diff --git a/convert.py b/convert.py index 75c100118..4a2847a27 100755 --- a/convert.py +++ b/convert.py @@ -515,10 +515,14 @@ class HfVocab: # Yield token text, score, and type yield token_text, self.get_token_score(token_id), self.get_token_type( - token_id, self.special_ids # Reuse already stored special IDs + token_id, token_text, self.special_ids # Reuse already stored special IDs ) - def get_token_type(self, token_id: int, special_ids: set[int]) -> gguf.TokenType: + def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType: + # Special case for byte tokens + if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): + return gguf.TokenType.BYTE + # Determine token type based on whether it's a special token return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL @@ -530,7 +534,7 @@ class HfVocab: def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: for text in self.added_tokens_list: if text in self.specials: - toktype = self.get_token_type(self.specials[text], self.special_ids) + toktype = self.get_token_type(self.specials[text], b'', self.special_ids) score = self.get_token_score(self.specials[text]) else: toktype = gguf.TokenType.USER_DEFINED diff --git a/examples/server/README.md b/examples/server/README.md index d8e7c313e..46d8f85ae 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -137,6 +137,10 @@ node index.js `temperature`: Adjust the randomness of the generated text (default: 0.8). + `dynatemp_range`: Dynamic temperature range (default: 0.0, 0.0 = disabled). + + `dynatemp_exponent`: Dynamic temperature exponent (default: 1.0). + `top_k`: Limit the next token selection to the K most probable tokens (default: 40). `top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95). diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 8000fee5c..d86d7e04a 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -432,6 +432,7 @@ struct llama_server_context } default_generation_settings_for_props = get_formated_generation(slots.front()); + default_generation_settings_for_props["num_slots"] = params.n_parallel; default_generation_settings_for_props["seed"] = -1; batch = llama_batch_init(n_ctx, 0, params.n_parallel); @@ -524,27 +525,29 @@ struct llama_server_context slot->oaicompat_model = ""; } - slot->params.stream = json_value(data, "stream", false); - slot->params.cache_prompt = json_value(data, "cache_prompt", false); - slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); - slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); - slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); - slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); - slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); - slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); - slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); - slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); - slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); - slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); - slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); - slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); - slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); - slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); - slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); - slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); - slot->params.seed = json_value(data, "seed", default_params.seed); - slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); - slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); + slot->params.stream = json_value(data, "stream", false); + slot->params.cache_prompt = json_value(data, "cache_prompt", false); + slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict); + slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k); + slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p); + slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p); + slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z); + slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p); + slot->sparams.temp = json_value(data, "temperature", default_sparams.temp); + slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range); + slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent); + slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n); + slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat); + slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq); + slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present); + slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat); + slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau); + slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta); + slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl); + slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep); + slot->params.seed = json_value(data, "seed", default_params.seed); + slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar); + slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs); // infill if (data.count("input_prefix") != 0) @@ -1002,6 +1005,8 @@ struct llama_server_context {"model", params.model_alias}, {"seed", slot.params.seed}, {"temperature", slot.sparams.temp}, + {"dynatemp_range", slot.sparams.dynatemp_range}, + {"dynatemp_exponent", slot.sparams.dynatemp_exponent}, {"top_k", slot.sparams.top_k}, {"top_p", slot.sparams.top_p}, {"min_p", slot.sparams.min_p}, @@ -1163,13 +1168,30 @@ struct llama_server_context task.multitask_id = multitask_id; // when a completion task's prompt array is not a singleton, we split it into multiple requests - if (task.data.count("prompt") && task.data.at("prompt").size() > 1) - { - split_multiprompt_task(task_id, task); - } - // otherwise, it's a single-prompt task, we actually queue it - queue_tasks.post(task); + // if there's numbers in the prompt array it will be treated as an array of tokens + if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) { + bool numbers = false; + for (const auto& e : task.data.at("prompt")) { + if (e.is_number()) { + numbers = true; + break; + } + } + + // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers, + // it will completely stall the server. I don't know where the bug for this is. + // + // if there are numbers, it needs to be treated like a single prompt, + // queue_tasks handles a mix of strings and numbers just fine. + if (numbers) { + queue_tasks.post(task); + } else { + split_multiprompt_task(task_id, task); + } + } else { + queue_tasks.post(task); + } } // for multiple images processing @@ -1251,7 +1273,10 @@ struct llama_server_context void split_multiprompt_task(int multitask_id, task_server& multiprompt_task) { int prompt_count = multiprompt_task.data.at("prompt").size(); - assert(prompt_count > 1); + if (prompt_count <= 1) { + send_error(multiprompt_task, "error while handling multiple prompts"); + return; + } // generate all the ID for subtask std::vector subtask_ids(prompt_count);