Add repetition penalty (#20)
* Adding repeat penalization * Update utils.h * Update utils.cpp * Numeric fix Should probably still scale by temp even if penalized * Update comments, more proper application I see that numbers can go negative so a fix from a referenced commit * Minor formatting --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
702fddf5c5
commit
129c7d1ea8
3 changed files with 36 additions and 3 deletions
14
main.cpp
14
main.cpp
|
@ -792,7 +792,7 @@ int main(int argc, char ** argv) {
|
|||
printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
|
||||
}
|
||||
printf("\n");
|
||||
printf("sampling parameters: temp = %f, top_k = %d, top_p = %f\n", params.temp, params.top_k, params.top_p);
|
||||
printf("sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
|
||||
printf("\n\n");
|
||||
|
||||
std::vector<gpt_vocab::id> embd;
|
||||
|
@ -801,6 +801,10 @@ int main(int argc, char ** argv) {
|
|||
size_t mem_per_token = 0;
|
||||
llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
||||
|
||||
int last_n_size = params.repeat_last_n;
|
||||
std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
|
||||
for (int i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
|
@ -821,6 +825,7 @@ int main(int argc, char ** argv) {
|
|||
// sample next token
|
||||
const float top_p = params.top_p;
|
||||
const float temp = params.temp;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
|
||||
const int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
|
@ -829,7 +834,10 @@ int main(int argc, char ** argv) {
|
|||
{
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
id = llama_sample_top_p(vocab, logits.data() + (logits.size() - n_vocab), top_p, temp, rng);
|
||||
id = llama_sample_top_p(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_p, temp, rng);
|
||||
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(id);
|
||||
|
||||
t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
|
@ -840,6 +848,8 @@ int main(int argc, char ** argv) {
|
|||
// if here, it means we are still processing the input prompt
|
||||
for (int k = i; k < embd_inp.size(); k++) {
|
||||
embd.push_back(embd_inp[k]);
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(embd_inp[k]);
|
||||
if (embd.size() > params.n_batch) {
|
||||
break;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue