Merge branch 'master' into concedo

# Conflicts:
#	.github/workflows/build.yml
#	CMakeLists.txt
#	Makefile
#	README.md
This commit is contained in:
Concedo 2023-03-23 23:51:07 +08:00
commit 1166fda943
13 changed files with 147 additions and 173 deletions

View file

@ -1,7 +1,7 @@
---
name: Custom issue template
about: Used to report user-related issues with the software
title: "[User] I encountered a problem .."
name: Issue and enhancement template
about: Used to report issues and request enhancements for llama.cpp
title: "[User] Insert summary of your issue or enhancement.."
labels: ''
assignees: ''
@ -18,11 +18,11 @@ Please answer the following questions for yourself before submitting an issue.
# Expected Behavior
Please provide a detailed written description of what you were trying to do, and what you expected `lamma.cpp` to do.
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
# Current Behavior
Please provide a detailed written description of what `lamma.cpp` did, instead.
Please provide a detailed written description of what `llama.cpp` did, instead.
# Environment and Context
@ -44,20 +44,6 @@ $ make --version
$ g++ --version
```
# Models
* The LLaMA models are officially distributed by Facebook and will never be provided through this repository. See this [pull request in Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to obtain access to the model data.
* If your issue is with model conversion please verify the `sha256sum` of each of your `consolidated*.pth` and `ggml-model-XXX.bin` files to confirm that you have the correct model data files before logging an issue. [Latest sha256 sums for your reference](https://github.com/ggerganov/llama.cpp/issues/238).
* If your issue is with model generation quality then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
* LLaMA:
* [Introducing LLaMA: A foundational, 65-billion-parameter large language model](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)
* [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
* GPT-3
* [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
* GPT-3.5 / InstructGPT / ChatGPT:
* [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
* [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
# Failure Information (for bugs)
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
@ -75,8 +61,9 @@ Please provide detailed steps for reproducing the issue. We are not sitting in f
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability. e.g.
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
Example environment info:
```
llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c
@ -103,8 +90,8 @@ GNU Make 4.3
$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
```
Here's a run with the Linux command [perf](https://www.brendangregg.com/perf.html)
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
```
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377

View file

@ -234,7 +234,9 @@ clean:
main: main.cpp ggml.o extra.o utils.o
$(CXX) $(CXXFLAGS) main.cpp ggml.o extra.o utils.o -o main $(LDFLAGS)
@echo "\x1b[36mrun ./main -h for help\x1b[0m"
@echo
@echo '==== Run ./main -h for help. ===='
@echo
llamalib: expose.cpp ggml.o utils.o extra.o
$(CXX) $(CXXFLAGS) expose.cpp ggml.o utils.o extra.o -shared -o llamacpp.dll $(LDFLAGS)

View file

@ -1,26 +1,12 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
abe4aec2cdc297e2916011f66c7efd6fb4424e0e84315503005b5c118358cc22 models/7B/ggml-model-f16.bin
f495fa02a0b5ef265e1864d9680eede7fd23a60b0a2f93edba8091e2a4ca68b9 models/7B/ggml-model-q4_0.bin
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
a6bd0537c6873f36c47292df0b6f794e1135f5aafb89c3343bcc9e93264bf167 models/13B/ggml-model-f16.bin
0fb0951b90f2ec46c1f2f2372af5dacb4614b27e9fb6c10c69fbec58d7dd0e36 models/13B/ggml-model-f16.bin.1
1c218ba37ae61e15e35efd9949c78d6edf553b6280824c263cad56ae0b9d5a8f models/13B/ggml-model-q4_0.bin
c37a20c2ab9fa74b006b389085660269ee06110d1e45a494eb57d4602c9bcdb2 models/13B/ggml-model-q4_0.bin.1
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
def20ea508f4e36793719f857471e85b85f96e497a2cbffbbaa1b60e2b18202c models/30B/ggml-model-f16.bin
b37040aa67fa8608cb2d8e0719132cf3e267fd35ec1e2f0d37dbc9fa43d674f1 models/30B/ggml-model-f16.bin.1
e7f263557e99069fe29003262ea5fa9ed885dbe79069083e6eb569b328cf30d3 models/30B/ggml-model-f16.bin.2
2ad6a23af05eb720f202f63d130f4fc5de9b6d2efc95b921be003209a56695aa models/30B/ggml-model-f16.bin.3
7de31d005e6d02ebd9603b2cf5329ad2f832b65d08873a098c5cafc4046cb9ed models/30B/ggml-model-q4_0.bin
f91feef9f30f9a023616db2e91297ca6d5d5d7b9eb351e452a82115c46f7da9e models/30B/ggml-model-q4_0.bin.1
66f3a0916ac7a81839153eb061fa861030ed1892477c2f7af2ce4f98d2f6d06f models/30B/ggml-model-q4_0.bin.2
e3c587ba97f83d2088b001bcda3026571065649ee3090bef6743a51390b01d3b models/30B/ggml-model-q4_0.bin.3
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
@ -30,24 +16,5 @@ e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/con
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
7eba2625260cd91f8de901fd9704a1aa39448425514a335a0d3878de4ab9dc77 models/65B/ggml-model-f16.bin
f6aa886575df0785d4231f30cc776d499ccde18857818effc0378c65b178e0b5 models/65B/ggml-model-f16.bin.1
076037141682f5d7537955058c4740ab27f285aa4588915f830874a589c0693d models/65B/ggml-model-f16.bin.2
7853d96d2903ad7de2b2a89c4acf5a33a2f8e3c24ac39c9df6b44cdb42bf530a models/65B/ggml-model-f16.bin.3
b16b7b941abb3bc03a14df1656140855e9360a5371c83e919b9da83a72362314 models/65B/ggml-model-f16.bin.4
5291270216f888697695acb78ef28df0c080f9e85d3245c92fb9992d1fde6678 models/65B/ggml-model-f16.bin.5
0685ee77715f34686841006f8f94d3e7eaf148b97cecc9d3eee72808b0f7989c models/65B/ggml-model-f16.bin.6
00d993d73bb21d7c29388ffe0dced008cbaa0d391831dea77d7eb8f0b5c404b9 models/65B/ggml-model-f16.bin.7
4e398f05842206e08cdc5e7bb4f6c7c34b9dc373435ece6f261b14b7b4fe9b89 models/65B/ggml-model-q4_0.bin
4c4e899e3b12d9f57c9dcea5a1fb41bbc72023323535551f6273582ca7d7294b models/65B/ggml-model-q4_0.bin.1
d7b4594bbbd192043b3db0e5acc2561c42e6944e1cb91cc6e61510eee89dbcd8 models/65B/ggml-model-q4_0.bin.2
9a099d271648863d923d0d097391ea0bc75591f27a2ca3a327760f42e6b69af2 models/65B/ggml-model-q4_0.bin.3
5ee474051e418c5732b7949190b084d9d679db447f83c1de0d2a82daaa1a0cfa models/65B/ggml-model-q4_0.bin.4
a45aa05e7212bd6782790722d68056c5419667ea6b564ccc94bbcb8111d79b8b models/65B/ggml-model-q4_0.bin.5
a58fda714b759c28ad5e4c1d8bf8fda7b158fd5e4c4a49f851f36342fa97a105 models/65B/ggml-model-q4_0.bin.6
a3540cfcbcda33c223c6b0d606034adbd78f17e0e5de1582b78795e78754f7a8 models/65B/ggml-model-q4_0.bin.7
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
1f582babc2bd56bb63b33141898748657d369fd110c4358b2bc280907882bf13 models/alpaca-7B/ggml-model-q4_0.bin
e17730c6b62b565b098af023ca446dcb9e3535d4222ead6369c7aae67207eb3d models/alpaca-13B/ggml-model-q4_0.bin
9bcd1bb30e679c939f367be11b030fe20b3eb9a3606b9bc4106420f1827b6ae4 models/alpaca-30B/ggml-model-q4_0.bin
36079249f53c292a4c2302d7784005dcae94c865f0bedfdbfa51d9ddad402935 models/alpaca-30B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

174
ggml.c
View file

@ -1,3 +1,6 @@
// Defines CLOCK_MONOTONIC on Linux
#define _POSIX_C_SOURCE 199309L
#include "ggml.h"
#if defined(_MSC_VER) || defined(__MINGW32__)
@ -400,9 +403,55 @@ static inline __m128i packNibbles( __m256i bytes )
// method 5
// blocks of QK elements
// represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
// reference implementation for deterministic creation of model files
static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
assert(k % QK == 0);
const int nb = k / QK;
const size_t bs = sizeof(float) + QK/2;
uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
uint8_t pp[QK/2];
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int l = 0; l < QK; l++) {
const float v = x[i*QK + l];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 3) - 1);
const float id = d ? 1.0f/d : 0.0f;
*(float *)pd = d;
pd += bs;
for (int l = 0; l < QK; l += 2) {
const float v0 = x[i*QK + l + 0]*id;
const float v1 = x[i*QK + l + 1]*id;
const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
assert(vi0 >= 0 && vi0 < 16);
assert(vi1 >= 0 && vi1 < 16);
pp[l/2] = vi0 | (vi1 << 4);
}
memcpy(pb, pp, sizeof(pp));
pb += bs;
}
}
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
assert(k % QK == 0);
#if __ARM_NEON || defined(__AVX2__) || defined(__wasm_simd128__)
const int nb = k / QK;
const size_t bs = sizeof(float) + QK/2;
@ -410,6 +459,7 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
uint8_t pp[QK/2];
#endif
#if __ARM_NEON
#if QK == 32
@ -566,36 +616,7 @@ void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
#endif
#else
// scalar
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int l = 0; l < QK; l++) {
const float v = x[i*QK + l];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 3) - 1);
const float id = d ? 1.0f/d : 0.0f;
*(float *)pd = d;
pd += bs;
for (int l = 0; l < QK; l += 2) {
const float v0 = x[i*QK + l + 0]*id;
const float v1 = x[i*QK + l + 1]*id;
const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
assert(vi0 >= 0 && vi0 < 16);
assert(vi1 >= 0 && vi1 < 16);
pp[l/2] = vi0 | (vi1 << 4);
}
memcpy(pb, pp, sizeof(pp));
pb += bs;
}
quantize_row_q4_0_reference(x, y, k);
#endif
}
@ -10702,119 +10723,60 @@ enum ggml_opt_result ggml_opt(
////////////////////////////////////////////////////////////////////////////////
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
const int nb = k / qk;
const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
const size_t row_size = nb*bs;
assert(k % qk == 0);
const size_t pp_size = qk / 2;
uint8_t * pp = (uint8_t *) alloca(pp_size);
char * pdst = (char *) dst;
for (int j = 0; j < n; j += k) {
uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
quantize_row_q4_0_reference(src + j, pd, k);
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int l = 0; l < qk; l += 2) {
const uint8_t vi0 = pb[l/2] & 0xF;
const uint8_t vi1 = pb[l/2] >> 4;
{
for (int l = 0; l < qk; l++) {
const float v = src[j + i*qk + l];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 3) - 1);
const float id = d ? 1.0f/d : 0.0f;
*(float *) pd = d;
pd += bs;
for (int l = 0; l < qk; l += 2) {
const float v0 = (src[j + i*qk + l + 0])*id;
const float v1 = (src[j + i*qk + l + 1])*id;
const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
assert(vi0 >= 0 && vi0 < 16);
assert(vi1 >= 0 && vi1 < 16);
hist[vi0]++;
hist[vi1]++;
pp[l/2] = vi0 | (vi1 << 4);
}
memcpy(pb, pp, pp_size);
pb += bs;
hist[vi0]++;
hist[vi1]++;
}
pb += bs;
}
}
return (n/k)*row_size;
}
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist) {
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
const int nb = k / qk;
const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
const size_t row_size = nb*bs;
assert(k % qk == 0);
const size_t pp_size = qk / 2;
uint8_t * pp = (uint8_t *) alloca(pp_size);
char * pdst = (char *) dst;
for (int j = 0; j < n; j += k) {
uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
uint8_t * pm = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
//printf("n = %d, k = %d, nb = %d, row_size = %d, j = %d, pm = %p, pd = %p, pb = %p\n", n, k, nb, row_size, j, pm, pd, pb);
quantize_row_q4_1(src + j, pd, k);
for (int i = 0; i < nb; i++) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int l = 0; l < qk; l += 2) {
const uint8_t vi0 = pb[l/2] & 0xF;
const uint8_t vi1 = pb[l/2] >> 4;
{
for (int l = 0; l < qk; l++) {
const float v = src[j + i*qk + l];
if (v < min) min = v;
if (v > max) max = v;
}
const float d = (max - min) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
*(float *) pd = d;
*(float *) pm = min;
pd += bs;
pm += bs;
for (int l = 0; l < qk; l += 2) {
const float v0 = (src[j + i*qk + l + 0] - min)*id;
const float v1 = (src[j + i*qk + l + 1] - min)*id;
const uint8_t vi0 = round(v0);
const uint8_t vi1 = round(v1);
assert(vi0 >= 0 && vi0 < 16);
assert(vi1 >= 0 && vi1 < 16);
hist[vi0]++;
hist[vi1]++;
pp[l/2] = vi0 | (vi1 << 4);
}
memcpy(pb, pp, pp_size);
pb += bs;
hist[vi0]++;
hist[vi1]++;
}
pb += bs;
}
}

4
ggml.h
View file

@ -745,8 +745,8 @@ enum ggml_opt_result ggml_opt(
// quantization
//
size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist);
//
// system info

Binary file not shown.

View file

@ -85,7 +85,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
auto tokens = ::llama_tokenize(ctx, params.prompt.c_str(), true);
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
int count = 0;
double nll = 0.0;
@ -254,6 +254,10 @@ int main(int argc, char ** argv) {
params.interactive = true;
}
if (params.interactive_start) {
params.interactive = true;
}
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
@ -296,7 +300,7 @@ int main(int argc, char ** argv) {
#endif
" - Press Return to return control to LLaMa.\n"
" - If you want to submit another line, end your input in '\\'.\n\n");
is_interacting = true;
is_interacting = params.interactive_start || params.instruct;
}
int input_consumed = 0;

BIN
main.exe

Binary file not shown.

Binary file not shown.

View file

@ -1,4 +1,9 @@
set(TEST_TARGET test-tokenizer-0)
add_executable(${TEST_TARGET} ${TEST_TARGET}.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE llama ggml utils)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
function(llama_add_test source)
get_filename_component(TEST_TARGET ${source} NAME_WE)
add_executable(${TEST_TARGET} ${source})
target_link_libraries(${TEST_TARGET} PRIVATE llama ggml utils)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
llama_add_test(test-quantize.c)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)

42
tests/test-quantize.c Normal file
View file

@ -0,0 +1,42 @@
#include "ggml.h"
#undef NDEBUG
#include <assert.h>
#include <math.h>
int main(void) {
#define QK 32
float src[QK];
uint8_t dst[24];
int64_t hist[16];
for (int i = 0; i < QK; i++) {
src[i] = (float)(i + 1);
}
size_t size = ggml_quantize_q4_0(src, dst, QK, QK, QK, hist);
assert(size == 20);
float max_result = ((float *)dst)[0];
float max_expected = src[31] / ((1 << 3) - 1);
assert(max_result == max_expected);
for (int i = 0; i < QK; i++) {
uint8_t q4_result = (i % 2) ? (dst[sizeof(float) + i/2] >> 4) : (dst[sizeof(float) + i/2] & 0xF);
uint8_t q4_expected = roundf(src[i] / max_expected) + 8;
assert(q4_result == q4_expected);
}
size = ggml_quantize_q4_1(src, dst, QK, QK, QK, hist);
assert(size == 24);
float delta_result = ((float *)dst)[0];
float delta_expected = (src[31] - src[0]) / ((1 << 4) - 1);
assert(delta_result == delta_expected);
float min_result = ((float *)dst)[1];
float min_expected = src[0];
assert(min_result == min_expected);
for (int i = 0; i < QK; i++) {
uint8_t q4_result = (i % 2) ? (dst[sizeof(float)*2 + i/2] >> 4) : (dst[sizeof(float)*2 + i/2] & 0xF);
uint8_t q4_expected = roundf((src[i] - min_expected) / delta_expected);
assert(q4_result == q4_expected);
}
return 0;
}

View file

@ -63,6 +63,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.model = argv[++i];
} else if (arg == "-i" || arg == "--interactive") {
params.interactive = true;
} else if (arg == "--interactive-first") {
params.interactive_start = true;
} else if (arg == "-ins" || arg == "--instruct") {
params.instruct = true;
} else if (arg == "--color") {
@ -96,9 +98,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -i, --interactive run in interactive mode\n");
fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n");
fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
fprintf(stderr, " in interactive mode, poll user input upon seeing PROMPT (can be\n");
fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n");
fprintf(stderr, " specified more than once for multiple prompts).\n");
fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for <= 0)\n");
@ -146,8 +149,10 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
// TODO: not great allocating this every time
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
std::vector<llama_token> res(8096);
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
std::vector<llama_token> res(text.size() + (int)add_bos);
int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
assert(n >= 0);
res.resize(n);
return res;

View file

@ -38,7 +38,7 @@ struct gpt_params {
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool interactive_start = false; // reverse prompt immediately
bool interactive_start = false; // wait for user input immediately
bool instruct = false; // instruction mode (used for Alpaca models)
bool ignore_eos = false; // do not stop generating after eos
bool perplexity = false; // compute perplexity over the prompt