common : refactor cli arg parsing (#7675)
* common : gpt_params_parse do not print usage * common : rework usage print (wip) * common : valign * common : rework print_usage * infill : remove cfg support * common : reorder args * server : deduplicate parameters ggml-ci * common : add missing header ggml-ci * common : remote --random-prompt usages ggml-ci * examples : migrate to gpt_params ggml-ci * batched-bench : migrate to gpt_params * retrieval : migrate to gpt_params * common : change defaults for escape and n_ctx * common : remove chatml and instruct params ggml-ci * common : passkey use gpt_params
This commit is contained in:
parent
554c247caf
commit
1442677f92
34 changed files with 899 additions and 1455 deletions
|
@ -7,48 +7,31 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
|
||||
return 1 ;
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = 1;
|
||||
int n_parallel = params.n_parallel;
|
||||
|
||||
// total length of the sequences including the prompt
|
||||
int n_len = 32;
|
||||
|
||||
// number of layers to offload to the GPU
|
||||
int n_gpu_layers = 0;
|
||||
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
n_parallel = std::atoi(argv[3]);
|
||||
}
|
||||
|
||||
if (argc >= 5) {
|
||||
n_len = std::atoi(argv[4]);
|
||||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
n_gpu_layers = std::atoi(argv[5]);
|
||||
}
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
string_process_escapes(params.prompt);
|
||||
int n_predict = 32;
|
||||
|
||||
// init LLM
|
||||
|
||||
|
@ -57,9 +40,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
|
@ -73,18 +54,14 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_seq_max = n_parallel;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
|
@ -93,9 +70,9 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
|
@ -156,7 +133,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
while (n_cur <= n_len) {
|
||||
while (n_cur <= n_predict) {
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
|
||||
|
@ -192,7 +169,7 @@ int main(int argc, char ** argv) {
|
|||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue