From 185416884131b7f7330405e0a730197f5ccd3284 Mon Sep 17 00:00:00 2001 From: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Sat, 8 Jul 2023 20:31:49 +0800 Subject: [PATCH] This allows LLAMA models that were previously incompatible with K quants to function mostly as normal. This happens when a model has a vocab != 32000, e.g 32001 which means it's not divisible by 256 or 64. Since the problematic dimensions only apply for `tok_embeddings.weight` and `output.weight` (dimentions 4096 x n_vocab), we can simply quantize these layers to Q8_0 whereas the majority of the hidden layers are still K-quanted since they have compatible dimensions. --- llama.cpp | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/llama.cpp b/llama.cpp index ee6ec0920..be48a4e18 100644 --- a/llama.cpp +++ b/llama.cpp @@ -2428,15 +2428,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS + bool convert_incompatible_tensor = false; if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K || quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) { int nx = tensor.ne.at(0); int ny = tensor.ne.at(1); if (nx % QK_K != 0 || ny % QK_K != 0) { - fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K); - fprintf(stderr, "This is required to be able to use k-quants for now!\n"); - fprintf(stderr, "========================================================================================\n\n"); - throw std::runtime_error("Unsupported tensor size encountered\n"); + fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); + fprintf(stderr, "Q8_0 will be used for this tensor instead.\n"); + convert_incompatible_tensor = true; } } if (tensor.name == "output.weight") { @@ -2464,6 +2464,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; } + if(convert_incompatible_tensor) + { + new_type = GGML_TYPE_Q8_0; //fall back to Q8_0 instead of just failing. + } #endif float * f32_data;