Introduce ggml_compute_threadpool
- OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems
This commit is contained in:
parent
3246fe84d7
commit
130adf8415
20 changed files with 1169 additions and 216 deletions
|
@ -277,6 +277,36 @@ void gpt_params_handle_model_default(gpt_params & params) {
|
|||
}
|
||||
}
|
||||
|
||||
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
|
||||
int32_t n_set = 0;
|
||||
|
||||
if (cpuparams.n_threads < 0) {
|
||||
// Assuming everything about cpuparams is invalid
|
||||
if (role_model != nullptr) {
|
||||
cpuparams = *role_model;
|
||||
} else {
|
||||
cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
|
||||
if (cpuparams.cpumask[i]) {
|
||||
n_set++;
|
||||
}
|
||||
}
|
||||
|
||||
if (n_set == 0) {
|
||||
// You hit the jackpot!
|
||||
memset(&cpuparams.cpumask[0], 1, GGML_MAX_N_THREADS);
|
||||
n_set = GGML_MAX_N_THREADS;
|
||||
}
|
||||
|
||||
if (n_set < cpuparams.n_threads) {
|
||||
// Not enough set bits, may experience performance issues.
|
||||
fprintf(stderr, "warn: Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
|
||||
}
|
||||
}
|
||||
|
||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
|
@ -296,6 +326,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
}
|
||||
}
|
||||
|
||||
postprocess_cpu_params(params.cpuparams, nullptr);
|
||||
postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.draft_cpuparams, ¶ms.cpuparams);
|
||||
postprocess_cpu_params(params.draft_cpuparams_batch, ¶ms.cpuparams_batch);
|
||||
|
||||
if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
|
||||
throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
}
|
||||
|
@ -331,7 +366,7 @@ void gpt_params_parse_from_env(gpt_params & params) {
|
|||
get_env("LLAMA_ARG_MODEL_ALIAS", params.model_alias);
|
||||
get_env("LLAMA_ARG_HF_REPO", params.hf_repo);
|
||||
get_env("LLAMA_ARG_HF_FILE", params.hf_file);
|
||||
get_env("LLAMA_ARG_THREADS", params.n_threads);
|
||||
get_env("LLAMA_ARG_THREADS", params.cpuparams.n_threads);
|
||||
get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx);
|
||||
get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel);
|
||||
get_env("LLAMA_ARG_BATCH", params.n_batch);
|
||||
|
@ -368,6 +403,79 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
|
||||
size_t dash_loc = range.find('-');
|
||||
if (dash_loc == std::string::npos) {
|
||||
fprintf(stderr, "Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t start_i;
|
||||
size_t end_i;
|
||||
|
||||
if (dash_loc == 0) {
|
||||
start_i = 0;
|
||||
} else {
|
||||
start_i = std::stoull(range.substr(0, dash_loc));
|
||||
if (start_i >= GGML_MAX_N_THREADS) {
|
||||
fprintf(stderr, "Start index out of bounds!\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (dash_loc == range.length() - 1) {
|
||||
end_i = GGML_MAX_N_THREADS - 1;
|
||||
} else {
|
||||
end_i = std::stoull(range.substr(dash_loc + 1));
|
||||
if (end_i >= GGML_MAX_N_THREADS) {
|
||||
fprintf(stderr, "End index out of bounds!\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t i = start_i; i <= end_i; i++) {
|
||||
boolmask[i] = true;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
|
||||
// Discard potential 0x prefix
|
||||
size_t start_i = 0;
|
||||
if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
|
||||
start_i = 2;
|
||||
}
|
||||
|
||||
size_t num_digits = mask.length() - start_i;
|
||||
if (num_digits > 128) num_digits = 128;
|
||||
|
||||
size_t end_i = num_digits + start_i;
|
||||
|
||||
for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
|
||||
char c = mask.at(i);
|
||||
int8_t id = c;
|
||||
|
||||
if ((c >= '0' && c <= '9')) {
|
||||
id -= '0';
|
||||
} else if (c >= 'a' && c <= 'f') {
|
||||
id -= 'a' - 10;
|
||||
} else if (c >= 'A' && c <= 'F') {
|
||||
id -= 'A' - 10;
|
||||
} else {
|
||||
fprintf(stderr, "Invalid hex character '%c' at position %d\n", c, int32_t(i));
|
||||
return false;
|
||||
}
|
||||
|
||||
boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
|
||||
boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
|
||||
boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
|
||||
boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#define CHECK_ARG if (++i >= argc) { invalid_param = true; return true; }
|
||||
|
||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
|
||||
|
@ -384,36 +492,137 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
|||
}
|
||||
if (arg == "-t" || arg == "--threads") {
|
||||
CHECK_ARG
|
||||
params.n_threads = std::stoi(argv[i]);
|
||||
if (params.n_threads <= 0) {
|
||||
params.n_threads = std::thread::hardware_concurrency();
|
||||
params.cpuparams.n_threads = std::stoi(argv[i]);
|
||||
if (params.cpuparams.n_threads <= 0) {
|
||||
params.cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-C" || arg == "--cpu-mask") {
|
||||
CHECK_ARG
|
||||
std::string mask = argv[i];
|
||||
params.cpuparams.mask_valid = true;
|
||||
invalid_param = !parse_cpu_mask(mask, params.cpuparams.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-Cr" || arg == "--cpu-range") {
|
||||
CHECK_ARG
|
||||
std::string range = argv[i];
|
||||
params.cpuparams.mask_valid = true;
|
||||
invalid_param = !parse_cpu_range(range, params.cpuparams.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--prio") {
|
||||
CHECK_ARG
|
||||
params.cpuparams.priority = std::stoul(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--cpu-strict") {
|
||||
params.cpuparams.strict_cpu = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--poll") {
|
||||
params.cpuparams.poll = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-tb" || arg == "--threads-batch") {
|
||||
CHECK_ARG
|
||||
params.n_threads_batch = std::stoi(argv[i]);
|
||||
if (params.n_threads_batch <= 0) {
|
||||
params.n_threads_batch = std::thread::hardware_concurrency();
|
||||
params.cpuparams_batch.n_threads = std::stoi(argv[i]);
|
||||
if (params.cpuparams_batch.n_threads <= 0) {
|
||||
params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-Cb" || arg == "--cpu-mask-batch") {
|
||||
CHECK_ARG
|
||||
std::string mask = argv[i];
|
||||
params.cpuparams_batch.mask_valid = true;
|
||||
invalid_param = !parse_cpu_mask(mask, params.cpuparams_batch.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-Crb" || arg == "--cpu-range_batch") {
|
||||
CHECK_ARG
|
||||
std::string range = argv[i];
|
||||
params.cpuparams_batch.mask_valid = true;
|
||||
invalid_param = !parse_cpu_range(range, params.cpuparams_batch.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--prio-batch") {
|
||||
CHECK_ARG
|
||||
params.cpuparams_batch.priority = std::stoul(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--cpu-strict-batch") {
|
||||
params.cpuparams_batch.strict_cpu = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--poll-batch") {
|
||||
params.cpuparams_batch.poll = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-td" || arg == "--threads-draft") {
|
||||
CHECK_ARG
|
||||
params.n_threads_draft = std::stoi(argv[i]);
|
||||
if (params.n_threads_draft <= 0) {
|
||||
params.n_threads_draft = std::thread::hardware_concurrency();
|
||||
params.draft_cpuparams.n_threads = std::stoi(argv[i]);
|
||||
if (params.draft_cpuparams.n_threads <= 0) {
|
||||
params.draft_cpuparams.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-Cd" || arg == "--cpu-mask-draft") {
|
||||
CHECK_ARG
|
||||
std::string mask = argv[i];
|
||||
params.draft_cpuparams.mask_valid = true;
|
||||
invalid_param = !parse_cpu_mask(mask, params.draft_cpuparams.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "-Crd" || arg == "--cpu-range-draft") {
|
||||
CHECK_ARG
|
||||
std::string range = argv[i];
|
||||
params.draft_cpuparams.mask_valid = true;
|
||||
invalid_param = !parse_cpu_range(range, params.draft_cpuparams.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--prio-draft") {
|
||||
CHECK_ARG
|
||||
params.draft_cpuparams.priority = std::stoul(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--cpu-strict-draft") {
|
||||
params.draft_cpuparams.strict_cpu = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--poll-draft") {
|
||||
params.draft_cpuparams.poll = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-tbd" || arg == "--threads-batch-draft") {
|
||||
CHECK_ARG
|
||||
params.n_threads_batch_draft = std::stoi(argv[i]);
|
||||
if (params.n_threads_batch_draft <= 0) {
|
||||
params.n_threads_batch_draft = std::thread::hardware_concurrency();
|
||||
params.draft_cpuparams_batch.n_threads = std::stoi(argv[i]);
|
||||
if (params.draft_cpuparams_batch.n_threads <= 0) {
|
||||
params.draft_cpuparams_batch.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-Crbd" || arg == "--cpu-range-batch-draft") {
|
||||
CHECK_ARG
|
||||
std::string range = argv[i];
|
||||
params.draft_cpuparams_batch.mask_valid = true;
|
||||
invalid_param = !parse_cpu_range(range, params.draft_cpuparams_batch.cpumask);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--prio-batch-draft") {
|
||||
CHECK_ARG
|
||||
params.draft_cpuparams_batch.priority = std::stoul(argv[i]);
|
||||
return true;
|
||||
}
|
||||
if (arg == "--cpu-strict-batch-draft") {
|
||||
params.draft_cpuparams_batch.strict_cpu = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "--poll-batch-draft") {
|
||||
params.draft_cpuparams_batch.poll = true;
|
||||
return true;
|
||||
}
|
||||
if (arg == "-p" || arg == "--prompt") {
|
||||
CHECK_ARG
|
||||
params.prompt = argv[i];
|
||||
|
@ -1498,11 +1707,38 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
|
||||
options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
|
||||
options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
|
||||
options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
|
||||
options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.cpuparams.n_threads });
|
||||
options.push_back({ "*", "-C, --cpu-mask M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")"});
|
||||
options.push_back({ "*", "-Cr, --cpu-range lo-hi", "range of CPUs for affinity. Complements --cpu-mask"});
|
||||
options.push_back({ "*", " --cpu-strict", "use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu});
|
||||
options.push_back({ "*", " --priority N", "set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority});
|
||||
options.push_back({ "*", " --poll", "use polling to wait for work (default: %u)\n", (unsigned) params.cpuparams.poll});
|
||||
options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
|
||||
options.push_back({ "*", "-Cb, --cpu-mask-batch M", "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)"});
|
||||
options.push_back({ "*", "-Crb, --cpu-range-batch lo-hi",
|
||||
"ranges of CPUs for affinity. Complements --cpu-mask-batch"});
|
||||
options.push_back({ "*", " --cpu-strict-batch", "use strict CPU placement (default: same as --cpu-strict)"});
|
||||
options.push_back({ "*", " --priority-batch N", "set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: --priority)"});
|
||||
options.push_back({ "*", " --poll-batch", "use polling to wait for work (default: --poll)"});
|
||||
options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
|
||||
options.push_back({ "speculative", "-Cd, --cpu-mask-draft M", "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)"});
|
||||
options.push_back({ "speculative", "-Crd, --cpu-range-draft lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft"});
|
||||
options.push_back({ "speculative", " --cpu-strict-draft", "Use strict CPU placement for draft model (default: same as --cpu-strict)"});
|
||||
options.push_back({ "speculative", " --priority-draft N", "Set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: same as --priority)"});
|
||||
options.push_back({ "speculative", " --poll-draft", "Use polling to wait for draft model work (default: same as --poll])"});
|
||||
options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
|
||||
"number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
|
||||
options.push_back({ "speculative", "-Cbd, --cpu-mask-batch-draft M",
|
||||
"Draft model CPU affinity mask. Complements cpu-range-draft-batch (default: same as --cpu-mask-draft)"});
|
||||
options.push_back({ "speculative", "-Crbd, --cpu-range-batch-draft lo-hi",
|
||||
"Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)"});
|
||||
options.push_back({ "speculative", " --cpu-strict-batch-draft",
|
||||
"Use strict CPU placement for draft model (default: --cpu-strict-draft)"});
|
||||
options.push_back({ "speculative", " --priority-batch-draft N",
|
||||
"Set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: --priority-draft)"});
|
||||
options.push_back({ "speculative", " --poll-batch-draft", "Use polling to wait for draft model work (default: --poll-draft)"});
|
||||
|
||||
options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
|
||||
options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
|
||||
options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
|
||||
|
@ -1774,7 +2010,6 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
options.push_back({ "export-lora", "-m, --model", "model path from which to load base model (default '%s')", params.model.c_str() });
|
||||
options.push_back({ "export-lora", " --lora FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)" });
|
||||
options.push_back({ "export-lora", " --lora-scaled FNAME S", "path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
|
||||
options.push_back({ "*", "-t, --threads N", "number of threads to use during computation (default: %d)", params.n_threads });
|
||||
options.push_back({ "export-lora", "-o, --output FNAME", "output file (default: '%s')", params.lora_outfile.c_str() });
|
||||
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
|
@ -1806,9 +2041,9 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||
std::string gpt_params_get_system_info(const gpt_params & params) {
|
||||
std::ostringstream os;
|
||||
|
||||
os << "system_info: n_threads = " << params.n_threads;
|
||||
if (params.n_threads_batch != -1) {
|
||||
os << " (n_threads_batch = " << params.n_threads_batch << ")";
|
||||
os << "system_info: n_threads = " << params.cpuparams.n_threads;
|
||||
if (params.cpuparams_batch.n_threads != -1) {
|
||||
os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
|
||||
}
|
||||
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
|
||||
// TODO: windows + arm64 + mingw64
|
||||
|
@ -2332,8 +2567,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
cparams.n_seq_max = params.n_parallel;
|
||||
cparams.n_batch = params.n_batch;
|
||||
cparams.n_ubatch = params.n_ubatch;
|
||||
cparams.n_threads = params.n_threads;
|
||||
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
cparams.n_threads = params.cpuparams.n_threads;
|
||||
cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
|
||||
params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
|
||||
cparams.seed = params.seed;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embeddings = params.embedding;
|
||||
|
@ -2359,6 +2595,22 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
return cparams;
|
||||
}
|
||||
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
|
||||
struct ggml_threadpool_params tpp;
|
||||
|
||||
tpp.mask_specified = params.mask_valid;
|
||||
if (params.mask_valid) {
|
||||
std::memcpy(&tpp.cpumask, ¶ms.cpumask, GGML_MAX_N_THREADS);
|
||||
}
|
||||
|
||||
tpp.n_threads = params.n_threads;
|
||||
tpp.prio = params.priority;
|
||||
tpp.poll = params.poll;
|
||||
tpp.strict_cpu = params.strict_cpu;
|
||||
|
||||
return tpp;
|
||||
}
|
||||
|
||||
#ifdef LLAMA_USE_CURL
|
||||
|
||||
static bool starts_with(const std::string & str, const std::string & prefix) {
|
||||
|
@ -3348,7 +3600,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
|
|||
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
|
||||
|
|
|
@ -67,13 +67,18 @@ enum dimre_method {
|
|||
DIMRE_METHOD_MEAN,
|
||||
};
|
||||
|
||||
struct cpu_params {
|
||||
int32_t n_threads = -1;
|
||||
bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
|
||||
bool mask_valid = false; // Default: any CPU
|
||||
int32_t priority = 0; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
|
||||
bool strict_cpu = false; // Use strict CPU placement
|
||||
bool poll = false; // Use polling (busywait) to wait for work
|
||||
};
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||
|
||||
int32_t n_threads = cpu_get_num_math();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 0; // context size
|
||||
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
||||
|
@ -100,6 +105,11 @@ struct gpt_params {
|
|||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
struct cpu_params draft_cpuparams;
|
||||
struct cpu_params draft_cpuparams_batch;
|
||||
|
||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||
void * cb_eval_user_data = nullptr;
|
||||
|
||||
|
@ -204,7 +214,7 @@ struct gpt_params {
|
|||
int32_t port = 8080; // server listens on this network port
|
||||
int32_t timeout_read = 600; // http read timeout in seconds
|
||||
int32_t timeout_write = timeout_read; // http write timeout in seconds
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests
|
||||
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = "";
|
||||
|
@ -277,6 +287,10 @@ void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
|||
|
||||
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||
|
||||
bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
|
||||
void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
|
||||
|
||||
//
|
||||
// String utils
|
||||
//
|
||||
|
@ -327,8 +341,9 @@ struct llama_init_result {
|
|||
|
||||
struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
|
||||
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
|
||||
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
|
||||
|
||||
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
|
||||
|
|
|
@ -50,6 +50,6 @@ else()
|
|||
endif()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(speculative)
|
||||
#add_subdirectory(speculative)
|
||||
add_subdirectory(tokenize)
|
||||
endif()
|
||||
|
|
|
@ -18,7 +18,7 @@ constexpr float rms_norm_eps = 5e-6f;
|
|||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
|
|
|
@ -486,8 +486,8 @@ int main(int argc, char ** argv) {
|
|||
if (use_pca) {
|
||||
// run PCA
|
||||
PCA::pca_params pca_params;
|
||||
pca_params.n_threads = params.n_threads;
|
||||
pca_params.n_batch = params.n_pca_batch;
|
||||
pca_params.n_threads = params.cpuparams.n_threads;
|
||||
pca_params.n_batch = params.n_pca_batch;
|
||||
pca_params.n_iterations = params.n_pca_iterations;
|
||||
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
|
||||
} else {
|
||||
|
|
|
@ -410,7 +410,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
g_verbose = (params.verbosity == 1);
|
||||
try {
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.n_threads);
|
||||
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
||||
ctx.run_merge();
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s\n", err.what());
|
||||
|
|
|
@ -235,6 +235,7 @@ struct cmd_params {
|
|||
std::vector<bool> use_mmap;
|
||||
std::vector<bool> embeddings;
|
||||
ggml_numa_strategy numa;
|
||||
cpu_params cpuparams;
|
||||
int reps;
|
||||
bool verbose;
|
||||
output_formats output_format;
|
||||
|
@ -261,6 +262,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* use_mmap */ {true},
|
||||
/* embeddings */ {false},
|
||||
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
|
||||
/* cpuparams */ {},
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
/* output_format */ MARKDOWN,
|
||||
|
@ -289,6 +291,11 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
|
||||
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
|
||||
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
|
||||
printf(" -mt, --max-threads <n> (default: %d)\n", cmd_params_defaults.cpuparams.n_threads);
|
||||
printf(" -C, --cpu-mask <hex> (default: 0x0)\n");
|
||||
printf(" --cpu-strict <0|1> (default: %d)\n", cmd_params_defaults.cpuparams.strict_cpu);
|
||||
printf(" --priority <0|1|2|3> (default: %d)\n", cmd_params_defaults.cpuparams.priority);
|
||||
printf(" --poll <0|1> (default: %d)\n", cmd_params_defaults.cpuparams.poll);
|
||||
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
|
||||
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
|
@ -492,6 +499,30 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
|
||||
else { invalid_param = true; break; }
|
||||
}
|
||||
} else if (arg == "-mt" || arg == "--max-threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cpuparams.n_threads = std::stoi(argv[i]);
|
||||
} else if (arg == "-C" || arg == "--cpu-mask") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::string mask = argv[i];
|
||||
params.cpuparams.mask_valid = true;
|
||||
invalid_param = !parse_cpu_mask(mask, params.cpuparams.cpumask);
|
||||
} else if (arg == "--prio") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cpuparams.priority = std::stoul(argv[i]);
|
||||
} else if (arg == "--cpu-strict") {
|
||||
params.cpuparams.strict_cpu = true;
|
||||
} else if (arg == "--poll") {
|
||||
params.cpuparams.poll = true;
|
||||
} else if (arg == "-fa" || arg == "--flash-attn") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -1402,6 +1433,23 @@ int main(int argc, char ** argv) {
|
|||
llama_model * lmodel = nullptr;
|
||||
const cmd_params_instance * prev_inst = nullptr;
|
||||
|
||||
postprocess_cpu_params(params.cpuparams);
|
||||
|
||||
struct ggml_threadpool_params tpp;
|
||||
tpp.n_threads = params.cpuparams.n_threads;
|
||||
tpp.mask_specified = params.cpuparams.mask_valid;
|
||||
tpp.strict_cpu = params.cpuparams.strict_cpu;
|
||||
tpp.prio = params.cpuparams.priority;
|
||||
tpp.poll = params.cpuparams.poll;
|
||||
|
||||
std::memcpy(&tpp.cpumask[0], ¶ms.cpuparams.cpumask[0], GGML_MAX_N_THREADS);
|
||||
|
||||
struct ggml_compute_threadpool* threadpool = ggml_create_threadpool(&tpp);
|
||||
if (!threadpool) {
|
||||
LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
for (const auto & inst : params_instances) {
|
||||
// keep the same model between tests when possible
|
||||
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
|
||||
|
@ -1427,6 +1475,7 @@ int main(int argc, char ** argv) {
|
|||
test t(inst, lmodel, ctx);
|
||||
|
||||
llama_kv_cache_clear(ctx);
|
||||
llama_attach_threadpool(ctx, threadpool);
|
||||
|
||||
// warmup run
|
||||
if (t.n_prompt > 0) {
|
||||
|
@ -1468,6 +1517,8 @@ int main(int argc, char ** argv) {
|
|||
llama_free(ctx);
|
||||
}
|
||||
|
||||
ggml_release_threadpool(threadpool);
|
||||
|
||||
llama_free_model(lmodel);
|
||||
|
||||
if (p) {
|
||||
|
|
|
@ -129,14 +129,14 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
|||
if (!params->image.empty()) {
|
||||
LOG_TEE("using base64 encoded image instead of command line image path\n");
|
||||
}
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
|
||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
|
||||
if (!embed) {
|
||||
LOG_TEE("%s: can't load image from prompt\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
params->prompt = remove_image_from_prompt(prompt);
|
||||
} else {
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, fname.c_str());
|
||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
|
||||
if (!embed) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
|
||||
return NULL;
|
||||
|
|
|
@ -221,6 +221,33 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
LOG("%s: llama threadpool init = n_threads = %d\n",
|
||||
__func__,
|
||||
(int32_t) params.cpuparams.n_threads
|
||||
);
|
||||
struct ggml_threadpool_params tpp_batch =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
|
||||
struct ggml_threadpool_params tpp =
|
||||
ggml_threadpool_params_from_cpu_params(params.cpuparams);
|
||||
|
||||
struct ggml_compute_threadpool * threadpool_batch = ggml_create_threadpool(&tpp_batch);
|
||||
if (!threadpool_batch) {
|
||||
LOG_TEE("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
struct ggml_compute_threadpool * threadpool = ggml_create_threadpool(&tpp);
|
||||
if (!threadpool) {
|
||||
LOG_TEE("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
llama_attach_batch_threadpool(ctx, threadpool_batch);
|
||||
llama_attach_threadpool(ctx, threadpool);
|
||||
if (ctx_guidance) {
|
||||
llama_attach_batch_threadpool(ctx_guidance, threadpool_batch);
|
||||
llama_attach_threadpool(ctx_guidance, threadpool);
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
|
@ -989,6 +1016,9 @@ int main(int argc, char ** argv) {
|
|||
llama_sampling_free(ctx_sampling);
|
||||
llama_backend_free();
|
||||
|
||||
ggml_release_threadpool(threadpool);
|
||||
ggml_release_threadpool(threadpool_batch);
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
LOG_TEE("Log end\n");
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
|
|
@ -2534,8 +2534,8 @@ int main(int argc, char ** argv) {
|
|||
});
|
||||
|
||||
LOG_INFO("system info", {
|
||||
{"n_threads", params.n_threads},
|
||||
{"n_threads_batch", params.n_threads_batch},
|
||||
{"n_threads", params.cpuparams.n_threads},
|
||||
{"n_threads_batch", params.cpuparams_batch.n_threads},
|
||||
{"total_threads", std::thread::hardware_concurrency()},
|
||||
{"system_info", llama_print_system_info()},
|
||||
});
|
||||
|
|
|
@ -146,7 +146,7 @@ option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library"
|
|||
set (GGML_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
||||
"ggml: metal minimum macOS version")
|
||||
set (GGML_METAL_STD "" CACHE STRING "ggml: metal standard version (-std flag)")
|
||||
option(GGML_OPENMP "ggml: use OpenMP" ON)
|
||||
option(GGML_OPENMP "ggml: use OpenMP" OFF)
|
||||
option(GGML_RPC "ggml: use RPC" OFF)
|
||||
option(GGML_SYCL "ggml: use SYCL" OFF)
|
||||
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
|
||||
|
|
|
@ -7,8 +7,9 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef struct ggml_compute_threadpool * ggml_compute_threadpool_t;
|
||||
|
||||
// Tensor allocator
|
||||
struct ggml_tallocr {
|
||||
|
|
|
@ -102,6 +102,7 @@ extern "C" {
|
|||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_compute_threadpool_t threadpool);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
|
|
|
@ -231,6 +231,8 @@
|
|||
#define GGML_MAX_SRC 10
|
||||
#ifndef GGML_MAX_NAME
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_N_THREADS 512
|
||||
|
||||
#endif
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
@ -624,6 +626,17 @@ extern "C" {
|
|||
// If it returns true, the computation is aborted
|
||||
typedef bool (*ggml_abort_callback)(void * data);
|
||||
|
||||
struct ggml_threadpool_params {
|
||||
bool cpumask[GGML_MAX_N_THREADS];
|
||||
bool mask_specified;
|
||||
int32_t n_threads;
|
||||
int32_t prio;
|
||||
bool poll;
|
||||
bool strict_cpu;
|
||||
};
|
||||
|
||||
struct ggml_compute_threadpool; // forward declaration, see ggml.c
|
||||
|
||||
// the compute plan that needs to be prepared for ggml_graph_compute()
|
||||
// since https://github.com/ggerganov/ggml/issues/287
|
||||
struct ggml_cplan {
|
||||
|
@ -631,6 +644,7 @@ extern "C" {
|
|||
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
||||
|
||||
int n_threads;
|
||||
struct ggml_compute_threadpool * threadpool;
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
|
@ -2010,10 +2024,20 @@ extern "C" {
|
|||
GGML_API size_t ggml_graph_overhead(void);
|
||||
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
||||
|
||||
GGML_API struct ggml_compute_threadpool* ggml_create_threadpool (struct ggml_threadpool_params * params);
|
||||
GGML_API void ggml_release_threadpool (struct ggml_compute_threadpool * threadpool);
|
||||
GGML_API int32_t ggml_threadpool_get_n_threads(struct ggml_compute_threadpool * threadpool);
|
||||
GGML_API void ggml_pause_threadpool (struct ggml_compute_threadpool * threadpool);
|
||||
GGML_API void ggml_resume_threadpool (struct ggml_compute_threadpool * threadpool);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API enum ggml_status ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_API struct ggml_cplan ggml_graph_plan(
|
||||
const struct ggml_cgraph * cgraph,
|
||||
int n_threads, /* = GGML_DEFAULT_N_THREADS */
|
||||
struct ggml_compute_threadpool * threadpool /* = NULL */ );
|
||||
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
||||
|
|
|
@ -722,7 +722,9 @@ ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
|
|||
#endif
|
||||
|
||||
struct ggml_backend_cpu_context {
|
||||
int n_threads;
|
||||
int n_threads;
|
||||
ggml_compute_threadpool_t threadpool;
|
||||
|
||||
void * work_data;
|
||||
size_t work_size;
|
||||
|
||||
|
@ -759,7 +761,7 @@ GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(gg
|
|||
|
||||
struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
|
||||
|
||||
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
||||
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
|
||||
|
||||
if (cpu_plan->cplan.work_size > 0) {
|
||||
|
@ -796,7 +798,7 @@ GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backe
|
|||
GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
|
||||
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
|
||||
|
||||
if (cpu_ctx->work_size < cplan.work_size) {
|
||||
free(cpu_ctx->work_data);
|
||||
|
@ -873,6 +875,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
|||
}
|
||||
|
||||
ctx->n_threads = GGML_DEFAULT_N_THREADS;
|
||||
ctx->threadpool = NULL;
|
||||
ctx->work_data = NULL;
|
||||
ctx->work_size = 0;
|
||||
ctx->abort_callback = NULL;
|
||||
|
@ -903,6 +906,13 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
|||
ctx->n_threads = n_threads;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_compute_threadpool_t threadpool) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->threadpool = threadpool;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
|
|
802
ggml/src/ggml.c
802
ggml/src/ggml.c
File diff suppressed because it is too large
Load diff
|
@ -428,6 +428,18 @@ extern "C" {
|
|||
//optional:
|
||||
LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
|
||||
|
||||
// Optional: an auto threadpool gets created in ggml if not passed explicitly
|
||||
LLAMA_API void llama_attach_threadpool(
|
||||
struct llama_context * ctx,
|
||||
ggml_compute_threadpool_t threadpool);
|
||||
LLAMA_API void llama_attach_batch_threadpool(
|
||||
struct llama_context * ctx,
|
||||
ggml_compute_threadpool_t threadpool);
|
||||
LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
|
||||
LLAMA_API void llama_detach_batch_threadpool(struct llama_context * ctx);
|
||||
LLAMA_API void llama_detach_threadpools(struct llama_context * ctx);
|
||||
|
||||
|
||||
// Call once at the end of the program - currently only used for MPI
|
||||
LLAMA_API void llama_backend_free(void);
|
||||
|
||||
|
|
|
@ -3091,6 +3091,9 @@ struct llama_context {
|
|||
#endif
|
||||
ggml_backend_t backend_cpu = nullptr;
|
||||
|
||||
ggml_compute_threadpool_t threadpool = nullptr;
|
||||
ggml_compute_threadpool_t threadpool_batch = nullptr;
|
||||
|
||||
bool has_evaluated_once = false;
|
||||
|
||||
int64_t t_start_us;
|
||||
|
@ -15494,9 +15497,10 @@ static void llama_output_reorder(struct llama_context * ctx) {
|
|||
}
|
||||
|
||||
static void llama_graph_compute(
|
||||
llama_context & lctx,
|
||||
ggml_cgraph * gf,
|
||||
int n_threads) {
|
||||
llama_context & lctx,
|
||||
ggml_cgraph * gf,
|
||||
int n_threads,
|
||||
ggml_compute_threadpool * threadpool) {
|
||||
#ifdef GGML_USE_METAL
|
||||
if (ggml_backend_is_metal(lctx.backend_metal)) {
|
||||
ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
|
||||
|
@ -15505,6 +15509,7 @@ static void llama_graph_compute(
|
|||
|
||||
if (lctx.backend_cpu != nullptr) {
|
||||
ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
|
||||
ggml_backend_cpu_set_threadpool(lctx.backend_cpu, threadpool);
|
||||
ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
|
||||
}
|
||||
#ifdef GGML_USE_BLAS
|
||||
|
@ -15518,6 +15523,42 @@ static void llama_graph_compute(
|
|||
// fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
|
||||
}
|
||||
|
||||
// Optionally swaps the batch and single-tok threadpools.
|
||||
// Returns the number of threads, and if a valid threadpool exists, returns it too.
|
||||
static std::pair<int32_t, ggml_compute_threadpool_t> llama_swap_threadpools(
|
||||
llama_context & lctx,
|
||||
int32_t n_tokens) {
|
||||
|
||||
const auto & cparams = lctx.cparams;
|
||||
int32_t n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
|
||||
ggml_compute_threadpool_t threadpool = nullptr; // nullptr -> disposable threadpool
|
||||
|
||||
// A batch threadpool without a non-batch threadpool isn't supported.
|
||||
GGML_ASSERT(!lctx.threadpool_batch || lctx.threadpool);
|
||||
|
||||
if (lctx.threadpool_batch && lctx.threadpool) {
|
||||
// Switch between the 2 threadpools as needed
|
||||
if (n_tokens > 1) {
|
||||
ggml_pause_threadpool(lctx.threadpool);
|
||||
ggml_resume_threadpool(lctx.threadpool_batch);
|
||||
threadpool = lctx.threadpool_batch;
|
||||
n_threads = cparams.n_threads_batch;
|
||||
} else {
|
||||
ggml_pause_threadpool(lctx.threadpool_batch);
|
||||
ggml_resume_threadpool(lctx.threadpool);
|
||||
threadpool = lctx.threadpool;
|
||||
n_threads = cparams.n_threads;
|
||||
}
|
||||
} else if (lctx.threadpool) {
|
||||
ggml_resume_threadpool(lctx.threadpool);
|
||||
threadpool = lctx.threadpool;
|
||||
n_threads = cparams.n_threads;
|
||||
}
|
||||
return std::make_pair(n_threads, threadpool);
|
||||
}
|
||||
|
||||
|
||||
// decode a batch of tokens by evaluating the transformer
|
||||
//
|
||||
// - lctx: llama context
|
||||
|
@ -15624,7 +15665,12 @@ static int llama_decode_internal(
|
|||
lctx.n_outputs = n_outputs_new;
|
||||
}
|
||||
|
||||
int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
std::pair<int32_t, ggml_compute_threadpool_t> threads =
|
||||
llama_swap_threadpools(lctx, n_tokens);
|
||||
|
||||
int32_t n_threads = threads.first;
|
||||
ggml_compute_threadpool_t threadpool = threads.second;
|
||||
|
||||
GGML_ASSERT(n_threads > 0);
|
||||
|
||||
// non-causal masks do not use the KV cache
|
||||
|
@ -15686,7 +15732,7 @@ static int llama_decode_internal(
|
|||
|
||||
llama_set_inputs(lctx, ubatch);
|
||||
|
||||
llama_graph_compute(lctx, gf, n_threads);
|
||||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||||
|
||||
// update the kv ring buffer
|
||||
{
|
||||
|
@ -15863,7 +15909,11 @@ static int llama_encode_internal(
|
|||
lctx.inp_embd_enc = NULL;
|
||||
lctx.n_outputs = n_tokens;
|
||||
|
||||
const int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
|
||||
std::pair<int32_t, ggml_compute_threadpool_t> threads =
|
||||
llama_swap_threadpools(lctx, n_tokens);
|
||||
|
||||
int32_t n_threads = threads.first;
|
||||
ggml_compute_threadpool_t threadpool = threads.second;
|
||||
GGML_ASSERT(n_threads > 0);
|
||||
|
||||
ggml_backend_sched_reset(lctx.sched);
|
||||
|
@ -15895,7 +15945,7 @@ static int llama_encode_internal(
|
|||
|
||||
llama_set_inputs(lctx, ubatch);
|
||||
|
||||
llama_graph_compute(lctx, gf, n_threads);
|
||||
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
||||
|
||||
// extract embeddings
|
||||
if (embd) {
|
||||
|
@ -16177,7 +16227,7 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
|||
|
||||
ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
|
||||
|
||||
llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
|
||||
llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
|
||||
#endif
|
||||
|
||||
//const int64_t t_end = ggml_time_us();
|
||||
|
@ -16203,7 +16253,7 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
|||
|
||||
llama_set_k_shift(lctx);
|
||||
|
||||
llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
|
||||
llama_graph_compute(lctx, gf, lctx.cparams.n_threads, lctx.threadpool);
|
||||
|
||||
need_reserve = true;
|
||||
}
|
||||
|
@ -17451,6 +17501,31 @@ void llama_numa_init(enum ggml_numa_strategy numa) {
|
|||
}
|
||||
}
|
||||
|
||||
void llama_attach_threadpool(
|
||||
struct llama_context * ctx,
|
||||
ggml_compute_threadpool_t threadpool) {
|
||||
ctx->threadpool = threadpool;
|
||||
}
|
||||
|
||||
void llama_attach_batch_threadpool(
|
||||
struct llama_context * ctx,
|
||||
ggml_compute_threadpool_t threadpool_batch) {
|
||||
ctx->threadpool_batch = threadpool_batch;
|
||||
}
|
||||
|
||||
void llama_detach_threadpool(struct llama_context * ctx) {
|
||||
ctx->threadpool = nullptr;
|
||||
}
|
||||
|
||||
void llama_detach_batch_threadpool(struct llama_context * ctx) {
|
||||
ctx->threadpool = nullptr;
|
||||
}
|
||||
|
||||
void llama_detach_threadpools(struct llama_context * ctx) {
|
||||
llama_detach_threadpool(ctx);
|
||||
llama_detach_batch_threadpool(ctx);
|
||||
}
|
||||
|
||||
void llama_backend_free(void) {
|
||||
ggml_quantize_free();
|
||||
}
|
||||
|
|
|
@ -113,7 +113,7 @@ static struct ggml_tensor * get_random_tensor_f32(
|
|||
}
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue