diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 5d48980eb..464de8039 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -2719,7 +2719,7 @@ class StarCoder2Model(Model): @Model.register("Rwkv6ForCausalLM") class RwkvModel(Model): - model_arch = gguf.MODEL_ARCH.RWKV + model_arch = gguf.MODEL_ARCH.RWKV6 def set_vocab(self): assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file() diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 32b902480..ebeb200aa 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -211,7 +211,7 @@ class MODEL_ARCH(IntEnum): GEMMA = auto() GEMMA2 = auto() STARCODER2 = auto() - RWKV = auto() + RWKV6 = auto() MAMBA = auto() XVERSE = auto() COMMAND_R = auto() @@ -365,7 +365,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.GEMMA: "gemma", MODEL_ARCH.GEMMA2: "gemma2", MODEL_ARCH.STARCODER2: "starcoder2", - MODEL_ARCH.RWKV: "rwkv", + MODEL_ARCH.RWKV6: "rwkv6", MODEL_ARCH.MAMBA: "mamba", MODEL_ARCH.XVERSE: "xverse", MODEL_ARCH.COMMAND_R: "command-r", @@ -908,7 +908,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], - MODEL_ARCH.RWKV: [ + MODEL_ARCH.RWKV6: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD_NORM, MODEL_TENSOR.OUTPUT_NORM, diff --git a/src/llama.cpp b/src/llama.cpp index 93f003b39..f28e5f743 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -212,7 +212,7 @@ enum llm_arch { LLM_ARCH_JAIS, LLM_ARCH_NEMOTRON, LLM_ARCH_EXAONE, - LLM_ARCH_RWKV, + LLM_ARCH_RWKV6, LLM_ARCH_UNKNOWN, }; @@ -260,7 +260,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_JAIS, "jais" }, { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_EXAONE, "exaone" }, - { LLM_ARCH_RWKV, "rwkv" }, + { LLM_ARCH_RWKV6, "rwkv6" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -1371,7 +1371,7 @@ static const std::map> LLM_TENSOR_NA }, }, { - LLM_ARCH_RWKV, + LLM_ARCH_RWKV6, { { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, @@ -5903,7 +5903,7 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; - case LLM_ARCH_RWKV: + case LLM_ARCH_RWKV6: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); @@ -8338,7 +8338,7 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; - case LLM_ARCH_RWKV: + case LLM_ARCH_RWKV6: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -9361,7 +9361,7 @@ static struct ggml_tensor * llm_build_mamba( return cur; } -static struct ggml_tensor * llm_build_time_mix( +static struct ggml_tensor * llm_build_time_mix_rwkv6( struct ggml_context * ctx, const struct llama_layer * layer, struct ggml_tensor * cur, @@ -9522,7 +9522,7 @@ static struct ggml_tensor * llm_build_time_mix( return ggml_mul_mat(ctx, layer->time_mix_output, cur); } -static struct ggml_tensor * llm_build_channel_mix( +static struct ggml_tensor * llm_build_channel_mix_rwkv6( struct ggml_context * ctx, const struct llama_layer * layer, struct ggml_tensor * cur, @@ -15064,7 +15064,7 @@ struct llm_build_context { return gf; } - ggml_cgraph * build_rwkv() { + ggml_cgraph * build_rwkv6() { ggml_cgraph *gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false); // Token shift state dimensions should be 2 * n_emb @@ -15112,7 +15112,7 @@ struct llm_build_context { n_embd, n_tokens ); - cur = ggml_add(ctx0, cur, llm_build_time_mix(ctx0, layer, x_norm, x_prev, &wkv_states, state_seq)); + cur = ggml_add(ctx0, cur, llm_build_time_mix_rwkv6(ctx0, layer, x_norm, x_prev, &wkv_states, state_seq)); ggml_build_forward_expand(gf, cur); ggml_build_forward_expand( gf, @@ -15148,7 +15148,7 @@ struct llm_build_context { ggml_view_1d(ctx0, tmp, n_embd * n_tokens, 0), n_embd, n_tokens ); - cur = ggml_add(ctx0, cur, llm_build_channel_mix(ctx0, layer, x_norm, x_prev)); + cur = ggml_add(ctx0, cur, llm_build_channel_mix_rwkv6(ctx0, layer, x_norm, x_prev)); ggml_build_forward_expand(gf, cur); ggml_build_forward_expand( gf, @@ -15444,9 +15444,9 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_exaone(); } break; - case LLM_ARCH_RWKV: + case LLM_ARCH_RWKV6: { - result = llm.build_rwkv(); + result = llm.build_rwkv6(); } break; default: GGML_ABORT("fatal error"); @@ -18477,7 +18477,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_T5: case LLM_ARCH_T5ENCODER: case LLM_ARCH_JAIS: - case LLM_ARCH_RWKV: + case LLM_ARCH_RWKV6: return LLAMA_ROPE_TYPE_NONE; // use what we call a normal RoPE, operating on pairs of consecutive head values @@ -18646,7 +18646,7 @@ llama_token llama_model_decoder_start_token(const struct llama_model * model) { bool llama_model_is_recurrent(const struct llama_model * model) { switch (model->arch) { case LLM_ARCH_MAMBA: return true; - case LLM_ARCH_RWKV: return true; + case LLM_ARCH_RWKV6: return true; default: return false; } }