ne00 * ne01 * ne02;
|
||||
const uint64_t y_ne = ne10 * ne11 * ne12;
|
||||
|
@ -2721,7 +2721,7 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) dst->data;
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
|
@ -2738,7 +2738,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
|
@ -2771,7 +2771,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
const uint64_t d_ne = ne01 * ne11 * ne12;
|
||||
|
||||
|
@ -2814,7 +2814,7 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) dst->data;
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
|
@ -2832,7 +2832,7 @@ static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * sr
|
|||
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU);
|
||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
}
|
||||
|
||||
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
|
@ -2880,8 +2880,8 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
|||
// TODO: support for transposed / permuted tensors
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb00 == sizeof(float));
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
||||
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
|
@ -3110,8 +3110,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||
}
|
||||
}
|
||||
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_TYPE_GPU && !src0_uma;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_TYPE_GPU && !src1_uma;
|
||||
|
||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment);
|
||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device.lock()->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||
|
@ -3120,7 +3120,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
|
||||
// Workaround for tiny tensor inputs on ROPE
|
||||
if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > d_D->size) {
|
||||
if (use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU && y_sz > d_D->size) {
|
||||
y_sz = VK_WHOLE_SIZE;
|
||||
}
|
||||
|
||||
|
@ -3209,9 +3209,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
}
|
||||
if (dst->backend == GGML_BACKEND_CPU && op == GGML_OP_CPY) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU && op == GGML_OP_CPY) {
|
||||
ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
|
||||
} else if(dst->backend == GGML_BACKEND_CPU) {
|
||||
} else if(dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
float * d = (float *) dst->data;
|
||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
|
||||
|
@ -3253,7 +3253,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||
ggml_vk_sync_buffers(subctx);
|
||||
ggml_vk_dispatch_pipeline(ctx, subctx, *pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||
}
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
// copy dst to host
|
||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
|
||||
}
|
||||
|
@ -3359,7 +3359,7 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
|
|||
|
||||
static void ggml_vk_nop(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||
// If backend is CPU, data from src0 has to be copied off the device
|
||||
if (dst->backend == GGML_BACKEND_CPU) {
|
||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
vk_buffer d_D = extra_src0->buffer_gpu.lock();
|
||||
ggml_vk_sync_buffers(subctx);
|
||||
|
@ -3994,9 +3994,9 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm
|
|||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
|
||||
#endif
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_GPU));
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && (node->src[1]->backend == GGML_BACKEND_TYPE_GPU));
|
||||
|
||||
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT)) {
|
||||
return;
|
||||
|
@ -4215,9 +4215,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
|||
}
|
||||
|
||||
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_GPU || node->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_GPU);
|
||||
const bool any_on_device = node->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (node->src[0] != nullptr && (node->src[0]->backend == GGML_BACKEND_TYPE_GPU || node->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (node->src[1] != nullptr && node->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
if (ctx->disable || (!any_on_device && node->op != GGML_OP_MUL_MAT) || (node->op == GGML_OP_MUL_MAT && !any_on_device && !ggml_vk_can_mul_mat(node->src[0], node->src[1], node))) {
|
||||
return;
|
||||
|
@ -4371,7 +4371,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
last_node = true;
|
||||
#endif
|
||||
|
||||
if (node->backend == GGML_BACKEND_CPU || last_node) {
|
||||
if (node->backend == GGML_BACKEND_TYPE_CPU || last_node) {
|
||||
ggml_vk_ctx_end(ctx->compute_ctx);
|
||||
ctx->compute_ctx->exit_tensor = node;
|
||||
ctx->compute_ctx = nullptr;
|
||||
|
@ -4379,9 +4379,9 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
|
||||
const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
|
||||
|| (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
|
||||
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
if (ctx->disable || (!any_on_device && tensor->op != GGML_OP_MUL_MAT)) {
|
||||
return false;
|
||||
|
@ -4442,7 +4442,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
if (params->ith != 0) {
|
||||
return true;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -4745,7 +4745,7 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
|
|||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
||||
tensor->extra = extra;
|
||||
}
|
||||
|
||||
|
@ -4753,7 +4753,7 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu
|
|||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
|
@ -4768,7 +4768,7 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu
|
|||
#ifdef GGML_VULKAN_DEBUG
|
||||
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
|
@ -4999,7 +4999,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
|||
#endif
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
|
@ -5020,7 +5020,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
|||
#endif
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
|
@ -5097,7 +5097,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
|||
int last_node = cgraph->n_nodes - 1;
|
||||
|
||||
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
||||
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) {
|
||||
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_TYPE_GPU) {
|
||||
last_node -= 1;
|
||||
}
|
||||
|
||||
|
@ -5106,7 +5106,7 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
|||
}
|
||||
|
||||
ggml_compute_params params = {};
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
params.type = GGML_TASK_TYPE_COMPUTE;
|
||||
params.ith = 0;
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
@ -5410,7 +5410,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
|
|||
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
|
||||
void * tensor_data = tensor->data;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
const size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
|
@ -5436,14 +5436,14 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
|
|||
std::vector<const ggml_tensor *> done;
|
||||
ggml_vk_print_graph_origin(tensor, done);
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
free(tensor_data);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||
return;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
return;
|
||||
}
|
||||
|
@ -5481,7 +5481,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -5518,10 +5518,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
|
||||
src0_buffer = malloc(src0_size);
|
||||
src0_clone->data = src0_buffer;
|
||||
if (src0->backend == GGML_BACKEND_CPU) {
|
||||
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
memcpy(src0_clone->data, src0->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
||||
|
@ -5561,10 +5561,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
|
||||
src1_buffer = malloc(src1_size);
|
||||
src1_clone->data = src1_buffer;
|
||||
if (src1->backend == GGML_BACKEND_CPU) {
|
||||
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
||||
memcpy(src1_clone->data, src1->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (src1->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
uint64_t offset = extra->offset;
|
||||
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
||||
|
@ -5723,7 +5723,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE || tensor->op == GGML_OP_TRANSPOSE) {
|
||||
return;
|
||||
}
|
||||
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
|
||||
|
@ -5735,7 +5735,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
|
||||
void * tensor_data = tensor->data;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
|
@ -5868,7 +5868,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||
comp_result = nullptr;
|
||||
comp_size = 0;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
|
||||
free(tensor_data);
|
||||
}
|
||||
}
|
||||
|
|
38
ggml.h
38
ggml.h
|
@ -364,9 +364,9 @@ extern "C" {
|
|||
};
|
||||
|
||||
enum ggml_backend_type {
|
||||
GGML_BACKEND_CPU = 0,
|
||||
GGML_BACKEND_GPU = 10,
|
||||
GGML_BACKEND_GPU_SPLIT = 20,
|
||||
GGML_BACKEND_TYPE_CPU = 0,
|
||||
GGML_BACKEND_TYPE_GPU = 10,
|
||||
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
||||
};
|
||||
|
||||
// model file types
|
||||
|
@ -498,9 +498,9 @@ extern "C" {
|
|||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
GGML_OBJECT_TENSOR,
|
||||
GGML_OBJECT_GRAPH,
|
||||
GGML_OBJECT_WORK_BUFFER
|
||||
GGML_OBJECT_TYPE_TENSOR,
|
||||
GGML_OBJECT_TYPE_GRAPH,
|
||||
GGML_OBJECT_TYPE_WORK_BUFFER
|
||||
};
|
||||
|
||||
enum ggml_log_level {
|
||||
|
@ -642,9 +642,9 @@ extern "C" {
|
|||
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
||||
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
||||
enum ggml_task_type {
|
||||
GGML_TASK_INIT = 0,
|
||||
GGML_TASK_COMPUTE,
|
||||
GGML_TASK_FINALIZE,
|
||||
GGML_TASK_TYPE_INIT = 0,
|
||||
GGML_TASK_TYPE_COMPUTE,
|
||||
GGML_TASK_TYPE_FINALIZE,
|
||||
};
|
||||
|
||||
struct ggml_compute_params {
|
||||
|
@ -1649,8 +1649,8 @@ extern "C" {
|
|||
|
||||
// sort rows
|
||||
enum ggml_sort_order {
|
||||
GGML_SORT_ASC,
|
||||
GGML_SORT_DESC,
|
||||
GGML_SORT_ORDER_ASC,
|
||||
GGML_SORT_ORDER_DESC,
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_argsort(
|
||||
|
@ -1943,8 +1943,8 @@ extern "C" {
|
|||
|
||||
// optimization methods
|
||||
enum ggml_opt_type {
|
||||
GGML_OPT_ADAM,
|
||||
GGML_OPT_LBFGS,
|
||||
GGML_OPT_TYPE_ADAM,
|
||||
GGML_OPT_TYPE_LBFGS,
|
||||
};
|
||||
|
||||
// linesearch methods
|
||||
|
@ -1958,12 +1958,12 @@ extern "C" {
|
|||
|
||||
// optimization return values
|
||||
enum ggml_opt_result {
|
||||
GGML_OPT_OK = 0,
|
||||
GGML_OPT_DID_NOT_CONVERGE,
|
||||
GGML_OPT_NO_CONTEXT,
|
||||
GGML_OPT_INVALID_WOLFE,
|
||||
GGML_OPT_FAIL,
|
||||
GGML_OPT_CANCEL,
|
||||
GGML_OPT_RESULT_OK = 0,
|
||||
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
||||
GGML_OPT_RESULT_NO_CONTEXT,
|
||||
GGML_OPT_RESULT_INVALID_WOLFE,
|
||||
GGML_OPT_RESULT_FAIL,
|
||||
GGML_OPT_RESULT_CANCEL,
|
||||
|
||||
GGML_LINESEARCH_FAIL = -128,
|
||||
GGML_LINESEARCH_MINIMUM_STEP,
|
||||
|
|
64
llama.cpp
64
llama.cpp
|
@ -850,9 +850,9 @@ struct LLM_TN {
|
|||
//
|
||||
|
||||
static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
|
||||
{ LLAMA_ROPE_SCALING_NONE, "none" },
|
||||
{ LLAMA_ROPE_SCALING_LINEAR, "linear" },
|
||||
{ LLAMA_ROPE_SCALING_YARN, "yarn" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
|
||||
{ LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
|
||||
};
|
||||
|
||||
static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
|
||||
|
@ -862,7 +862,7 @@ static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
|
|||
}
|
||||
}
|
||||
|
||||
return LLAMA_ROPE_SCALING_UNSPECIFIED;
|
||||
return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
||||
}
|
||||
|
||||
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
|
||||
|
@ -1580,7 +1580,7 @@ struct llama_hparams {
|
|||
bool causal_attn = true;
|
||||
bool need_kq_pos = false;
|
||||
|
||||
uint32_t pooling_type = LLAMA_POOLING_NONE;
|
||||
uint32_t pooling_type = LLAMA_POOLING_TYPE_NONE;
|
||||
|
||||
bool operator!=(const llama_hparams & other) const {
|
||||
if (this->vocab_only != other.vocab_only) return true;
|
||||
|
@ -2345,9 +2345,9 @@ namespace GGUFMeta {
|
|||
|
||||
static const char * override_type_to_str(const llama_model_kv_override_type ty) {
|
||||
switch (ty) {
|
||||
case LLAMA_KV_OVERRIDE_BOOL: return "bool";
|
||||
case LLAMA_KV_OVERRIDE_INT: return "int";
|
||||
case LLAMA_KV_OVERRIDE_FLOAT: return "float";
|
||||
case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
|
||||
case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
|
||||
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
|
||||
}
|
||||
return "unknown";
|
||||
}
|
||||
|
@ -2358,13 +2358,13 @@ namespace GGUFMeta {
|
|||
LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
|
||||
__func__, override_type_to_str(override->tag), override->key);
|
||||
switch (override->tag) {
|
||||
case LLAMA_KV_OVERRIDE_BOOL: {
|
||||
case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
|
||||
LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_INT: {
|
||||
case LLAMA_KV_OVERRIDE_TYPE_INT: {
|
||||
LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
|
||||
} break;
|
||||
case LLAMA_KV_OVERRIDE_FLOAT: {
|
||||
case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
|
||||
LLAMA_LOG_INFO("%.6f\n", override->float_value);
|
||||
} break;
|
||||
default:
|
||||
|
@ -2383,7 +2383,7 @@ namespace GGUFMeta {
|
|||
template<typename OT>
|
||||
static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
|
||||
try_override(OT & target, const struct llama_model_kv_override *override) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_BOOL, override)) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, override)) {
|
||||
target = override->bool_value;
|
||||
return true;
|
||||
}
|
||||
|
@ -2393,7 +2393,7 @@ namespace GGUFMeta {
|
|||
template<typename OT>
|
||||
static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
|
||||
try_override(OT & target, const struct llama_model_kv_override *override) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_INT, override)) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, override)) {
|
||||
target = override->int_value;
|
||||
return true;
|
||||
}
|
||||
|
@ -2403,7 +2403,7 @@ namespace GGUFMeta {
|
|||
template<typename OT>
|
||||
static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
|
||||
try_override(T & target, const struct llama_model_kv_override *override) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_FLOAT, override)) {
|
||||
if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, override)) {
|
||||
target = override->float_value;
|
||||
return true;
|
||||
}
|
||||
|
@ -2999,7 +2999,7 @@ static void llm_load_hparams(
|
|||
std::string rope_scaling("linear");
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
|
||||
hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
|
||||
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_UNSPECIFIED);
|
||||
GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
|
||||
|
||||
// rope_freq_scale (inverse of the kv) is optional
|
||||
float ropescale = 0.0f;
|
||||
|
@ -3643,7 +3643,7 @@ static bool llm_load_tensors(
|
|||
model.buft_layer[i] = llama_default_buffer_type_cpu(true);
|
||||
}
|
||||
|
||||
if (split_mode == LLAMA_SPLIT_LAYER) {
|
||||
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
|
||||
// calculate the split points
|
||||
int device_count = llama_get_device_count();
|
||||
bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
|
||||
|
@ -3682,10 +3682,10 @@ static bool llm_load_tensors(
|
|||
}
|
||||
} else {
|
||||
ggml_backend_buffer_type_t split_buft;
|
||||
if (split_mode == LLAMA_SPLIT_ROW) {
|
||||
if (split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
|
||||
} else {
|
||||
// LLAMA_SPLIT_NONE or LLAMA_SPLIT_LAYER in backends where it is not supported
|
||||
// LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
|
||||
split_buft = llama_default_buffer_type_offload(main_gpu);
|
||||
}
|
||||
// assign the repeating layers
|
||||
|
@ -5070,7 +5070,7 @@ struct llm_build_context {
|
|||
kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
|
||||
n_orig_ctx (cparams.n_yarn_orig_ctx),
|
||||
do_rope_shift (worst_case || kv_self.has_shift),
|
||||
pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_NONE),
|
||||
pooling_type (cparams.do_pooling ? hparams.pooling_type : (uint32_t)LLAMA_POOLING_TYPE_NONE),
|
||||
cb (cb),
|
||||
buf_compute_meta (lctx.buf_compute_meta) {
|
||||
// all initializations should be done in init()
|
||||
|
@ -6050,12 +6050,12 @@ struct llm_build_context {
|
|||
cur = inpL;
|
||||
|
||||
// pooling layer
|
||||
if (pooling_type == LLAMA_POOLING_MEAN) {
|
||||
if (pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
||||
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
|
||||
} else if (pooling_type == LLAMA_POOLING_CLS) {
|
||||
} else if (pooling_type == LLAMA_POOLING_TYPE_CLS) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_cls);
|
||||
} else {
|
||||
GGML_ASSERT(pooling_type == LLAMA_POOLING_NONE && "Invalid pooling type");
|
||||
GGML_ASSERT(pooling_type == LLAMA_POOLING_TYPE_NONE && "Invalid pooling type");
|
||||
}
|
||||
cb(cur, "result_embd", -1);
|
||||
|
||||
|
@ -7754,7 +7754,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||
}
|
||||
}
|
||||
|
||||
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_MEAN) {
|
||||
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
|
||||
|
@ -7782,7 +7782,7 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
|
|||
}
|
||||
}
|
||||
|
||||
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_CLS) {
|
||||
if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
|
||||
const int64_t n_tokens = batch.n_tokens;
|
||||
|
||||
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
|
||||
|
@ -11351,7 +11351,7 @@ static int llama_apply_lora_from_file_internal(
|
|||
struct llama_model_params llama_model_default_params() {
|
||||
struct llama_model_params result = {
|
||||
/*.n_gpu_layers =*/ 0,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_LAYER,
|
||||
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
|
||||
/*.main_gpu =*/ 0,
|
||||
/*.tensor_split =*/ nullptr,
|
||||
/*.progress_callback =*/ nullptr,
|
||||
|
@ -11377,7 +11377,7 @@ struct llama_context_params llama_context_default_params() {
|
|||
/*.n_batch =*/ 512,
|
||||
/*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
|
||||
/*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
|
||||
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_UNSPECIFIED,
|
||||
/*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
||||
/*.rope_freq_base =*/ 0.0f,
|
||||
/*.rope_freq_scale =*/ 0.0f,
|
||||
/*.yarn_ext_factor =*/ -1.0f,
|
||||
|
@ -11565,16 +11565,16 @@ struct llama_context * llama_new_context_with_model(
|
|||
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||
|
||||
auto rope_scaling_type = params.rope_scaling_type;
|
||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
|
||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
|
||||
rope_scaling_type = hparams.rope_scaling_type_train;
|
||||
}
|
||||
|
||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_NONE) {
|
||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
|
||||
cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
|
||||
}
|
||||
|
||||
if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
|
||||
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_YARN ? 1.0f : 0.0f;
|
||||
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
|
||||
}
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
|
@ -11608,8 +11608,8 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
#elif defined(GGML_USE_CUBLAS)
|
||||
if (model->n_gpu_layers > 0) {
|
||||
// with split_mode LLAMA_SPLIT_NONE or LLAMA_SPLIT_ROW, only the main GPU backend is used
|
||||
if (model->split_mode == LLAMA_SPLIT_NONE || model->split_mode == LLAMA_SPLIT_ROW) {
|
||||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
|
||||
|
@ -11618,7 +11618,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
ctx->backends.push_back(backend);
|
||||
} else {
|
||||
// LLAMA_SPLIT_LAYER requires a backend for each GPU
|
||||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||||
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
|
||||
ggml_backend_t backend = ggml_backend_cuda_init(device);
|
||||
if (backend == nullptr) {
|
||||
|
|
28
llama.h
28
llama.h
|
@ -109,23 +109,23 @@ extern "C" {
|
|||
};
|
||||
|
||||
enum llama_rope_scaling_type {
|
||||
LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
|
||||
LLAMA_ROPE_SCALING_NONE = 0,
|
||||
LLAMA_ROPE_SCALING_LINEAR = 1,
|
||||
LLAMA_ROPE_SCALING_YARN = 2,
|
||||
LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
|
||||
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
|
||||
LLAMA_ROPE_SCALING_TYPE_NONE = 0,
|
||||
LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
|
||||
LLAMA_ROPE_SCALING_TYPE_YARN = 2,
|
||||
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
|
||||
};
|
||||
|
||||
enum llama_pooling_type {
|
||||
LLAMA_POOLING_NONE = 0,
|
||||
LLAMA_POOLING_MEAN = 1,
|
||||
LLAMA_POOLING_CLS = 2,
|
||||
LLAMA_POOLING_TYPE_NONE = 0,
|
||||
LLAMA_POOLING_TYPE_MEAN = 1,
|
||||
LLAMA_POOLING_TYPE_CLS = 2,
|
||||
};
|
||||
|
||||
enum llama_split_mode {
|
||||
LLAMA_SPLIT_NONE = 0, // single GPU
|
||||
LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
|
||||
LLAMA_SPLIT_ROW = 2, // split rows across GPUs
|
||||
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
|
||||
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
|
||||
LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
|
||||
};
|
||||
|
||||
typedef struct llama_token_data {
|
||||
|
@ -173,9 +173,9 @@ extern "C" {
|
|||
} llama_batch;
|
||||
|
||||
enum llama_model_kv_override_type {
|
||||
LLAMA_KV_OVERRIDE_INT,
|
||||
LLAMA_KV_OVERRIDE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_BOOL,
|
||||
LLAMA_KV_OVERRIDE_TYPE_INT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_FLOAT,
|
||||
LLAMA_KV_OVERRIDE_TYPE_BOOL,
|
||||
};
|
||||
|
||||
struct llama_model_kv_override {
|
||||
|
|
|
@ -1264,7 +1264,7 @@ struct test_argsort : public test_case {
|
|||
|
||||
test_argsort(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
||||
ggml_sort_order order = GGML_SORT_ASC)
|
||||
ggml_sort_order order = GGML_SORT_ORDER_ASC)
|
||||
: type(type), ne(ne), order(order) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
|
@ -2116,7 +2116,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
||||
|
||||
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
|
||||
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
||||
}
|
||||
|
|
|
@ -118,7 +118,7 @@ int main(void) {
|
|||
const float fe = ggml_get_f32_1d(e, 0);
|
||||
printf("%s: e = %.4f\n", __func__, fe);
|
||||
|
||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
|
||||
|
||||
ggml_opt(ctx, opt_params, e);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue