Implement '--keep-split' to quantize model into several shards

This commit is contained in:
z5269887 2024-04-14 20:08:08 +08:00
parent 4cc120c744
commit 17519e110f
3 changed files with 75 additions and 27 deletions

View file

@ -97,6 +97,7 @@ static void usage(const char * executable) {
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n"); printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n"); printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n"); printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --keep-split: will generate quatized model in the same shards as input");
printf(" --override-kv KEY=TYPE:VALUE\n"); printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n"); printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n"); printf("Note: --include-weights and --exclude-weights cannot be used together\n");
@ -300,6 +301,8 @@ int main(int argc, char ** argv) {
} else { } else {
usage(argv[0]); usage(argv[0]);
} }
} else if (strcmp(argv[arg_idx], "--keep-split")) {
params.keep_split = true;
} else { } else {
usage(argv[0]); usage(argv[0]);
} }
@ -332,20 +335,28 @@ int main(int argc, char ** argv) {
std::string fname_out; std::string fname_out;
std::string ftype_str; std::string ftype_str;
std::string suffix = ".gguf";
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) { if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath; std::string fpath;
const size_t pos = fname_inp.find_last_of("/\\"); const size_t pos = fname_inp.find_last_of("/\\");
if (pos != std::string::npos) { if (pos != std::string::npos) {
fpath = fname_inp.substr(0, pos + 1); fpath = fname_inp.substr(0, pos + 1);
} }
// export as [inp path]/ggml-model-[ftype].gguf
fname_out = fpath + "ggml-model-" + ftype_str + ".gguf"; // export as [inp path]/ggml-model-[ftype]. Only add extension if there is no splitting
fname_out = fpath + "ggml-model-" + ftype_str;
if (!params.keep_split) {
fname_out += suffix;
}
arg_idx++; arg_idx++;
if (ftype_str == "COPY") { if (ftype_str == "COPY") {
params.only_copy = true; params.only_copy = true;
} }
} else { } else {
fname_out = argv[arg_idx]; fname_out = argv[arg_idx];
if (params.keep_split && fname_out.find(suffix) !=std::string::npos) {
fname_out = fname_out.substr(0, fname_out.length() - suffix.length());
}
arg_idx++; arg_idx++;
if (argc <= arg_idx) { if (argc <= arg_idx) {

View file

@ -3197,6 +3197,10 @@ struct llama_model_loader {
return nullptr; return nullptr;
} }
const llama_tensor_weight * get_weight(int i) const {
return get_weight(get_tensor_name(i));
}
const llama_tensor_weight & require_weight(const char * name) const { const llama_tensor_weight & require_weight(const char * name) const {
const llama_tensor_weight * weight = get_weight(name); const llama_tensor_weight * weight = get_weight(name);
if (!weight) { if (!weight) {
@ -13530,6 +13534,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
const size_t align = GGUF_DEFAULT_ALIGNMENT; const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty(); struct gguf_context * ctx_out = gguf_init_empty();
std::vector<gguf_context*> ctx_outs = {ctx_out};
// copy the KV pairs from the input file // copy the KV pairs from the input file
gguf_set_kv (ctx_out, ml.meta); gguf_set_kv (ctx_out, ml.meta);
@ -13593,24 +13598,63 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// populate the original tensors so we get an initial meta data // populate the original tensors so we get an initial meta data
for (int i = 0; i < ml.n_tensors; ++i) { for (int i = 0; i < ml.n_tensors; ++i) {
const struct ggml_tensor * meta = ml.get_tensor_meta(i); auto weight = ml.get_weight(i);
gguf_add_tensor(ctx_out, meta); struct ggml_tensor * tensor = weight->tensor;
if (weight->idx != (ctx_outs.size() - 1) && params->keep_split) {
ctx_out = gguf_init_empty();
ctx_outs.push_back(ctx_out);
}
gguf_add_tensor(ctx_out, tensor);
} }
std::ofstream fout(fname_out, std::ios::binary); // Set split info if needed
fout.exceptions(std::ofstream::failbit); // fail fast on write errors uint16_t n_split = ctx_outs.size();
if (n_split > 1) {
for (int i = 0; i < ctx_outs.size(); ++i) {
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
}
}
int cur_split = -1;
std::ofstream fout;
auto close_ofstream = [&]() {
// Write metadata and close file handler
if (fout.is_open()) {
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
gguf_get_meta_data(ctx_outs[cur_split], data.data());
fout.write((const char *) data.data(), data.size());
fout.close();
}
};
auto new_ofstream = [&]() {
++cur_split;
std::string fname = fname_out;
if (params->keep_split) {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
fname = std::string(split_path);
}
const size_t meta_size = gguf_get_meta_size(ctx_out); fout = std::ofstream(fname, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size); const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
// placeholder for the meta data
// placeholder for the meta data ::zeros(fout, meta_size);
::zeros(fout, meta_size); };
const auto tn = LLM_TN(model.arch); const auto tn = LLM_TN(model.arch);
new_ofstream();
for (int i = 0; i < ml.n_tensors; ++i) { for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * tensor = ml.get_tensor_meta(i); auto weight = ml.get_weight(i);
struct ggml_tensor * tensor = weight->tensor;
if (weight->idx != cur_split && params->keep_split) {
GGML_ASSERT(cur_split == weight->idx-1 && "Invalid split index found in weight");
close_ofstream();
new_ofstream();
}
const std::string name = ggml_get_name(tensor); const std::string name = ggml_get_name(tensor);
@ -13765,26 +13809,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
total_size_new += new_size; total_size_new += new_size;
// update the gguf meta data as we go // update the gguf meta data as we go
gguf_set_tensor_type(ctx_out, name.c_str(), new_type); gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
// write tensor data + padding // write tensor data + padding
fout.write((const char *) new_data, new_size); fout.write((const char *) new_data, new_size);
zeros(fout, GGML_PAD(new_size, align) - new_size); zeros(fout, GGML_PAD(new_size, align) - new_size);
} }
close_ofstream();
// go back to beginning of file and write the updated meta data for (auto & c:ctx_outs) {
{ gguf_free(c);
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *) data.data(), data.size());
} }
fout.close();
gguf_free(ctx_out);
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);

View file

@ -290,6 +290,7 @@ extern "C" {
bool pure; // quantize all tensors to the default type bool pure; // quantize all tensors to the default type
void * imatrix; // pointer to importance matrix data void * imatrix; // pointer to importance matrix data
void * kv_overrides; // pointer to vector containing overrides void * kv_overrides; // pointer to vector containing overrides
bool keep_split; // quantize to the same number of shards
} llama_model_quantize_params; } llama_model_quantize_params;
// grammar types // grammar types