ggml : add unified SYCL backend for Intel GPUs (#2690)

* first update for migration

* update init_cublas

* add debug functio, commit all help code

* step 1

* step 2

* step3 add fp16, slower 31->28

* add GGML_LIST_DEVICE function

* step 5 format device and print

* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue

* support main device is non-zero

* step7 add debug for code path, rm log

* step 8, rename all macro & func from cuda by sycl

* fix error of select non-zero device, format device list

* ren ggml-sycl.hpp -> ggml-sycl.h

* clear CMAKE to rm unused lib and options

* correct queue: rm dtct:get_queue

* add print tensor function to debug

* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481

* summary dpct definition in one header file to replace folder:dpct

* refactor device log

* mv dpct definition from folder dpct to ggml-sycl.h

* update readme, refactor build script

* fix build with sycl

* set nthread=1 when sycl, increase performance

* add run script, comment debug code

* add ls-sycl-device tool

* add ls-sycl-device, rm unused files

* rm rear space

* dos2unix

* Update README_sycl.md

* fix return type

* remove sycl version from include path

* restore rm code to fix hang issue

* add syc and link for sycl readme

* rm original sycl code before refactor

* fix code err

* add know issue for pvc hang issue

* enable SYCL_F16 support

* align pr4766

* check for sycl blas, better performance

* cleanup 1

* remove extra endif

* add build&run script, clean CMakefile, update guide by review comments

* rename macro to intel hardware

* editor config format

* format fixes

* format fixes

* editor format fix

* Remove unused headers

* skip build sycl tool for other code path

* replace tab by space

* fix blas matmul function

* fix mac build

* restore hip dependency

* fix conflict

* ren as review comments

* mv internal function to .cpp file

* export funciton print_sycl_devices(), mv class dpct definition to source file

* update CI/action for sycl code, fix CI error of repeat/dup

* fix action ID format issue

* rm unused strategy

* enable llama_f16 in ci

* fix conflict

* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml

* fix ci cases for unsupported data type

* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL

* revert hip cmake changes

* fix indent

* add prefix in func name

* revert no mmq

* rm cpu blas duplicate

* fix no_new_line

* fix src1->type==F16 bug.

* pass batch offset for F16 src1

* fix batch error

* fix wrong code

* revert sycl checking in test-sampling

* pass void as arguments of ggml_backend_sycl_print_sycl_devices

* remove extra blank line in test-sampling

* revert setting n_threads in sycl

* implement std::isinf for icpx with fast math.

* Update ci/run.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add copyright and MIT license declare

* update the cmd example

---------

Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
Abhilash Majumder 2024-01-28 21:26:23 +05:30 committed by GitHub
parent b764b8f1d0
commit 0f648573dd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 15764 additions and 24 deletions

View file

@ -42,6 +42,10 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if (defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL))
#define GGML_USE_CUBLAS_SYCL
#endif
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
@ -599,9 +603,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
break;
}
params.main_gpu = std::stoi(argv[i]);
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUBLAS
#ifndef GGML_USE_CUBLAS_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the main GPU has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--split-mode" || arg == "-sm") {
if (++i >= argc) {
invalid_param = true;
@ -618,9 +622,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS
#ifndef GGML_USE_CUBLAS_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
@ -643,9 +648,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
params.tensor_split[i] = 0.0f;
}
}
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS
#ifndef GGML_USE_CUBLAS_SYCL
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS/SYCL. Setting a tensor split has no effect.\n");
#endif // GGML_USE_CUBLAS_SYCL
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--numa") {
@ -1007,7 +1012,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
#endif
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
printf(" -gan N, --grp-attn-n N\n");
@ -1514,7 +1519,6 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");