change GPT-J and GPT2 KVs to use fp16 instead
This commit is contained in:
parent
57e9f929ee
commit
1490cdd71d
5 changed files with 18 additions and 12 deletions
BIN
koboldcpp.dll
BIN
koboldcpp.dll
Binary file not shown.
Binary file not shown.
|
@ -85,6 +85,8 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
auto memory_type = GGML_V1_TYPE_F16;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
|
@ -119,8 +121,8 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_v1_type_size(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_v1_type_size(GGML_V1_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_size(GGML_V1_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_size(GGML_V1_TYPE_F32); // memory_v
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_size(memory_type); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_size(memory_type); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
|
||||
|
@ -218,8 +220,8 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_elements);
|
||||
model.memory_k = ggml_v1_new_tensor_1d(ctx, memory_type, n_elements);
|
||||
model.memory_v = ggml_v1_new_tensor_1d(ctx, memory_type, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_v1_nbytes(model.memory_k) + ggml_v1_nbytes(model.memory_v);
|
||||
|
||||
|
|
|
@ -103,6 +103,8 @@ ModelLoadResult legacy_gptj_model_load(const std::string & fname, gptj_model_v1
|
|||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
auto memory_type = GGML_V1_TYPE_F16;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
|
@ -136,8 +138,8 @@ ModelLoadResult legacy_gptj_model_load(const std::string & fname, gptj_model_v1
|
|||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_v1_type_sizef(wtype)); // c_mlp_proj_w_trans
|
||||
ctx_size += n_layer*( n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_sizef(GGML_V1_TYPE_F32); // memory_v
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_sizef(memory_type); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_v1_type_sizef(memory_type); // memory_v
|
||||
|
||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||
|
||||
|
@ -240,8 +242,8 @@ ModelLoadResult legacy_gptj_model_load(const std::string & fname, gptj_model_v1
|
|||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_v1_new_tensor_1d(ctx, GGML_V1_TYPE_F32, n_elements);
|
||||
model.memory_k = ggml_v1_new_tensor_1d(ctx, memory_type, n_elements);
|
||||
model.memory_v = ggml_v1_new_tensor_1d(ctx, memory_type, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_v1_nbytes(model.memory_k) + ggml_v1_nbytes(model.memory_v);
|
||||
|
||||
|
|
|
@ -103,6 +103,8 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
|
||||
auto & ctx = model.ctx;
|
||||
|
||||
auto memory_type = GGML_TYPE_F16;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
|
||||
{
|
||||
|
@ -136,8 +138,8 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w
|
||||
ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b
|
||||
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
|
||||
|
||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||
|
||||
|
@ -234,8 +236,8 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
const int n_mem = n_layer*n_ctx;
|
||||
const int n_elements = n_embd*n_mem;
|
||||
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
||||
model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
|
||||
model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
|
||||
|
||||
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue