server : output embeddings for all tokens when pooling = none (#10861)
* server : add "tokens" output ggml-ci * server : output embeddings for all tokens when pooling = none ggml-ci * server : update readme [no ci] * server : fix spacing [no ci] Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com> * server : be explicit about the pooling type in the tests ggml-ci * server : update /embeddings and /v1/embeddings endpoints ggml-ci * server : do not normalize embeddings when there is no pooling ggml-ci * server : update readme ggml-ci * server : fixes * tests : update server tests ggml-ci * server : update readme [no ci] * server : remove rebase artifact --------- Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
This commit is contained in:
parent
0e70ba686e
commit
152610eda9
8 changed files with 158 additions and 37 deletions
|
@ -14,8 +14,9 @@ def create_server():
|
|||
|
||||
def test_embedding_single():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": "I believe the meaning of life is",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
|
@ -29,8 +30,9 @@ def test_embedding_single():
|
|||
|
||||
def test_embedding_multiple():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"Write a joke about AI from a very long prompt which will not be truncated",
|
||||
|
@ -46,7 +48,7 @@ def test_embedding_multiple():
|
|||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"content,is_multi_prompt",
|
||||
"input,is_multi_prompt",
|
||||
[
|
||||
# single prompt
|
||||
("string", False),
|
||||
|
@ -59,25 +61,55 @@ def test_embedding_multiple():
|
|||
([[12, 34, 56], [12, "string", 34, 56]], True),
|
||||
]
|
||||
)
|
||||
def test_embedding_mixed_input(content, is_multi_prompt: bool):
|
||||
def test_embedding_mixed_input(input, is_multi_prompt: bool):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={"content": content})
|
||||
res = server.make_request("POST", "/v1/embeddings", data={"input": input})
|
||||
assert res.status_code == 200
|
||||
data = res.body['data']
|
||||
if is_multi_prompt:
|
||||
assert len(res.body) == len(content)
|
||||
for d in res.body:
|
||||
assert len(data) == len(input)
|
||||
for d in data:
|
||||
assert 'embedding' in d
|
||||
assert len(d['embedding']) > 1
|
||||
else:
|
||||
assert 'embedding' in res.body
|
||||
assert len(res.body['embedding']) > 1
|
||||
assert 'embedding' in data[0]
|
||||
assert len(data[0]['embedding']) > 1
|
||||
|
||||
|
||||
def test_embedding_pooling_none():
|
||||
global server
|
||||
server.pooling = 'none'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
"input": "hello hello hello",
|
||||
})
|
||||
assert res.status_code == 200
|
||||
assert 'embedding' in res.body[0]
|
||||
assert len(res.body[0]['embedding']) == 5 # 3 text tokens + 2 special
|
||||
|
||||
# make sure embedding vector is not normalized
|
||||
for x in res.body[0]['embedding']:
|
||||
assert abs(sum([x ** 2 for x in x]) - 1) > EPSILON
|
||||
|
||||
|
||||
def test_embedding_pooling_none_oai():
|
||||
global server
|
||||
server.pooling = 'none'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": "hello hello hello",
|
||||
})
|
||||
|
||||
# /v1/embeddings does not support pooling type 'none'
|
||||
assert res.status_code == 400
|
||||
|
||||
|
||||
def test_embedding_openai_library_single():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is")
|
||||
assert len(res.data) == 1
|
||||
assert len(res.data[0].embedding) > 1
|
||||
|
@ -85,8 +117,9 @@ def test_embedding_openai_library_single():
|
|||
|
||||
def test_embedding_openai_library_multiple():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
|
||||
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}/v1")
|
||||
res = client.embeddings.create(model="text-embedding-3-small", input=[
|
||||
"I believe the meaning of life is",
|
||||
"Write a joke about AI from a very long prompt which will not be truncated",
|
||||
|
@ -100,8 +133,9 @@ def test_embedding_openai_library_multiple():
|
|||
|
||||
def test_embedding_error_prompt_too_long():
|
||||
global server
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": "This is a test " * 512,
|
||||
})
|
||||
assert res.status_code != 200
|
||||
|
@ -109,8 +143,9 @@ def test_embedding_error_prompt_too_long():
|
|||
|
||||
|
||||
def test_same_prompt_give_same_result():
|
||||
server.pooling = 'last'
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
|
@ -138,7 +173,7 @@ def test_same_prompt_give_same_result():
|
|||
def test_embedding_usage_single(content, n_tokens):
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={"input": content})
|
||||
res = server.make_request("POST", "/v1/embeddings", data={"input": content})
|
||||
assert res.status_code == 200
|
||||
assert res.body['usage']['prompt_tokens'] == res.body['usage']['total_tokens']
|
||||
assert res.body['usage']['prompt_tokens'] == n_tokens
|
||||
|
@ -147,7 +182,7 @@ def test_embedding_usage_single(content, n_tokens):
|
|||
def test_embedding_usage_multiple():
|
||||
global server
|
||||
server.start()
|
||||
res = server.make_request("POST", "/embeddings", data={
|
||||
res = server.make_request("POST", "/v1/embeddings", data={
|
||||
"input": [
|
||||
"I believe the meaning of life is",
|
||||
"I believe the meaning of life is",
|
||||
|
|
|
@ -65,6 +65,7 @@ class ServerProcess:
|
|||
server_reranking: bool | None = False
|
||||
server_metrics: bool | None = False
|
||||
server_slots: bool | None = False
|
||||
pooling: str | None = None
|
||||
draft: int | None = None
|
||||
api_key: str | None = None
|
||||
response_format: str | None = None
|
||||
|
@ -132,6 +133,8 @@ class ServerProcess:
|
|||
server_args.append("--metrics")
|
||||
if self.server_slots:
|
||||
server_args.append("--slots")
|
||||
if self.pooling:
|
||||
server_args.extend(["--pooling", self.pooling])
|
||||
if self.model_alias:
|
||||
server_args.extend(["--alias", self.model_alias])
|
||||
if self.n_ctx:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue