2-bit quantizations (#4897)
* imatrix: load * imatrix: WIP * imatrix: Add Q2_K quantization * imatrix: also guard against Q2_K_S quantization without importance matrix * imatrix: guard even more against low-bit quantization misuse --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
807179ec58
commit
147b17ac94
9 changed files with 1149 additions and 82 deletions
|
@ -5,6 +5,10 @@
|
|||
#include <cstring>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <fstream>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
struct quant_option {
|
||||
std::string name;
|
||||
|
@ -17,6 +21,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|||
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
|
@ -72,10 +78,14 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
||||
printf(" --imatrixfile_name: use data in file_name as importance matrix for quant optimizations\n");
|
||||
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
printf("\nAllowed quantization types:\n");
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
if (it.name != "COPY") {
|
||||
|
@ -83,11 +93,93 @@ static void usage(const char * executable) {
|
|||
} else {
|
||||
printf(" ");
|
||||
}
|
||||
printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str());
|
||||
printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
|
||||
}
|
||||
exit(1);
|
||||
}
|
||||
|
||||
static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
|
||||
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
|
||||
if (!in) {
|
||||
printf("%s: failed to open %s\n",__func__,imatrix_file.c_str());
|
||||
return;
|
||||
}
|
||||
int n_entries;
|
||||
in.read((char*)&n_entries, sizeof(n_entries));
|
||||
if (in.fail() || n_entries < 1) {
|
||||
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < n_entries; ++i) {
|
||||
int len; in.read((char *)&len, sizeof(len));
|
||||
std::vector<char> name_as_vec(len+1);
|
||||
in.read((char *)name_as_vec.data(), len);
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str());
|
||||
return;
|
||||
}
|
||||
name_as_vec[len] = 0;
|
||||
std::string name{name_as_vec.data()};
|
||||
auto& e = imatrix_data[std::move(name)];
|
||||
int ncall;
|
||||
in.read((char*)&ncall, sizeof(ncall));
|
||||
int nval;
|
||||
in.read((char *)&nval, sizeof(nval));
|
||||
if (in.fail() || nval < 1) {
|
||||
printf("%s: failed reading number of values for entry %d\n",__func__,i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
}
|
||||
e.resize(nval);
|
||||
in.read((char*)e.data(), nval*sizeof(float));
|
||||
if (in.fail()) {
|
||||
printf("%s: failed reading data for entry %d\n",__func__,i);
|
||||
imatrix_data = {};
|
||||
return;
|
||||
}
|
||||
if (ncall > 0) {
|
||||
for (auto& v : e) v /= ncall;
|
||||
}
|
||||
}
|
||||
printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str());
|
||||
}
|
||||
|
||||
static void prepare_imatrix(const std::string& imatrix_file,
|
||||
const std::vector<std::string>& included_weights,
|
||||
const std::vector<std::string>& excluded_weights,
|
||||
std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
|
||||
if (!imatrix_file.empty()) {
|
||||
load_imatrix(imatrix_file, imatrix_data);
|
||||
}
|
||||
if (imatrix_data.empty()) {
|
||||
return;
|
||||
}
|
||||
if (!excluded_weights.empty()) {
|
||||
for (auto& name : excluded_weights) {
|
||||
for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
|
||||
auto pos = it->first.find(name);
|
||||
if (pos != std::string::npos) it = imatrix_data.erase(it);
|
||||
else ++it;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!included_weights.empty()) {
|
||||
std::unordered_map<std::string, std::vector<float>> tmp;
|
||||
for (auto& name : included_weights) {
|
||||
for (auto& e : imatrix_data) {
|
||||
auto pos = e.first.find(name);
|
||||
if (pos != std::string::npos) {
|
||||
tmp.emplace(std::move(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
imatrix_data = std::move(tmp);
|
||||
}
|
||||
if (!imatrix_data.empty()) {
|
||||
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
usage(argv[0]);
|
||||
|
@ -96,6 +188,8 @@ int main(int argc, char ** argv) {
|
|||
llama_model_quantize_params params = llama_model_quantize_default_params();
|
||||
|
||||
int arg_idx = 1;
|
||||
std::string imatrix_file;
|
||||
std::vector<std::string> included_weights, excluded_weights;
|
||||
|
||||
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
||||
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
||||
|
@ -104,14 +198,42 @@ int main(int argc, char ** argv) {
|
|||
params.allow_requantize = true;
|
||||
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
|
||||
params.pure = true;
|
||||
} else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
imatrix_file = argv[++arg_idx];
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
included_weights.push_back(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
excluded_weights.push_back(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
}
|
||||
|
||||
if (argc - arg_idx < 2) {
|
||||
printf("%s: bad arguments\n", argv[0]);
|
||||
usage(argv[0]);
|
||||
}
|
||||
if (!included_weights.empty() && !excluded_weights.empty()) {
|
||||
usage(argv[0]);
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, std::vector<float>> imatrix_data;
|
||||
prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
|
||||
if (!imatrix_data.empty()) {
|
||||
params.imatrix = &imatrix_data;
|
||||
}
|
||||
|
||||
llama_backend_init(false);
|
||||
|
||||
|
@ -163,6 +285,13 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) && imatrix_data.empty()) {
|
||||
fprintf(stderr, "\n===============================================================================================\n");
|
||||
fprintf(stderr, "Please do not use IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
|
||||
fprintf(stderr, "===============================================================================================\n\n\n");
|
||||
return 1;
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
|
||||
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue