Merge branch 'master' into compilade/refactor-kv-cache

This commit is contained in:
Francis Couture-Harpin 2024-06-30 15:31:25 -04:00
commit 10c3c419e9
518 changed files with 78202 additions and 66427 deletions

View file

@ -1,7 +1,14 @@
set(TARGET server)
set(TARGET llama-server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
option(LLAMA_SERVER_SSL "Build SSL support for the server" OFF)
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
if (MINGW)
# fix: https://github.com/ggerganov/llama.cpp/actions/runs/9651004652/job/26617901362?pr=8006
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
set(TARGET_SRCS
server.cpp
utils.hpp
@ -24,6 +31,7 @@ set(PUBLIC_ASSETS
prompt-formats.js
json-schema-to-grammar.mjs
)
foreach(asset ${PUBLIC_ASSETS})
set(input "${CMAKE_CURRENT_SOURCE_DIR}/public/${asset}")
set(output "${CMAKE_CURRENT_BINARY_DIR}/${asset}.hpp")
@ -34,18 +42,23 @@ foreach(asset ${PUBLIC_ASSETS})
COMMAND "${CMAKE_COMMAND}" "-DINPUT=${input}" "-DOUTPUT=${output}" -P "${PROJECT_SOURCE_DIR}/scripts/xxd.cmake"
)
endforeach()
add_executable(${TARGET} ${TARGET_SRCS})
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common ${CMAKE_THREAD_LIBS_INIT})
if (LLAMA_SERVER_SSL)
find_package(OpenSSL REQUIRED)
target_link_libraries(${TARGET} PRIVATE OpenSSL::SSL OpenSSL::Crypto)
target_compile_definitions(${TARGET} PRIVATE CPPHTTPLIB_OPENSSL_SUPPORT)
endif()
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -73,6 +73,7 @@ The project is under active development, and we are [looking for feedback and co
- `-fa`, `--flash-attn` : enable flash attention (default: disabled).
- `-ctk TYPE`, `--cache-type-k TYPE` : KV cache data type for K (default: `f16`, options `f32`, `f16`, `q8_0`, `q4_0`, `q4_1`, `iq4_nl`, `q5_0`, or `q5_1`)
- `-ctv TYPE`, `--cache-type-v TYPE` : KV cache type for V (default `f16`, see `-ctk` for options)
- `--spm-infill` : Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
**If compiled with `LLAMA_SERVER_SSL=ON`**
- `--ssl-key-file FNAME`: path to file a PEM-encoded SSL private key
@ -80,26 +81,26 @@ The project is under active development, and we are [looking for feedback and co
## Build
`server` is built alongside everything else from the root of the project
`llama-server` is built alongside everything else from the root of the project
- Using `make`:
```bash
make server
make llama-server
```
- Using `CMake`:
```bash
cmake -B build
cmake --build build --config Release -t server
cmake --build build --config Release -t llama-server
```
Binary is at `./build/bin/server`
Binary is at `./build/bin/llama-server`
## Build with SSL
`server` can also be built with SSL support using OpenSSL 3
`llama-server` can also be built with SSL support using OpenSSL 3
- Using `make`:
@ -107,14 +108,14 @@ The project is under active development, and we are [looking for feedback and co
# NOTE: For non-system openssl, use the following:
# CXXFLAGS="-I /path/to/openssl/include"
# LDFLAGS="-L /path/to/openssl/lib"
make LLAMA_SERVER_SSL=true server
make LLAMA_SERVER_SSL=true llama-server
```
- Using `CMake`:
```bash
cmake -B build -DLLAMA_SERVER_SSL=ON
cmake --build build --config Release -t server
cmake --build build --config Release -t llama-server
```
## Quick Start
@ -124,13 +125,13 @@ To get started right away, run the following command, making sure to use the cor
### Unix-based systems (Linux, macOS, etc.)
```bash
./server -m models/7B/ggml-model.gguf -c 2048
./llama-server -m models/7B/ggml-model.gguf -c 2048
```
### Windows
```powershell
server.exe -m models\7B\ggml-model.gguf -c 2048
llama-server.exe -m models\7B\ggml-model.gguf -c 2048
```
The above command will start a server that by default listens on `127.0.0.1:8080`.
@ -629,11 +630,11 @@ bash chat.sh
### OAI-like API
The HTTP `server` supports an OAI-like API: https://github.com/openai/openai-openapi
The HTTP `llama-server` supports an OAI-like API: https://github.com/openai/openai-openapi
### API errors
`server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
`llama-server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
Example of an error:

View file

@ -99,7 +99,7 @@ The `bench.py` script does several steps:
It aims to be used in the CI, but you can run it manually:
```shell
LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/server python bench.py \
LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/llama-server python bench.py \
--runner-label local \
--name local \
--branch `git rev-parse --abbrev-ref HEAD` \

View file

@ -245,7 +245,7 @@ def start_server(args):
def start_server_background(args):
# Start the server
server_path = '../../../build/bin/server'
server_path = '../../../build/bin/llama-server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_args = [

View file

@ -634,12 +634,12 @@ return html`
<div>
<div class="grammar">
<label for="template"></label>
<textarea id="grammar" name="grammar" placeholder="Use GBNF or JSON-Scheme + Converter" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
<textarea id="grammar" name="grammar" placeholder="Use GBNF or JSON Schema + Converter" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
</div>
<div class="grammar-columns">
<div class="json-schema-controls">
<input type="text" name="prop-order" placeholder="Order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
<button type="button" class="button-grammar" onclick=${convertJSONSchemaGrammar}>Convert JSON-Scheme</button>
<button type="button" class="button-grammar" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
</div>
</div>
</div>

View file

@ -24,6 +24,201 @@ function _buildRepetition(itemRule, minItems, maxItems, opts={}) {
return minItems === 0 ? `(${result})?` : result;
}
function _generateMinMaxInt(minValue, maxValue, out, decimalsLeft = 16, topLevel = true) {
const hasMin = minValue !== null;
const hasMax = maxValue !== null;
function digitRange(fromChar, toChar) {
out.push("[");
if (fromChar === toChar) {
out.push(fromChar);
} else {
out.push(fromChar);
out.push("-");
out.push(toChar);
}
out.push("]");
}
function moreDigits(minDigits, maxDigits) {
out.push("[0-9]");
if (minDigits === maxDigits && minDigits === 1) {
return;
}
out.push("{");
out.push(minDigits.toString());
if (maxDigits !== minDigits) {
out.push(",");
if (maxDigits !== Number.MAX_SAFE_INTEGER) {
out.push(maxDigits.toString());
}
}
out.push("}");
}
function uniformRange(fromStr, toStr) {
let i = 0;
while (i < fromStr.length && fromStr[i] === toStr[i]) {
i++;
}
if (i > 0) {
out.push("\"");
out.push(fromStr.slice(0, i));
out.push("\"");
}
if (i < fromStr.length) {
if (i > 0) {
out.push(" ");
}
const subLen = fromStr.length - i - 1;
if (subLen > 0) {
const fromSub = fromStr.slice(i + 1);
const toSub = toStr.slice(i + 1);
const subZeros = "0".repeat(subLen);
const subNines = "9".repeat(subLen);
let toReached = false;
out.push("(");
if (fromSub === subZeros) {
digitRange(fromStr[i], String.fromCharCode(toStr.charCodeAt(i) - 1));
out.push(" ");
moreDigits(subLen, subLen);
} else {
out.push("[");
out.push(fromStr[i]);
out.push("] ");
out.push("(");
uniformRange(fromSub, subNines);
out.push(")");
if (fromStr.charCodeAt(i) < toStr.charCodeAt(i) - 1) {
out.push(" | ");
if (toSub === subNines) {
digitRange(String.fromCharCode(fromStr.charCodeAt(i) + 1), toStr[i]);
toReached = true;
} else {
digitRange(String.fromCharCode(fromStr.charCodeAt(i) + 1), String.fromCharCode(toStr.charCodeAt(i) - 1));
}
out.push(" ");
moreDigits(subLen, subLen);
}
}
if (!toReached) {
out.push(" | ");
digitRange(toStr[i], toStr[i]);
out.push(" ");
uniformRange(subZeros, toSub);
}
out.push(")");
} else {
out.push("[");
out.push(fromStr[i]);
out.push("-");
out.push(toStr[i]);
out.push("]");
}
}
}
if (hasMin && hasMax) {
if (minValue < 0 && maxValue < 0) {
out.push("\"-\" (");
_generateMinMaxInt(-maxValue, -minValue, out, decimalsLeft, true);
out.push(")");
return;
}
if (minValue < 0) {
out.push("\"-\" (");
_generateMinMaxInt(0, -minValue, out, decimalsLeft, true);
out.push(") | ");
minValue = 0;
}
let minS = minValue.toString();
const maxS = maxValue.toString();
const minDigits = minS.length;
const maxDigits = maxS.length;
for (let digits = minDigits; digits < maxDigits; digits++) {
uniformRange(minS, "9".repeat(digits));
minS = "1" + "0".repeat(digits);
out.push(" | ");
}
uniformRange(minS, maxS);
return;
}
const lessDecimals = Math.max(decimalsLeft - 1, 1);
if (hasMin) {
if (minValue < 0) {
out.push("\"-\" (");
_generateMinMaxInt(null, -minValue, out, decimalsLeft, false);
out.push(") | [0] | [1-9] ");
moreDigits(0, decimalsLeft - 1);
} else if (minValue === 0) {
if (topLevel) {
out.push("[0] | [1-9] ");
moreDigits(0, lessDecimals);
} else {
moreDigits(1, decimalsLeft);
}
} else if (minValue <= 9) {
const c = minValue.toString();
const range_start = topLevel ? '1' : '0';
if (c > range_start) {
digitRange(range_start, String.fromCharCode(c.charCodeAt(0) - 1));
out.push(" ");
moreDigits(1, lessDecimals);
out.push(" | ");
}
digitRange(c, "9");
out.push(" ");
moreDigits(0, lessDecimals);
} else {
const minS = minValue.toString();
const length = minS.length;
const c = minS[0];
if (c > "1") {
digitRange(topLevel ? "1" : "0", String.fromCharCode(c.charCodeAt(0) - 1));
out.push(" ");
moreDigits(length, lessDecimals);
out.push(" | ");
}
digitRange(c, c);
out.push(" (");
_generateMinMaxInt(parseInt(minS.slice(1)), null, out, lessDecimals, false);
out.push(")");
if (c < "9") {
out.push(" | ");
digitRange(String.fromCharCode(c.charCodeAt(0) + 1), "9");
out.push(" ");
moreDigits(length - 1, lessDecimals);
}
}
return;
}
if (hasMax) {
if (maxValue >= 0) {
if (topLevel) {
out.push("\"-\" [1-9] ");
moreDigits(0, lessDecimals);
out.push(" | ");
}
_generateMinMaxInt(0, maxValue, out, decimalsLeft, true);
} else {
out.push("\"-\" (");
_generateMinMaxInt(-maxValue, null, out, decimalsLeft, false);
out.push(")");
}
return;
}
throw new Error("At least one of minValue or maxValue must be set");
}
class BuiltinRule {
constructor(content, deps) {
this.content = content;
@ -64,7 +259,7 @@ const GRAMMAR_RANGE_LITERAL_ESCAPE_RE = /[\n\r"\]\-\\]/g;
const GRAMMAR_LITERAL_ESCAPES = { '\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]' };
const NON_LITERAL_SET = new Set('|.()[]{}*+?');
const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('[]()|{}*+?');
const ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = new Set('^$.[]()|{}*+?');
export class SchemaConverter {
constructor(options) {
@ -337,6 +532,64 @@ export class SchemaConverter {
return this._addRule(name, "\"\\\"\" " + toRule(transform()) + " \"\\\"\" space")
}
_notStrings(strings) {
class TrieNode {
constructor() {
this.children = {};
this.isEndOfString = false;
}
insert(str) {
let node = this;
for (const c of str) {
node = node.children[c] = node.children[c] || new TrieNode();
}
node.isEndOfString = true;
}
}
const trie = new TrieNode();
for (const s of strings) {
trie.insert(s);
}
const charRuleName = this._addPrimitive('char', PRIMITIVE_RULES['char']);
const out = ['["] ( '];
const visit = (node) => {
const rejects = [];
let first = true;
for (const c of Object.keys(node.children).sort()) {
const child = node.children[c];
rejects.push(c);
if (first) {
first = false;
} else {
out.push(' | ');
}
out.push(`[${c}]`);
if (Object.keys(child.children).length > 0) {
out.push(' (');
visit(child);
out.push(')');
} else if (child.isEndOfString) {
out.push(` ${charRuleName}+`);
}
}
if (Object.keys(node.children).length > 0) {
if (!first) {
out.push(' | ');
}
out.push(`[^"${rejects.join('')}] ${charRuleName}*`);
}
};
visit(trie);
out.push(` )${trie.isEndOfString ? '' : '?'} ["] space`);
return out.join('');
}
_resolveRef(ref) {
let refName = ref.split('/').pop();
if (!(refName in this._rules) && !this._refsBeingResolved.has(ref)) {
@ -363,11 +616,11 @@ export class SchemaConverter {
} else if (schema.oneOf || schema.anyOf) {
return this._addRule(ruleName, this._generateUnionRule(name, schema.oneOf || schema.anyOf));
} else if (Array.isArray(schemaType)) {
return this._addRule(ruleName, this._generateUnionRule(name, schemaType.map(t => ({ type: t }))));
return this._addRule(ruleName, this._generateUnionRule(name, schemaType.map(t => ({...schema, type: t}))));
} else if ('const' in schema) {
return this._addRule(ruleName, this._generateConstantRule(schema.const));
return this._addRule(ruleName, this._generateConstantRule(schema.const) + ' space');
} else if ('enum' in schema) {
const rule = schema.enum.map(v => this._generateConstantRule(v)).join(' | ');
const rule = '(' + schema.enum.map(v => this._generateConstantRule(v)).join(' | ') + ') space';
return this._addRule(ruleName, rule);
} else if ((schemaType === undefined || schemaType === 'object') &&
('properties' in schema ||
@ -404,7 +657,7 @@ export class SchemaConverter {
}
}
return this._addRule(ruleName, this._buildObjectRule(properties, required, name, /* additionalProperties= */ false));
return this._addRule(ruleName, this._buildObjectRule(properties, required, name, null));
} else if ((schemaType === undefined || schemaType === 'array') && ('items' in schema || 'prefixItems' in schema)) {
const items = schema.items ?? schema.prefixItems;
if (Array.isArray(items)) {
@ -435,6 +688,24 @@ export class SchemaConverter {
const minLen = schema.minLength || 0;
const maxLen = schema.maxLength;
return this._addRule(ruleName, '"\\\"" ' + _buildRepetition(charRuleName, minLen, maxLen) + ' "\\\"" space');
} else if (schemaType === 'integer' && ('minimum' in schema || 'exclusiveMinimum' in schema || 'maximum' in schema || 'exclusiveMaximum' in schema)) {
let minValue = null;
let maxValue = null;
if ('minimum' in schema) {
minValue = schema.minimum;
} else if ('exclusiveMinimum' in schema) {
minValue = schema.exclusiveMinimum + 1;
}
if ('maximum' in schema) {
maxValue = schema.maximum;
} else if ('exclusiveMaximum' in schema) {
maxValue = schema.exclusiveMaximum - 1;
}
const out = ["("];
_generateMinMaxInt(minValue, maxValue, out);
out.push(") space");
return this._addRule(ruleName, out.join(''));
} else if ((schemaType === 'object') || (Object.keys(schema).length === 0)) {
return this._addRule(ruleName, this._addPrimitive('object', PRIMITIVE_RULES['object']));
} else {
@ -480,12 +751,19 @@ export class SchemaConverter {
const requiredProps = sortedProps.filter(k => required.has(k));
const optionalProps = sortedProps.filter(k => !required.has(k));
if (typeof additionalProperties === 'object' || additionalProperties === true) {
if (additionalProperties) {
const subName = `${name ?? ''}${name ? '-' : ''}additional`;
const valueRule = this.visit(additionalProperties === true ? {} : additionalProperties, `${subName}-value`);
const valueRule =
additionalProperties != null && typeof additionalProperties === 'object' ? this.visit(additionalProperties, `${subName}-value`)
: this._addPrimitive('value', PRIMITIVE_RULES['value']);
const key_rule =
sortedProps.length === 0 ? this._addPrimitive('string', PRIMITIVE_RULES['string'])
: this._addRule(`${subName}-k`, this._notStrings(sortedProps));
propKvRuleNames['*'] = this._addRule(
`${subName}-kv`,
`${this._addPrimitive('string', PRIMITIVE_RULES['string'])} ":" space ${valueRule}`);
`${key_rule} ":" space ${valueRule}`);
optionalProps.push('*');
}
@ -502,15 +780,11 @@ export class SchemaConverter {
const [k, ...rest] = ks;
const kvRuleName = propKvRuleNames[k];
let res;
if (k === '*') {
res = this._addRule(
`${name ?? ''}${name ? '-' : ''}additional-kvs`,
`${kvRuleName} ( "," space ` + kvRuleName + ` )*`
)
} else if (firstIsOptional) {
res = `( "," space ${kvRuleName} )?`;
const commaRef = `( "," space ${kvRuleName} )`;
if (firstIsOptional) {
res = commaRef + (k === '*' ? '*' : '?');
} else {
res = kvRuleName;
res = kvRuleName + (k === '*' ? ' ' + commaRef + '*' : '');
}
if (rest.length > 0) {
res += ' ' + this._addRule(

View file

@ -3,6 +3,13 @@
by Humans for All.
## quickstart
To run from the build dir
bin/llama-server -m path/model.gguf --path ../examples/server/public_simplechat
Continue reading for the details.
## overview
@ -14,6 +21,8 @@ own system prompts.
This allows seeing the generated text / ai-model response in oneshot at the end, after it is fully generated,
or potentially as it is being generated, in a streamed manner from the server/ai-model.
![Chat and Settings screens](./simplechat_screens.webp "Chat and Settings screens")
Auto saves the chat session locally as and when the chat is progressing and inturn at a later time when you
open SimpleChat, option is provided to restore the old chat session, if a matching one exists.
@ -44,12 +53,12 @@ http module.
### running using examples/server
bin/server -m path/model.gguf --path ../examples/server/public_simplechat [--port PORT]
./llama-server -m path/model.gguf --path examples/server/public_simplechat [--port PORT]
### running using python3's server module
first run examples/server
* bin/server -m path/model.gguf
* ./llama-server -m path/model.gguf
next run this web front end in examples/server/public_simplechat
* cd ../examples/server/public_simplechat
@ -170,17 +179,23 @@ It is attached to the document object. Some of these can also be updated using t
The histogram/freq based trimming logic is currently tuned for english language wrt its
is-it-a-alpabetic|numeral-char regex match logic.
chatRequestOptions - maintains the list of options/fields to send along with chat request,
apiRequestOptions - maintains the list of options/fields to send along with api request,
irrespective of whether /chat/completions or /completions endpoint.
If you want to add additional options/fields to send to the server/ai-model, and or
modify the existing options value or remove them, for now you can update this global var
using browser's development-tools/console.
For string and numeric fields in chatRequestOptions, including even those added by a user
at runtime by directly modifying gMe.chatRequestOptions, setting ui entries will be auto
For string, numeric and boolean fields in apiRequestOptions, including even those added by a
user at runtime by directly modifying gMe.apiRequestOptions, setting ui entries will be auto
created.
cache_prompt option supported by example/server is allowed to be controlled by user, so that
any caching supported wrt system-prompt and chat history, if usable can get used. When chat
history sliding window is enabled, cache_prompt logic may or may not kick in at the backend
wrt same, based on aspects related to model, positional encoding, attention mechanism etal.
However system prompt should ideally get the benefit of caching.
headers - maintains the list of http headers sent when request is made to the server. By default
Content-Type is set to application/json. Additionally Authorization entry is provided, which can
be set if needed using the settings ui.
@ -197,10 +212,10 @@ It is attached to the document object. Some of these can also be updated using t
>0 : Send the latest chat history from the latest system prompt, limited to specified cnt.
By using gMe's iRecentUserMsgCnt and chatRequestOptions.max_tokens one can try to control the
implications of loading of the ai-model's context window by chat history, wrt chat response to
some extent in a simple crude way. You may also want to control the context size enabled when
the server loads ai-model, on the server end.
By using gMe's iRecentUserMsgCnt and apiRequestOptions.max_tokens/n_predict one can try to control
the implications of loading of the ai-model's context window by chat history, wrt chat response to
some extent in a simple crude way. You may also want to control the context size enabled when the
server loads ai-model, on the server end.
Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js
@ -237,12 +252,12 @@ also be started with a model context size of 1k or more, to be on safe side.
internal n_predict, for now add the same here on the client side, maybe later add max_tokens
to /completions endpoint handling code on server side.
NOTE: One may want to experiment with frequency/presence penalty fields in chatRequestOptions
wrt the set of fields sent to server along with the user query. To check how the model behaves
NOTE: One may want to experiment with frequency/presence penalty fields in apiRequestOptions
wrt the set of fields sent to server along with the user query, to check how the model behaves
wrt repeatations in general in the generated text response.
A end-user can change these behaviour by editing gMe from browser's devel-tool/console or by
using the providing settings ui.
using the provided settings ui (for settings exposed through the ui).
### OpenAi / Equivalent API WebService
@ -253,7 +268,7 @@ for a minimal chatting experimentation by setting the below.
* the baseUrl in settings ui
* https://api.openai.com/v1 or similar
* Wrt request body - gMe.chatRequestOptions
* Wrt request body - gMe.apiRequestOptions
* model (settings ui)
* any additional fields if required in future

View file

@ -222,8 +222,8 @@ class SimpleChat {
* @param {Object} obj
*/
request_jsonstr_extend(obj) {
for(let k in gMe.chatRequestOptions) {
obj[k] = gMe.chatRequestOptions[k];
for(let k in gMe.apiRequestOptions) {
obj[k] = gMe.apiRequestOptions[k];
}
if (gMe.bStream) {
obj["stream"] = true;
@ -740,11 +740,12 @@ class Me {
"Authorization": "", // Authorization: Bearer OPENAI_API_KEY
}
// Add needed fields wrt json object to be sent wrt LLM web services completions endpoint.
this.chatRequestOptions = {
this.apiRequestOptions = {
"model": "gpt-3.5-turbo",
"temperature": 0.7,
"max_tokens": 1024,
"n_predict": 1024,
"cache_prompt": false,
//"frequency_penalty": 1.2,
//"presence_penalty": 1.2,
};
@ -800,51 +801,55 @@ class Me {
ui.el_create_append_p(`bStream:${this.bStream}`, elDiv);
ui.el_create_append_p(`bTrimGarbage:${this.bTrimGarbage}`, elDiv);
ui.el_create_append_p(`ApiEndPoint:${this.apiEP}`, elDiv);
ui.el_create_append_p(`iRecentUserMsgCnt:${this.iRecentUserMsgCnt}`, elDiv);
ui.el_create_append_p(`bCompletionFreshChatAlways:${this.bCompletionFreshChatAlways}`, elDiv);
ui.el_create_append_p(`bCompletionInsertStandardRolePrefix:${this.bCompletionInsertStandardRolePrefix}`, elDiv);
ui.el_create_append_p(`bTrimGarbage:${this.bTrimGarbage}`, elDiv);
ui.el_create_append_p(`iRecentUserMsgCnt:${this.iRecentUserMsgCnt}`, elDiv);
ui.el_create_append_p(`ApiEndPoint:${this.apiEP}`, elDiv);
}
ui.el_create_append_p(`chatRequestOptions:${JSON.stringify(this.chatRequestOptions, null, " - ")}`, elDiv);
ui.el_create_append_p(`apiRequestOptions:${JSON.stringify(this.apiRequestOptions, null, " - ")}`, elDiv);
ui.el_create_append_p(`headers:${JSON.stringify(this.headers, null, " - ")}`, elDiv);
}
/**
* Auto create ui input elements for fields in ChatRequestOptions
* Auto create ui input elements for fields in apiRequestOptions
* Currently supports text and number field types.
* @param {HTMLDivElement} elDiv
*/
show_settings_chatrequestoptions(elDiv) {
show_settings_apirequestoptions(elDiv) {
let typeDict = {
"string": "text",
"number": "number",
};
let fs = document.createElement("fieldset");
let legend = document.createElement("legend");
legend.innerText = "ChatRequestOptions";
legend.innerText = "ApiRequestOptions";
fs.appendChild(legend);
elDiv.appendChild(fs);
for(const k in this.chatRequestOptions) {
let val = this.chatRequestOptions[k];
for(const k in this.apiRequestOptions) {
let val = this.apiRequestOptions[k];
let type = typeof(val);
if (!((type == "string") || (type == "number"))) {
continue;
if (((type == "string") || (type == "number"))) {
let inp = ui.el_creatediv_input(`Set${k}`, k, typeDict[type], this.apiRequestOptions[k], (val)=>{
if (type == "number") {
val = Number(val);
}
this.apiRequestOptions[k] = val;
});
fs.appendChild(inp.div);
} else if (type == "boolean") {
let bbtn = ui.el_creatediv_boolbutton(`Set{k}`, k, {true: "true", false: "false"}, val, (userVal)=>{
this.apiRequestOptions[k] = userVal;
});
fs.appendChild(bbtn.div);
}
let inp = ui.el_creatediv_input(`Set${k}`, k, typeDict[type], this.chatRequestOptions[k], (val)=>{
if (type == "number") {
val = Number(val);
}
this.chatRequestOptions[k] = val;
});
fs.appendChild(inp.div);
}
}
@ -870,6 +875,23 @@ class Me {
});
elDiv.appendChild(bb.div);
bb = ui.el_creatediv_boolbutton("SetTrimGarbage", "TrimGarbage", {true: "[+] yes trim", false: "[-] dont trim"}, this.bTrimGarbage, (val)=>{
this.bTrimGarbage = val;
});
elDiv.appendChild(bb.div);
this.show_settings_apirequestoptions(elDiv);
let sel = ui.el_creatediv_select("SetApiEP", "ApiEndPoint", ApiEP.Type, this.apiEP, (val)=>{
this.apiEP = ApiEP.Type[val];
});
elDiv.appendChild(sel.div);
sel = ui.el_creatediv_select("SetChatHistoryInCtxt", "ChatHistoryInCtxt", this.sRecentUserMsgCnt, this.iRecentUserMsgCnt, (val)=>{
this.iRecentUserMsgCnt = this.sRecentUserMsgCnt[val];
});
elDiv.appendChild(sel.div);
bb = ui.el_creatediv_boolbutton("SetCompletionFreshChatAlways", "CompletionFreshChatAlways", {true: "[+] yes fresh", false: "[-] no, with history"}, this.bCompletionFreshChatAlways, (val)=>{
this.bCompletionFreshChatAlways = val;
});
@ -880,23 +902,6 @@ class Me {
});
elDiv.appendChild(bb.div);
bb = ui.el_creatediv_boolbutton("SetTrimGarbage", "TrimGarbage", {true: "[+] yes trim", false: "[-] dont trim"}, this.bTrimGarbage, (val)=>{
this.bTrimGarbage = val;
});
elDiv.appendChild(bb.div);
let sel = ui.el_creatediv_select("SetChatHistoryInCtxt", "ChatHistoryInCtxt", this.sRecentUserMsgCnt, this.iRecentUserMsgCnt, (val)=>{
this.iRecentUserMsgCnt = this.sRecentUserMsgCnt[val];
});
elDiv.appendChild(sel.div);
sel = ui.el_creatediv_select("SetApiEP", "ApiEndPoint", ApiEP.Type, this.apiEP, (val)=>{
this.apiEP = ApiEP.Type[val];
});
elDiv.appendChild(sel.div);
this.show_settings_chatrequestoptions(elDiv);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

View file

@ -1594,7 +1594,7 @@ struct server_context {
} else {
std::string prompt;
if (task.data.contains("prompt") && task.data.at("prompt").is_string()) {
json_value(task.data, "prompt", std::string());
prompt = json_value(task.data, "prompt", std::string());
}
slot = get_available_slot(prompt);
@ -2020,6 +2020,7 @@ struct server_context {
slot.t_start_generation = 0;
if (slot.infill) {
const bool add_bos = llama_should_add_bos_token(model);
bool suff_rm_leading_spc = true;
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
params.input_suffix.erase(0, 1);
@ -2035,11 +2036,21 @@ struct server_context {
}
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
prefix_tokens.push_back(llama_token_middle(model));
prompt_tokens = prefix_tokens;
suffix_tokens.insert(suffix_tokens.begin(), llama_token_suffix(model));
auto embd_inp = params.spm_infill ? suffix_tokens : prefix_tokens;
auto embd_end = params.spm_infill ? prefix_tokens : suffix_tokens;
if (add_bos) {
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
}
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
const llama_token middle_token = llama_token_middle(model);
if (middle_token >= 0) {
embd_inp.push_back(middle_token);
}
prompt_tokens = embd_inp;
} else {
prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
}
@ -2606,17 +2617,9 @@ int main(int argc, char ** argv) {
// print sample chat example to make it clear which template is used
{
json chat;
chat.push_back({{"role", "system"}, {"content", "You are a helpful assistant"}});
chat.push_back({{"role", "user"}, {"content", "Hello"}});
chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
chat.push_back({{"role", "user"}, {"content", "How are you?"}});
const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat);
LOG_INFO("chat template", {
{"chat_example", chat_example},
{"built_in", params.chat_template.empty()},
{"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
{"built_in", params.chat_template.empty()},
});
}

View file

@ -27,10 +27,8 @@ To mitigate it, you can increase values in `n_predict`, `kv_size`.
```shell
cd ../../..
mkdir build
cd build
cmake -DLLAMA_CURL=ON ../
cmake --build . --target server
cmake -B build -DLLAMA_CURL=ON
cmake --build build --target llama-server
```
2. Start the test: `./tests.sh`
@ -40,7 +38,7 @@ It's possible to override some scenario steps values with environment variables:
| variable | description |
|--------------------------|------------------------------------------------------------------------------------------------|
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/server` |
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/llama-server` |
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` |
| `SERVER_LOG_FORMAT_JSON` | if set switch server logs to json format |
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |

View file

@ -82,7 +82,7 @@ Feature: llama.cpp server
Examples: Prompts
| response_format | n_predicted | re_content |
| {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" |
| {"type": "json_object", "schema": {"const": "42"}} | 6 | "42" |
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
| {"type": "json_object"} | 10 | \{ " Jacky. |

View file

@ -1272,9 +1272,9 @@ def context_text(context):
def start_server_background(context):
if os.name == 'nt':
context.server_path = '../../../build/bin/Release/server.exe'
context.server_path = '../../../build/bin/Release/llama-server.exe'
else:
context.server_path = '../../../build/bin/server'
context.server_path = '../../../build/bin/llama-server'
if 'LLAMA_SERVER_BIN_PATH' in os.environ:
context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
server_listen_addr = context.server_fqdn

View file

@ -118,36 +118,17 @@ static inline void server_log(const char * level, const char * function, int lin
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
size_t alloc_size = 0;
// vector holding all allocated string to be passed to llama_chat_apply_template
std::vector<std::string> str(messages.size() * 2);
std::vector<llama_chat_message> chat(messages.size());
std::vector<llama_chat_msg> chat;
for (size_t i = 0; i < messages.size(); ++i) {
const auto & curr_msg = messages[i];
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
alloc_size += str[i*2 + 1].length();
chat[i].role = str[i*2 + 0].c_str();
chat[i].content = str[i*2 + 1].c_str();
std::string role = json_value(curr_msg, "role", std::string(""));
std::string content = json_value(curr_msg, "content", std::string(""));
chat.push_back({role, content});
}
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
std::vector<char> buf(alloc_size * 2);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
}
const std::string formatted_chat(buf.data(), res);
auto formatted_chat = llama_chat_apply_template(model, tmpl, chat, true);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat;
}